Punto de Acumulación

Por Angélica Amellali Mercado Aguilar

Introducción

En está sección estudiaremos el concepto matemático que define los puntos infinitamente cercanos a un conjunto.

Sea A un subconjunto arbitrario de $\mathbb{R}^{n}$. Se dice que $\overline{x}\in \mathbb{R^{n}}$ es un $\textit{punto de acumulación}$ de $A$, si toda bola abierta con centro en $\overline{x}$ contiene un punto de $A$ distinto de $\overline{x}$ es decir $$\forall r>0 \quad \left(B(\overline{x},r)-{\overline{x}}\right)\bigcap A\neq \emptyset$$
Al conjunto de puntos de acumulación de $A$ se le denomina el conjunto derivado de $A$ y se le denota $A^{a}$

Lema 1.-$\bar{x}\in\mathbb{R}^n$ es punto de acumulación de $A$ si y solamente si $\bar{x}\in \overline{A-{\bar{x}}}$

Demostración. Si $\bar{x}$ es un punto de acumulación de A entonces \quad $\forall \, r > 0$ \quad $B(\bar{x},r)-{\bar{x}}\cap A \neq \varnothing$ esta expresión es equivalente a $$B(\bar{x},r)\cap A -{\bar{x}}\neq \varnothing$$
por lo que $$B(\bar{x},r) \cap {\bar{x}}^c\cap A
= [B(\bar{x},r) \cap {\bar{x}}^c]\cap A= B(\bar{x},r)\cap A -{\bar{x}}\neq
\varnothing$$
pero esto significa que $\bar{x}$ es un punto de
adherencia de $A -{\bar{x}}$
$\therefore$ $\bar{x}\in \overline{A-{\bar{x}}}$ $\square$

Ejercicio. Pruebe que $A’\subset \overline{A}$

Demostración. Sea $x\in~A’$ se tiene entonces
$$x\in~A’~\Rightarrow~x\in \overline{A-{\bar{x}}}~\underbrace{\Rightarrow}_{ \overline{A-{\bar{x}}}\subset~\overline{A}}~x\in \overline{A}$$
por lo tanto $A’\subset \overline{A}$

Ejercicio. Pruebe que $A\subset B~\Rightarrow~A’\subset~B’$

Demostración. Sea $x\in~A’$ se tiene entonces
$$x\in~A’~\Rightarrow~x\in \overline{A-{x}}~\underbrace{\Rightarrow}_{ \overline{A-{x}}\subset~\overline{B-{x}}}~x\in \overline{B-{x}}~\Rightarrow~x\in~B’$$
por lo tanto $A’\subset B’$ $\square$

Proposición 1.-Si $\bar{x}\in\mathbb{R}^n$ es un punto de acumulación de $A$, entonces toda bola abierta $B(\bar{x},r)$ contiene una infinidad de puntos de $A$.

Demostración. Sea $B(\bar{x},r)$ una bola abierta arbitraria con centro $\bar{x}$,
supongase que esta bola tuviese solamente un número finito de puntos de $A$, digamos $\bar{x}_1,\ldots,\bar{x}_k$ cada uno distinto de $\bar{x}$ elijamos
$r_0=\min{d(\bar{x},\bar{x}_1),\ldots,d(\bar{x},\bar{x}_k)}$ $\therefore$ $d(\bar{x},\bar{x}_i)\leq r$. Consideremos ahora la bola abierta $B(\bar{x},r_0)$. Es claro que $B(\bar{x},r_0) \subset B(\bar{x},r)$ y de la desigualdad se sigue que $B(\bar{x},r_0)$ no contiene puntos de $A$ distintos de $\bar{x}$ pues todo punto de $A$ que estubiese en $B(\bar{x},r_0)$ también sería elemento de $B(\bar{x},r)$ lo cual no es posible ya que $\bar{x}_1,\ldots,\bar{x}_k$ son los únicos elementos de $A$ que están en $B(\bar{x},r)$. Entonces la bola abierta $B(\bar{x},r_0)$ no tiene puntos de $A$ diferentes de $\bar{x}$, esto contradice la hipotesis de que $\bar{x}$ es punto de acumulación. $\square$

Teorema 1.- Un conjunto $A$ es cerrado si y solo si contiene a todos sus puntos de acumulación.

