Geometría Moderna II: Teorema de Stewart

Por Armando Arzola Pérez

Introducción

Se discutirán a través de esta unidad teoremas selectos debido a su importancia en la solución de otros problemas, en esta nota será el Teorema de Stewart.

Teorema de Stewart

Teorema. Sea el triángulo ABC con lados BC,CA,AB los cuales sus longitudes son a,b,c respectivamente, y sea un punto D cualquiera en BC donde BC=m y DC=n, además si la longitud de AD=d, entonces

ad2=mb2+nc2amn.

Teorema de Stewart 1

Demostración Aplicando la Ley de cosenos a los triángulos ABD en el ángulo ADB y el ADC en el ángulo ADB, se tiene

c2=d2+m22dmcosADB
y
b2=d2+n2+2dncosADB.

Si multiplicamos ambas ecuaciones por n y m respectivamente tenemos:

nc2=nd2+nm22dnmcosADB
y
mb2=md2+mn2+2dnmcosADB.

Sumando ambas ecuaciones se tiene:

nc2+mb2=nd2+md2+nm2+mn2.

Ahora como m+n=a, se tiene:

nc2+mb2=(n+m)d2+(n+m)mn
nc2+mb2=ad2+amn.

Por lo tanto, concluimos que:

ad2=mb2+nc2amn.

◻

Demostración. (Por Pitágoras) Se tiene la altura de A a BC que corta en el punto H, donde AH=h, CH=x, HD=y.

Teorema de Stewart 2

Aplicando el Teorema de Pitágoras al triángulo AHC, AHD y al AHB se tiene lo siguiente respectivamente:

b2=x2+h2 , d2=h2+y2 y c2=h2+(m+y)2.

Además se tiene que y+x=n entonces x=ny. Si lo sustituimos en b2=h2+x2 se tiene b2=h2+(ny)2 y lo multiplicamos por m:

mb2=mh2+m(ny)2.

De igual forma multipliquemos c2=h2+(m+y)2 por n:

nc2=nh2+n(m+y)2.

Entonces sumando md2+nc2 se tiene:

mb2+nc2=mh2+m(ny)2+nh2+n(m+y)2
mb2+nc2=(m+n)h2+m(n22ny+y2)+n(m2+2my+y2)
mb2+nc2=(m+n)h2+mn22mny+my2+nm2+2mny+ny2
mb2+nc2=(m+n)h2+mn2+nm2+my2+ny2
mb2+nc2=mn(n+m)+(m+n)(y2+h2)
mb2+nc2=(m+n)[mn+y2+h2].

Sustituyendo d2=h2+y2 y m+n=a en la ecuación resultante:

mb2+nc2=a[mn+d2].

Por lo tanto,

ad2=mb2+nc2amn.

◻

Conclusión

Es gracias a este Teorema que se puede encontrar la longitud de la recta AB cuando D es un punto cualquiera en la recta BC y se tiene la razón en la cual D divide a BC, ya que se conocen las longitudes y signos de BD y DC en este caso.
De igual forma, las longitudes de las medianas, las simedianas y las bisectrices de los ángulos de un triángulo, se pueden encontrar usando el Teorema de Stewart.

Con el uso del teorema de Stewart se puede resolver el siguiente Teorema.

Teorema. Si las bisectrices de dos ángulos interiores de un triángulo son iguales, el triángulo es isósceles.

Más adelante…

Se abordará el Teorema de Miquel.

Entradas relacionadas

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.