Geometría Moderna II: Teoremas de Carnot

Por Armando Arzola Pérez

Introducción

Otro tema interesante son los Teoremas de Carnot, los cuales nos permiten resolver otros problemas.

Teoremas de Carnot

Teorema Sea, $ABC$ un triángulo y una circunferencia que interseca en los lados $BC$, $CA$, $AB$ en los puntos $P$, $P’$, $Q$, $Q’$, $R$, $R’$ respectivamente, entonces

$\frac{AR}{RB} \cdot \frac{BP}{PC} \cdot \frac{CQ}{QA} \cdot \frac{AR’}{R’B} \cdot \frac{BP’}{P’C} \cdot \frac{CQ’}{Q’A} = 1$

Teoremas de Carnot 1

Demostración Tracemos las rectas $PQ$ y $P’Q’$, las cuales intersecan a $AB$ en $G$ y $G’$ respectivamente. Por Menelao al triángulo $ABC$ con transversales $QG$ y $Q’G’$, se tiene

$\frac{AG}{GB} \cdot \frac{BP}{PC} \cdot \frac{CQ}{QA} = -1$ . . . (1)

y

$\frac{AG’}{G’B} \cdot \frac{BP’}{P’C} \cdot \frac{CQ’}{Q’A} = -1$ . . . (2)

Como $AB$ es una transversal que corta los lados del cuadrángulo inscrito $PQP’Q’$ y la circunferencia en puntos de involución, se tiene

$\{ABR’G’\}=\{BARG\}=\{ABGR\}$

Entonces

$\frac{AR}{RB} \cdot \frac{AR’}{R’B} = \frac{AG}{GB} \cdot \frac{AG’}{G’B}$

Se realizará la siguiente multiplicación de la ecuación (1) y (2)

$\frac{AG}{GB} \cdot \frac{BP}{PC} \cdot \frac{CQ}{QA} \cdot \frac{AG’}{G’B} \cdot \frac{BP’}{P’C} \cdot \frac{CQ’}{Q’A} = (-1)(-1)$

$\frac{AR}{RB} \cdot \frac{BP}{PC} \cdot \frac{CQ}{QA} \cdot \frac{AR’}{R’B} \cdot \frac{BP’}{P’C} \cdot \frac{CQ’}{Q’A} = 1$

Teorema de Carnot 2

$\square$

Teorema (Carnot para Rectas) Sea el triángulo $ABC$ y dos rectas $l$ y $l’$ que intersecan a los lados $BC$, $CA$ y $AB$ la primera en los puntos $P$, $Q$ y $R$ y la segunda a los puntos $P’$, $Q’$ y $R’$, entonces

$\frac{AR}{RB} \cdot \frac{BP}{PC} \cdot \frac{CQ}{QA} \cdot \frac{AR’}{R’B} \cdot \frac{BP’}{P’C} \cdot \frac{CQ’}{Q’A} = 1$

Demostración Por el Teorema de Menelao con las rectas $l$ y $l’$, se tiene

$\frac{AR}{RB} \cdot \frac{BP}{PC} \cdot \frac{CQ}{QA} = -1$ y  $\frac{AR’}{R’B} \cdot \frac{BP’}{P’C} \cdot \frac{CQ’}{Q’A} = -1$

Entonces multiplicándolos

$\frac{AR}{RB} \cdot \frac{BP}{PC} \cdot \frac{CQ}{QA} \cdot \frac{AR’}{R’B} \cdot \frac{BP’}{P’C} \cdot \frac{CQ’}{Q’A} = 1$

Teorema de Carnot 3

$\square$

Teorema (Carnot para cónicas) Sea el triángulo $\triangle ABC$ y sea una conica que interseca los lados $BC$, $CA$ y  $AB$ en los puntos $P$, $P’$, $Q$, $Q’$, $R$, $R’$ respectivamente, entonces

$\frac{AR}{RB} \cdot \frac{BP}{PC} \cdot \frac{CQ}{QA} \cdot \frac{AR’}{R’B} \cdot \frac{BP’}{P’C} \cdot \frac{CQ’}{Q’A} = 1$

Más adelante…

Se dejarán una serie de ejercicios para poner en práctica lo visto en esta unidad.

Entradas relacionadas

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.