Demostración. Sea $\bar{x}$ un punto de acumulación de $A$. si $\bar{x} \not\in A $, el conjunto abieto $A^{c}$ es una vecindad de $\bar{x}$, que debe contener cuando menos un punto de $A$, pero esto no es posible, por lo tanto se concluye $x\in A$.
Inversamente:Si A contiene a todos sus puntos de acumulación se habrá de probar que
$A^{c}$ es abierto.
Sea $y \in A^{c}$ entonces $y$ no es punto de acumulación de $A$. Por lo tanto, existe una vecindad $r$ de $y$ tal que $A \cap v = \varnothing$.
En consecuencia $v_y\subset A^{c}$. Dado que esto es válido $\forall \ y \in A^{c}$ se deduce que $A^{c}$ es abierto $\therefore$ $A$ es cerrado. $\square$

Ejercicio. Sean $A, B\in\mathbb{R}^{n}$. Pruebe que $$(A\bigcup B)’=A’\bigcup B’$$

Demostración. Tenemos que
$$x\in (A\bigcup B)’~\Rightarrow~x\in\overline{A\bigcup B}-{x}$$
$$~\Rightarrow~x\in \overline{A-{x}}\bigcup \overline{B-{x}}$$
$$~\Rightarrow~x\in \overline{A-{x}}\acute{o}x\in \overline{B-{x}} $$
$$~\Rightarrow~x\in A’\acute{o}x\in B’$$
$$~\Rightarrow~x\in A’\bigcup B’$$
Inversamente
$$A\subset A\bigcup B~\Rightarrow~A’\subset (A\bigcup B)’$$
$$B\subset A\bigcup B~\Rightarrow~B’\subset (A\bigcup B)’$$
de lo anterior se tiene
$$A’\bigcup B’\subset (A\bigcup B)’$$ $\square$

Ejercicio. Pruebe que $(A\bigcap B)’\subset A’\bigcap B’$

Demostración.

$$ A\bigcap B~\subset~A~\Rightarrow~(A\bigcap B)’\subset A’$$
$$ A\bigcap B~\subset~B~\Rightarrow~(A\bigcap B)’\subset B’$$
de lo anterior se tiene
$$(A\bigcup B)’\subset A’\bigcup B’$$ $\square$

Más adelante

Tarea moral

1.- Prueba que si $A \subset \mathbb{R}^n $ es un conjunto arbitrario entonces

$$int(A) \subset A’ \subset int(A) \bigcup Fr(A)$$

2.- Prueba que $A \cup A’= \overline{A}$

3.- Sea $A=\left\{(m,0) \in \mathbb{R}^2 | m \in \mathbb{Z}\right\}$ Describe y prueba quién es $A’$

4.- Determina quien es el $S’$ de $S=\left\{ (\dfrac{1}{n},0 ) |n \in \mathbb{N} \right\} \subset \mathbb{R}^2$

5.-Da un ejemplo de un conjunto $S$ en $\mathbb{R}^2$ donde $S’$ sólo tenga un punto de acumulación y otro donde contenga una infinidad.

