$\textcolor{red}{El~ Espacio~ Metrico~ \mathbb{R}^{n}}$

Por Ruben Hurtado

El concepto de $\| \: \|$ (norma) nos da una noción de distancia, el tener una noción de distancia en $\mathbb{R}$ o más generalmente en $\mathbb{R}^n$, es lo que nos permite hablar de limite o de convergencia.
Consideremos la noción común de distancia entre dos puntos en $\mathbb{R}^3$.
Si $\bar{x}=(x_1,x_2,x_3),~~~\bar{y}=(y_1,y_2,y_3)$
$$\|\bar{x}-\bar{y}\|=\sqrt{(x_1-y_1)^2+(x_2-y_2)^2+(x_3-y_3)^2}$$
Esta distancia la denominamos métrica euclidiana y la generalizamos
en $\mathbb{R}^n$ en la siguiente definición.
$\fbox{$\textcolor{blue}{Definición}$}$
Sean $\bar{x}=(x_1,\ldots,x_n)$ y $\bar{y}=(y_1,\ldots,y_n)$ elementos cualesquiera de
$\mathbb{R}^n$ definimos la distancia euclidiana entre ellos como $$d(\bar{x},\bar{y})=\|\bar{x}-\bar{y}\|=\sqrt{(x_1-y_1)^2+\ldots+(x_n-y_n)^2}$$
La función $d:\mathbb{R}^n \times \mathbb{R}^n \rightarrow\mathbb{R}$ se denomina distancia o métrica euclidiana.
$\fbox{Proposición}$
Para cualesquiera vectores $\bar{x},\,\bar{y},\,\bar{z}\,\in\,\mathbb{R}^n$ se tiene:
(a) $d(\bar{x},\bar{y})\geq 0$
(b) $d(\bar{x},\bar{y})=d(\bar{y},\bar{x})$
(c) $d(\bar{x},\bar{y})\leq d(\bar{x},\bar{z})+d(\bar{z},\bar{y})$
(d) $d(\bar{x},\bar{y})=0~~ \Rightarrow ~~ \bar{x}=\bar{y}$
$\fbox{Demostración}$
(a) Como $d(x,y)=\|\bar{x}-\bar{y}\|\geq
0$ entonces $d(\bar{x},\bar{y})\geq 0$
tambien si $d(x,y)=0 \quad \Rightarrow \quad \|\bar{x}-\bar{y}\|=0 \quad \Rightarrow \quad \bar{x}=\bar{y}$
(b) $d(\bar{x},\bar{y})=\|\bar{x}-\bar{y}\|=\|\bar{y}-\bar{x}\|=d(\bar{y},\bar{x})$
(c) $d(\bar{x},\bar{y})=\|\bar{x}-\bar{y}\|=
\|\bar{x}-\bar{z}+\bar{z}-\bar{y}\|\leq \|\bar{x}-\bar{z}\|+\|\bar{z}-\bar{y}\| =
d(\bar{x},\bar{z})+d(\bar{z},\bar{y}).~~\textcolor{orange}{\blacksquare}$
$\fbox{Proposición}$
La función $$d_{1}(x,y)=|x_{1}-y_{1}|+\cdots+|x_{n}-y_{n}|$$ donde $\bar{x}=(x_{1},\cdots,x_{n})$ y $\bar{y}=(y_{1},\cdots,y_{n})$ $\in \mathbb{R}^{n}$, es una métrica para el espacio euclideano $\mathbb{R}^{n}$.
$\fbox{Demostración}$
Las propiedades (a), (b) son inmediatas y para la propiedad (c) tenemos
$$|x_{i}-y_{i}|\leq|x_{i}|+|y_{i}|~~~\forall~i=1,…,n$$
sumando ambos lados de estas desigualdades para $i=1,…,n$ obtenemos
\begin{align*}d_{1}(x,z)&=\sum_{i=1}^{n}|x_{i}-z_{i}|\\&=\sum_{i=1}^{n}|x_{i}-y_{i}+y_{i}-z_{i}|\\&\leq\sum_{i=1}^{n}|x_{i}-y_{i}|+|y_{i}-z_{i}|\\&=\sum_{i=1}^{n}|x_{i}-y_{i}|+\sum_{i=1}^{n}|y_{i}-z_{i}|\\&= d_{1}(x,y)+d_{1}(y,z)\end{align*}
y en consecuencia $d_{1}$ es una métrica.$~~\textcolor{orange}{\blacksquare}$
$\textcolor{orange}{Ejemplo}$
En $\mathbb{R}^{n}$ son métricas
\begin{align*}d_{p}(\bar{x},\bar{y})&=\left(\sum_{i=1}^{n}|x_{i}-y_{i}|^{p}\right)^{\frac{1}{p}},~~~(p\geq 1)\\d_{\infty}(\bar{x},\bar{y})&=\max_{1\leq i\leq n}~|x_{i}-y_{i}|.~~\textcolor{orange}{\blacksquare}\end{align*}

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.