Introducción
A partir de la involución en una hilera de puntos y sus puntos conjugados relacionados con la razón cruzada, es que nace el concepto de haces de líneas en involución. Muchos de los resultados que se muestran son gracias al principio de dualidad.
Haces de líneas en involución
Definición. Dado un haz de rectas correlacionadas por parejas y donde los puntos de intersección de los pares con cualquier transversal que no pase por el vértice del haz son pares conjugados de una involución de puntos.
Ejemplo: Sean el haz con las rectas correlacionadas por pares
Propiedades
- Al igual que en las hileras de puntos dobles, entonces las rectas del haz que pasan por estos puntos se les llamaran rectas dobles de la involución

- Las dos rectas que pertenecen al mismo par se llaman rectas conjugadas.
- De la misma forma en que se tienen los dos tipos de involución hiperbólica y elíptico, estos serán usados con haces de líneas en involución en el mismo sentido que el uso con hileras de puntos en involución.
- Del teorema de razón cruzada en la involución, el cual dice «La razón cruzada de cualesquiera cuatro puntos de una involución en la cual están presentes tres pares conjugados, es igual a la razón cruzada de sus cuatro conjugados» nos da la siguiente propiedad si un haz de líneas corta cualquier transversal en una involución, cortará cualquier transversal que no pase por su vértice en una involución.
Ejemplo. Se tiene la razón cruzada y la igualdad y como se tiene el haz en involución, entonces cuando corte a la transversal se tendrán las siguientes igualdades de razón cruzada: y
Y por la igualdad de , entonces .
Lo cumple el teorema de razón cruzada con involución, por lo tanto, los puntos de están en involución respecto al punto .

Haz en involución y el vértice en la circunferencia
Teorema. Sea un haz de rectas en involución donde se tienen los pares conjugados
Demostración. Tracemos una recta

Como los haces de líneas está en involución y cualquier recta que corte al haz nos da una hilera de puntos en involución, por el teorema de razón cruzada con hilera de puntos nos da la siguiente igualdad.
Por propiedades de razón cruzada se cumple:
Se puede decir que la propiedad de razón cruzada también se cumple para haz de rectas en involución, es decir, que cualesquiera cuatro rectas que tiene de esa involución la razón cruzada va a ser a la de sus correspondientes.
Observemos que estos haces salen a partir del punto
Y va a ser lo mismo si cambiamos
Tracemos las rectas

La razón cruzada de
Por lo cual
Del resultado anterior se puede generar la duda de que pasa si la involución es hiperbólica o elíptica, por ende se debe definir de manera más formal.
Definición. Sea
- Si
es una involución elíptica, se dice que el haz está en involución elíptica. - Si
es una involución hiperbólica, se dice que el haz está en involución hiperbólica.
Rectas Conjugadas en ángulos rectos
Teorema. En un haz de rectas en involución siempre hay un par de rectas conjugadas perpendiculares entre sí, por otra parte, si existe más de un par de rectas conjugadas en ángulos rectos, entonces todos los pares conjugados son perpendiculares entre sí y la involución es elíptica.
Demostración. Sea un haz de rectas en involución
Por el teorema anterior se afirma que las rectas

Por demostrar que las rectas
Tenemos que ver que los pares
Ahora en razón cruzada nos dice que si cuatro secantes que pasan por un punto
Por lo cual da la igualdad:
Entonces

Ahora, si existe otro par de rectas conjugadas en ángulos rectos, las cuales supongamos que son
Y como se tiene el haz de rectas conjugadas en involución
Teoremas relacionados con los haces de líneas en involución
Se mencionarán tres teoremas, los cuales se dejaran como ejercicios a resolver.
Teorema. Dado un cuadrángulo completo, sus tres pares de lados opuestos son intersecados por cualquier transversal que no pasa por un vértice en tres pares de puntos conjugados de una involución.
Teorema. Sea un cuadrángulo inscrito en una circunferencia, cualquier recta que no pase por un vértice, corta a la circunferencia y los pares de lados opuestos del cuadrángulo en una involución.
Teorema. Si dos pares de lados opuestos de un cuadrángulo completo son ortogonales, el tercer par es también ortogonal.
Más adelante…
Se dejarán los ejercicios correspondientes a esta unidad de Razón Cruzada.
Entradas relacionadas
- Ir a Geometría Moderna II
- Entrada anterior del curso: Hileras de puntos en involución
- Siguiente entrada del curso: Ejercicios Unidad 4