Enlaces

Teorema del valor medio para funciones de $\mathbb{R}^{n}\rightarrow \mathbb{R}$

Por Angélica Amellali Mercado Aguilar

Introducción

Recordemos el teorema del valor medio para funciones de $\mathbb{R}\rightarrow \mathbb{R}$

Suponga que $f:[a,b]\rightarrow\mathbb{R}$ es derivable en $(a,b)$ y continua en $[a,b]$ entonces existe $c\in(a,b)$ tal que
$$f'(c)=\frac{f(b)-f(a)}{b-a}$$

En esta sección se presenta el caso en la versión para funciones de $\mathbb{R}^{n}$ en $\mathbb{R}$. De esta manera el caso general se ve de la siguiente manera:

Teorema. Sea $f:A\subset\mathbb{R}^{n} \rightarrow \mathbb{R}$
una función definida en el conjunto abierto $A$ de $\mathbb{R}^{n}$. Si $x_{0},y_{0} \in A$ se pide que el conjunto $A$ sea tal que $[x_0,y_0]={x_{0}+t(y_{0}-x_{0})~|~t\in[0,1]}\subset A$. Sea $u$ un vector unitario en la dirección del vector $y_{0}-x_{0}$. Si la función $f$ es continua en los puntos del segmento $[x_0,y_0]$ y
tiene derivadas direccionales en la dirección del vector $u$ en los puntos del segmento $(x_0,y_0)$, entonces existe $\theta$ , $0<\theta<1$ tal que $f(x_0+hu)-f(x_0)=\displaystyle\frac{\partial f}{\partial u}(x_0+\theta
hu)h$ donde $h=|y_0-x_0|$.

Una consecuencia del teorema anterior es el teorema
Teorema. Sea $f:A\subset\mathbb{R}^{n} \rightarrow \mathbb{R}$
una función definida en el conjunto abierto $A$ de $\mathbb{R}^{n}$. Si las derivadas parciales $\displaystyle{\frac{\partial f}{\partial x_{i}}~~\forall i=1,..,n}$ son continuas en $x_{0}\in A$ entonces f es diferenciable en $x_{0}\in A$
Vamos a dar una idea de la demostración para el caso n=2

Teorema del Valor Medio para Funciones de $\mathbb{R}^{2}\rightarrow \mathbb{R}$

Teorema. Sea $f:A\subset\mathbb{R}^{2} \rightarrow \mathbb{R}$ una función definida en el conjunto abierto $A$ de $\mathbb{R}^{2}$. Si $x_{0},y_{0} \in A$ se pide que el conjunto $A$ sea tal que $[x_0,y_0]={x_{0}+t(y_{0}-x_{0})~|~t\in[0,1]}\subset A$. Sea $u$ un vector unitario en la dirección del vector $y_{0}-x_{0}$. Si la función
$f$ es continua en los puntos del segmento $[x_0,y_0]$ y tiene derivadas direccionales en la dirección del vector $u$ en los puntos del segmento $(x_0,y_0)$, entonces existe
$\theta$ \, $0<\theta<1$ tal que $f(x_0+hu)-f(x_0)=\displaystyle\frac{\partial f}{\partial u}(x_0+\theta hu)h$ donde $h=|y_0-x_0|$.

Demostración. Considere la función $\phi:[0,h]\rightarrow
\mathbb{R}$ dada por $\phi(t)=f(x_0+tu)$ ciertamente
la función $\phi$ es continua en $[0,h]$ pues $f$ lo es en $[x_0,y_0]$. Ademas

[\begin{array}{ll}
\phi'(t) & =\displaystyle\lim_{h \rightarrow 0}
\frac{\phi(t+h)-\phi(t)}{h} \\
\, & = \displaystyle\lim_{h \rightarrow 0}
\frac{f(x_0+(t+h)u)-f(x_0+tu)}{h} \\
\, & = \displaystyle\lim_{h \rightarrow 0}
\frac{f(x_0+tu+hu)-f(x_0+tu)}{h} \\
\, & = \displaystyle\frac{\partial f}{\partial
u}(x_0+tu)
\end{array}]

de modo que para $t \in (0,h)$, $\phi'(t)$ existe y es la derivada direccional de $f$ en $x_0+tu \in (x_0,y_0)$ en la dirección del vector $u$. Aplicando entonces el teorema del valor medio a la función $\phi$, concluimos que existe un múmero $\theta \in (0,1)$ que da $\phi(h)-\phi(0)=\phi'(\theta h)h$\ es decir de modo que $$f(x_0+hu)-f(x_0)=\frac{\partial f}{\partial u}(x_0+\theta hu)h$$

