Introducción
El concepto de $\| \: \|$ (norma) nos da una noción de medida de un vector, la cual, generaliza la idea geométrica de distancia en la geometría euclidiana. También ayudará a tener una noción de distancia entre dos vectores en $\mathbb{R}$ o más generalmente en $\mathbb{R}^n$, es lo que nos permite hablar de limite o de convergencia.
Consideremos la noción común de distancia entre dos puntos en $\mathbb{R}^3$.
Si $\bar{x}=(x_1,x_2,x_3),~~~\bar{y}=(y_1,y_2,y_3)$
$$\|\bar{x}-\bar{y}\|=\sqrt{(x_1-y_1)^2+(x_2-y_2)^2+(x_3-y_3)^2}$$
Esta distancia la denominamos métrica euclidiana y la generalizamos
en $\mathbb{R}^n$ en la siguiente definición.
Definición. Sean $\bar{x}=(x_1,\ldots,x_n)$ y $\bar{y}=(y_1,\ldots,y_n)$ elementos cualesquiera de $\mathbb{R}^n$ definimos la distancia euclidiana entre ellos como $$d(\bar{x},\bar{y})=\|\bar{x}-\bar{y}\|=\sqrt{(x_1-y_1)^2+\ldots+(x_n-y_n)^2}$$
La función $d:\mathbb{R}^n \times \mathbb{R}^n \rightarrow\mathbb{R}$ se denomina distancia o métrica euclidiana.
Proposición. Para cualesquiera vectores $\bar{x},\,\bar{y},\,\bar{z}\,\in\,\mathbb{R}^n$ se tiene:
(a) $d(\bar{x},\bar{y})\geq 0$
(b) $d(\bar{x},\bar{y})=d(\bar{y},\bar{x})$
(c) $d(\bar{x},\bar{y})\leq d(\bar{x},\bar{z})+d(\bar{z},\bar{y})$
(d) $d(\bar{x},\bar{y})=0~~ \Rightarrow ~~ \bar{x}=\bar{y}$
Demostración.
(a) Como $d(x,y)=\|\bar{x}-\bar{y}\|\geq
0$ entonces $d(\bar{x},\bar{y})\geq 0$
tambien si $d(x,y)=0 \quad \Rightarrow \quad \|\bar{x}-\bar{y}\|=0 \quad \Rightarrow \quad \bar{x}=\bar{y}$
(b) $d(\bar{x},\bar{y})=\|\bar{x}-\bar{y}\|=\|\bar{y}-\bar{x}\|=d(\bar{y},\bar{x})$
(c) $d(\bar{x},\bar{y})=\|\bar{x}-\bar{y}\|=
\|\bar{x}-\bar{z}+\bar{z}-\bar{y}\|\leq \|\bar{x}-\bar{z}\|+\|\bar{z}-\bar{y}\| =
d(\bar{x},\bar{z})+d(\bar{z},\bar{y}).~~\blacksquare$
Proposición. La función $$d_{1}(x,y)=|x_{1}-y_{1}|+\cdots+|x_{n}-y_{n}|$$ donde $\bar{x}=(x_{1},\cdots,x_{n})$ y $\bar{y}=(y_{1},\cdots,y_{n})$ $\in \mathbb{R}^{n}$, es una métrica para el espacio euclideano $\mathbb{R}^{n}$.
Demostración. Las propiedades (a), (b) son inmediatas y para la propiedad (c) tenemos
$$|x_{i}-y_{i}|\leq|x_{i}|+|y_{i}|~~~\forall~i=1,…,n$$
sumando ambos lados de estas desigualdades para $i=1,…,n$ obtenemos
\begin{align*}d_{1}(x,z)&=\sum_{i=1}^{n}|x_{i}-z_{i}|\\&=\sum_{i=1}^{n}|x_{i}-y_{i}+y_{i}-z_{i}|\\&\leq\sum_{i=1}^{n}|x_{i}-y_{i}|+|y_{i}-z_{i}|\\&=\sum_{i=1}^{n}|x_{i}-y_{i}|+\sum_{i=1}^{n}|y_{i}-z_{i}|\\&= d_{1}(x,y)+d_{1}(y,z)\end{align*}
y en consecuencia $d_{1}$ es una métrica.$~~ \blacksquare$
Ejemplo. En $\mathbb{R}^{n}$ son métricas
\begin{align*}d_{p}(\bar{x},\bar{y})&=\left(\sum_{i=1}^{n}|x_{i}-y_{i}|^{p}\right)^{\frac{1}{p}},~~~(p\geq 1)\\d_{\infty}(\bar{x},\bar{y})&=\max_{1\leq i\leq n}~|x_{i}-y_{i}|.~~ \blacksquare \end{align*}
Más adelante
En la siguiente entrada estudiaremos como las nociones topológicas heredadas en $\mathbb{R}^n$ nos ayudan a entender las características de proximidad y continuidad.
Tarea moral
1.- Sea $(V, \left\| \cdot \right\|)$ un espacio normado, Prueba que la función $d(v,w)= \left\| v-w \right\|$ es una métrica en $V$.
2.- Describe los conjuntos $\overline{B}= { x\in \mathbb{R}^2 : \left\| x \right\|_p \leq 1 } $ para $p=1,2, \infty $. Haz un dibujo de cada uno de ellos.
3.- Sea $V$ un espacio vectorial distinto de ${0}$. Prueba que no existe ninguna norma en $V$ que induzca la métrica discreta, es decir, no existe ninguna norma en $V$ tal que $\left\| v-w\right\| =\begin{cases}o,siv=w\\ 1 si, v\neq w\end{cases}$
4.- Prueba que si $x_1,…, x_n \in \mathbb{R}^n$ entonces $\left\| x_1 + … + x_n \right\| \leq \left\| x_1 \right\| + … + \left\| x_n \right\|$
5.- Sean $\overline{x}, \overline{y}\in \mathbb{R}^{n}$. Prueba que:
$\left\| \overline{x}+\overline{y}\right\|=\left\|x\right\|+\left\|y\right\|$ si y sólo si existe $\lambda \in \mathbb{R}$ con $\lambda > 0$, tal que $\overline{x}=\lambda \overline{y}$.