Ahora para la verisón del teorema 3

Teorema 5. Sea $f:A\subset\mathbb{R}^{2} \rightarrow \mathbb{R}$
una función definida en el conjunto abierto $A$ de $\mathbb{R}^{n}$. Si las derivadas parciales $\displaystyle{\frac{\partial f}{\partial x},~~\frac{\partial f}{\partial y}}$ son continuas en $(x_{0},y_{0})\in A$ entonces f es diferenciable en $(x_{0},y_{0}\in A$

Demostración. Vamos a probar que $$f((x_{0},y_{0})+(h_{1},h_{2}))=f(x_{0},y_{0})+\frac{\partial f}{\partial x}(x_{0},y_{0})h_{1}+\frac{\partial f}{\partial y}(x_{0},y_{0})h_{2}+r(h_{1},h_{2})$$donde $$\lim_{(h_{1},h_{2})\rightarrow(0,0)}\frac{r(h_{1},h_{2})}{|(h_{1},h_{2})|}=0$$

para ello tenemos que
$$r(h_{1},h_{2})=f((x_{0},y_{0})+(h_{1},h_{2}))-f(x_{0},y_{0})-\frac{\partial f}{\partial x}(x_{0},y_{0})h_{1}-\frac{\partial f}{\partial y}(x_{0},y_{0})h_{2}$$
sumando un cero adecuado
$$r(h_{1},h_{2})=f((x_{0},y_{0})+(h_{1},h_{2}))-\textcolor{Red}{f(x_{0},y_{0}+h_{2})}+\textcolor{Red}{f(x_{0},y_{0}+h_{2})}-f(x_{0},y_{0})-\frac{\partial f}{\partial x}(x_{0},y_{0})h_{1}-\frac{\partial f}{\partial y}(x_{0},y_{0})h_{2}$$
trabajaremos

$$f((x_{0},y_{0})+(h_{1},h_{2}))-\textcolor{Red}{f(x_{0},y_{0}+h_{2})}$$Considerando la función $\varphi(x)=f(x,y_{0}+h_{2})$ por lo tanto tenemos que $$\varphi'(x)=\lim_{h_{1}\rightarrow0}\frac{\varphi(x+h_{1})-\varphi(x)}{h_{1}}=\lim_{h_{1}\rightarrow0}\frac{f(x+h_{1},y_{0}+h_{2})-f(x,y_{0}+h_{2})}{h_{1}}$$
este limite existe y nos dice que $\varphi$ es es continua en este caso en el intervalo $[x_{0},x_{0}+h_{1}]$. Por lo tanto aplicando el TVM en dicho intervalo se obtiene
$$\varphi(x_{0}+h_{1})-\varphi(x_{0})=\varphi'(x_{0}+\theta_{1} h_{1})h_{1}~p.a.~\theta_{1}\in(0,1)$$
es decir
$$f((x_{0}+h_{1},y_{0}+h_{2})-\textcolor{Red}{f(x_{0},y_{0}+h_{2})}=\frac{\partial f}{\partial x}(x_{0}+\theta_{1} h_{1},y_{0}+h_{2})h_{1}$$
Analogamente

$$\textcolor{Red}{f(x_{0},y_{0}+h_{2})}-f(x_{0},y_{0})$$Considerando la función $\varphi(y)=f(x_{0},y)$ por lo tanto tenemos que $$\varphi'(y)=\lim_{h_{2}\rightarrow0}\frac{\varphi(x_{0},y_{0}+h_{2})-\varphi(y_{0}+h_{2})}{h_{2}}=\lim_{h_{2}\rightarrow0}\frac{f(x_{0},y_{0}+h_{2})-f(y_{0}+h_{2})}{h_{2}}$$
este limite existe y nos dice que $\varphi$ es es continua en este caso en el intervalo $[y_{0},y_{0}+h_{2}]$. Por lo tanto aplicando el TVM en dicho intervalo se obtiene
$$\varphi(y_{0}+h_{2})-\varphi(y_{0})=\varphi'(y_{0}+\theta_{2} h_{2})h_{2}~p.a.~\theta_{2}\in(0,1)$$
es decir
$$f((x_{0},y_{0}+h_{2})-\textcolor{Red}{f(x_{0},y_{0})}=\frac{\partial f}{\partial y}(x_{0},y_{0}+\theta_{2}h_{2})h_{2}$$

Sustituimos en
$$r(h_{1},h_{2})=f((x_{0},y_{0})+(h_{1},h_{2}))-\textcolor{Red}{f(x_{0},y_{0}+h_{2})}+\textcolor{Red}{f(x_{0},y_{0}+h_{2})}-f(x_{0},y_{0})-\frac{\partial f}{\partial x}(x_{0},y_{0})h_{1}-\frac{\partial f}{\partial y}(x_{0},y_{0})h_{2}$$y obtenemos
$$r(h_{1},h_{2})=\frac{\partial f}{\partial x}(x_{0}+\theta_{1} h_{1},y_{0}+h_{2})h_{1}-\frac{\partial f}{\partial x}(x_{0},y_{0})h_{1}+\frac{\partial f}{\partial y}(x_{0},y_{0}+\theta_{2}h_{2})h_{2}-\frac{\partial f}{\partial y}(x_{0},y_{0})h_{2}$$

es decir
$$r(h_{1},h_{2})=\left(\frac{\partial f}{\partial x}(x_{0}+\theta_{1} h_{1},y_{0}+h_{2})-\frac{\partial f}{\partial x}(x_{0},y_{0})\right)h_{1}+\left(\frac{\partial f}{\partial y}(x_{0},y_{0}+\theta_{2}h_{2})-\frac{\partial f}{\partial y}(x_{0},y_{0})\right)h_{2}$$
por lo tanto
$$\frac{r(h_{1},h_{2})}{|(h_{1},h_{2})|}=\left(\frac{\partial f}{\partial x}(x_{0}+\theta_{1} h_{1},y_{0}+h_{2})-\frac{\partial f}{\partial x}(x_{0},y_{0})\right)\frac{h_{1}}{|(h_{1},h_{2})|}+\left(\frac{\partial f}{\partial y}(x_{0},y_{0}+\theta_{2}h_{2})-\frac{\partial f}{\partial y}(x_{0},y_{0})\right)\frac{h_{2}}{|(h_{1},h_{2})|}$$
ahora bien si $\displaystyle{|(h_{1},h_{2})|\rightarrow(0,0)}$ se tiene
$$\left(\frac{\partial f}{\partial x}(x_{0}+\theta_{1} h_{1},y_{0}+h_{2})-\frac{\partial f}{\partial x}(x_{0},y_{0})\right)\rightarrow0$$
y
$$\frac{h_{1}}{|(h_{1},h_{2})|}<1$$
Analogamente
$$\left(\frac{\partial f}{\partial y}(x_{0},y_{0}+\theta_{2}h_{2})-\frac{\partial f}{\partial y}(x_{0},y_{0})\right)\rightarrow0$$
y
$$\frac{h_{2}}{|(h_{1},h_{2})|}<1$$
en consecuencia
$$\lim_{(h_{1},h_{2})\rightarrow(0,0)}\frac{r(h_{1},h_{2})}{|(h_{1},h_{2})|}=0$$por lo tanto f es diferenciable en $(x_{0},y_{0})$

Más adelante

Tarea Moral

Enlaces

37. Material en revisión: Parametrización de elipses e hipérbolas

Por Mariana Perez

Elipse

La elipse : $$\dfrac{x^2}{a^2} + \dfrac{y^2}{b^2} = 1$$

se puede parametrizar como

$$\left\{ x = a \cos \theta \atop y = b \sin \theta \right.$$

ya que si elevamos al cuadrado ambas ecuaciones obtenemos que $$\left\{ x^2 = a^2 \cos^2 \theta \atop y^2 = b^2 \sin^2 \theta \right.$$ luego, despejando y sumando miembro a miembro observamos que $$\dfrac{x^2}{a^2} + \dfrac{y^2}{b^2} = \cos^2 \theta + \sin^2 \theta = 1$$ que es la ecuación de la elipse.

En el siguiente enlace puedes observar una animación de la elipse.

https://www.geogebra.org/classic/vntpwfrh

Hipérbola

La hipérbola: $$x^2 – y^2 = 1$$

se puede parametrizar como

$$\left\{ x = \sec \theta \atop y = \tan \theta \right.$$

ya que si elevamos al cuadrado cada ecuación tenemos que $$\left\{ x^2 = \sec^2 \theta \atop y^2 = \tan^2 \theta \right.$$ luego, restándolas vemos que $$ x^2 – y^2 = \sec^2 \theta – \tan^2 \theta = \dfrac{1}{\cos^2 \theta} – \dfrac{\sin^2 \theta}{\cos^2 \theta} = \dfrac{1 – \sin^2 \theta}{\cos^2 \theta} = \dfrac{\cos^2 \theta}{\cos^2 \theta} = 1 $$ obtenemos la ecuación de la hipérbola.

Otra manera de parametrizar la hipérbola es considerando

$$\left\{ x = \cosh \theta = \dfrac{e^t + e^{-t}}{2} \atop y = \sinh \theta = \dfrac{e^t – e^{-t}}{2}\right.$$

$$ x^2 – y^2 = \cosh^2 \theta – \sinh^2 \theta = 1$$

En el siguiente enlace puedes observar una animación de la hipérbola.

https://www.geogebra.org/classic/b3wbbndx

Longitud de arco

Consideramos una curva parametrizada $$\alpha : [a, b] \subset \mathbb{R} \rightarrow \mathbb{R}^2$$ $$\alpha (t) =(x(t), y(t))$$

Sean $P = \alpha (a)$

y $Q = \alpha (b)$

¿Cuál es la longitud de arco desde $P$ hasta $Q$?

  • Aproximemos la longitud de la curva como suma de segmentos de recta.

Dibujo A

$\sum\limits_{i = 1}^n \|\alpha (t_i) – \alpha (t_{i-1}) \|$ con la partición $ a = t_0 < t_1 < \dots < t_n = b$

Nos preguntamos si hay un teorema del valor medio. Es decir, existe $\rho \in (a, b)$ tal que $$f(\rho) = \dfrac{f(b) – f(a)}{b – a}$$

Entonces existe $\rho \in (a, b)$ tal que $$\overrightarrow{\alpha}(\rho) = \dfrac{\overrightarrow{\alpha}(b) – \overrightarrow{\alpha}(a)}{b – a} $$

Si así fuera, entonces $$\| {\alpha}'(\rho) \| = \dfrac{\| \overrightarrow{\alpha}(b) – \overrightarrow{\alpha}(a) \|}{b – a} $$

$\sum\limits_{i = 1}^n \|\alpha (t_i) – \alpha (t_{i-1}) \|=\sum\limits_1^n \|\alpha (t_i) – \alpha (t_{i-1}) \|\dfrac{t_i – t_{i-1}}{t_i – t_{i-1}} $

$=\sum\limits_{i = 1}^n \|{\alpha}’ (\xi_i) \| (t_i – t_{i-1})$

Por lo anterior definimos la longitud de arco desde $P$ hasta $Q$ como

$$ \int\limits_a^b \| {\alpha}'(t) \| dt $$

CASO CIRCUNFERENCIA

Para $\omega = 1.$

$x (t) = A \cos (t) + h$

$y (t) = A \sin (t) + k$

Derivando

$x’ (t) = – A \sin (t) \Longrightarrow (x’)^2 (t) = A^2 \sin^2 (t)$

$y’ (t) = A \cos (t) \Longrightarrow (y’)^2 (t) = A^2 \cos^2 (t) $

Sumando ambas igualdades

$(x’)^2 + (y’)^2 = A^2$ por lo que $\| {\alpha}'(t) \| = A.$

Si $P = \alpha (\theta_0)$ y $Q = \alpha (\theta_1)$, entonces

$$ \int\limits_{\theta_0}^{\theta_1} A \, dt = A (\theta_1 – \, \theta_0) = \text{radio } \Delta \theta $$

Una parametrización de una curva en coordenadas polares

Sea $r = f (\theta) $

Donde $\theta = \omega t$ y $ r = f( \omega t)$, que en coordenadas polares es:

$x (t) = f (\omega t) \cos (\omega t)$

$y (t) = f (\omega t) \sin (\omega t)$

Si $\omega = 1$ entonces $\overrightarrow{\alpha} (t) = (x(t), y(t)) = x (t) \vec{e_1} + y (t) \vec{e_2} = r (t) \overrightarrow{\beta} (t)$, donde $\beta (t) = (\cos \theta (t), \sin \theta (t))$

En este caso, ¿cómo calculamos la velocidad?

$x’ (t) = \dfrac{d}{dt} (f(\omega t) \cos (\omega t)) = \omega f'(\omega t) \cos (\omega t) – \sin (\omega t) f(\omega t) \omega$

$y’ (t) = \dfrac{d}{dt} (f(\omega t) \sin (\omega t)) = \omega f'(\omega t) \sin (\omega t) + \cos (\omega t) f (\omega t) \omega$

Luego,

$(x’, y’) = ( \omega f'(\omega t) \cos (\omega t) – \sin (\omega t) f(\omega t) \omega , \omega f'(\omega t) \sin (\omega t) + \cos (\omega t) f(\omega t) \omega )$

$(x’, y’) = \omega f'(\omega t) (\cos (\omega t) , \sin (\omega t) + \omega f(\omega t) ( -\sin (\omega t) , \cos (\omega t)$

$\overrightarrow{\alpha}’ (t) = r’ (t) \overrightarrow{\beta} (t) + r (t) \overrightarrow{\beta}’ (t)$

$\beta$, $\beta’$ son una base de $\mathbb{R}^2$ en la que podemos extresar ${\alpha}’$.

$\vec{e_1}$, $\vec{e_2}$ son otra base de $\mathbb{R}^2$ en la que también podemos extresar ${\alpha}’$.

Luego, $\alpha’ (t) = x’ (t) \vec{e_1} + y’ (t) \vec{e_2} = r’ (t) \overrightarrow{\beta} (t) + r (t) \overrightarrow{\beta}’ (t)$

36. Material en revisión: Curvas parametrizadas y movimiento circular uniforme

Por Mariana Perez

Dada una circunferencia de radio $r > 0$ con centro en $(h, k)$, posición inicial $(x_0, y_0)$ y velocidad inicial $(x’_0, y’_0)$, analizamos diferentes casos para poder calcular su frecuencia, velocidad angular, periodo, amplitud y fase.

Caso sencillo

Radio $r = 1$

Centro $(h, k) = (0, 0)$

Posición inicial $(x_0, y_0) = (1, 0)$

Velocidad inicial $(x’_0, y’_0) = (0, 1)$

Entonces $\left\{ x(t) = \cos (t) \atop y(t) = \sin (t) \right.$

Tenemos que la rapidez unitaria es $\| {\alpha}’ (t)\| = 1.$

Si el periodo es $2\pi$ entonces, para toda $t$:

$\left\{ x(t + 2\pi) = x (t) \atop y(t + 2\pi) = y (t) \right.$

Por lo que $\vec{\alpha} (t) = \vec{\alpha} (t + 2\pi).$

¿Cómo serian las ecuaciones si el movimiento fuera de $\textcolor{Blue}{periodo \; 1}$?

$\left\{ x(t) = \cos (2\pi t) \atop y(t) = \sin (2\pi t) \right.$

Entonces para $t = 0$ la posición es $ (1, 0)$; y para $ t = 1$ la posición también es $(1, 0).$

Luego, la rapidez de $\left\{ x(t) = \cos (2\pi t) \atop y(t) = \sin (2\pi t) \right.$ es

$\left\{ x’ (t) = -2 \sin (2\pi t) \atop y’ (t) = 2 \cos (2\pi t) \right.$

Por lo que $\|(x’ (t), y'(t)) \| = \sqrt{(2 \pi)^2 (\cos^2 (2\pi t) + \sin^2 (2 \pi t))}$,

es decir que la rapidez es: $$\|(x’ (t), y'(t)) \| = 2 \pi $$

Para periodos $T > 0$

$\left\{ x(t) = \cos \left( \frac{2\pi t}{T} \right) \atop y(t) = \sin \left( \frac{2\pi t}{T} \right) \right.$

Entonces para $t = 0$ la posición es $ (1, 0)$; y para $ t = T$ la posición también es $(1, 0).$

¿Cómo serían las ecuaciones si recorremos la circunferencia en el sentido horario, con periodo $T = 2\pi$?

Entonces $\left\{ x(t) = \cos (t) \atop y(t) = – \sin (t) \right.$

Por lo que $(x'(0), y'(0)) = (0, -1).$

Si ahora cambiamos la posición inicial, digamos que $ \vec{p_0} = (x_0, y_0).$

Dado el punto $(x_0, y_0)$, existe un ángulo $\theta$ tal que:

$\left\{ x_0 = \cos (\theta_0) \atop y_0 = \sin (\theta_0) \right.$

Si $(x_0, y_0) = (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}) \Rightarrow \theta_0 = 45° = \frac{\pi}{4}$

Si $(x_0, y_0) = (\frac{1}{2}, \frac{\sqrt{3}}{2}) \Rightarrow \theta_0 = 60° = \frac{\pi}{3}$

Luego, para toda $t$ se tiene que:

$\left\{ x(t) = \cos (t + \theta_0) \atop y(t) = \sin (t + \theta_0) \right.$

Cumple que $(x(0), y(0)) = (\cos \theta_0, \sin \theta_0) = (x_0, y_0)$, es decir, en el instante $t_0 = 0$ la posición inicial es $(x_0, y_0).$

Si hubiéramos escrito

$\left\{ x(t) = \cos (t – \theta_0) \atop y(t) = \sin (t – \theta_0) \right.$

Entonces $\left\{ x(\theta_0) = 1 \atop y(\theta_0) = 0 \right.$ es decir, en el instante $t_0 = \theta_0$ la posición es $(1, 0).$

Observación:

Si escribimos $\left\{ x(t) = \cos ( – t) = cos (t) \atop y(t) = \sin ( – t) = – \sin (t) \right.$

entonces estamos recorriendo la circunferencia en sentido horario.

Ahora estudiemos el siguiente caso:

$\left\{ x(t) = \cos (w t ) \atop y(t) = \sin (w t ) \right.$

El periodo es $\frac{2 \pi}{T} = \omega \Rightarrow T = \frac{2 \pi}{\omega}.$

Otro caso:

Si tenemos las ecuaciones $\left\{ x(t) = A \cos (w t ) \atop y(t) = A \sin (w t ) \right.$

y $A = 2$ entonces las ecuaciones

$\left\{ x(t) = 2 \cos (w t ) \atop y(t) = 2 \sin (w t ) \right.$

representan una circunferencia de radio 2. $A$ se denomina amplitud.

Caso centro $(h, k)$

Si el centro está en el punto $(h, k)$, entonces:

$$\left\{ x(t) = A \cos (w t ) + h \atop y(t) = A \sin (w t ) + k \right.$$

En el siguiente enlace puedes observar una animación de la parametrización.

https://www.geogebra.org/classic/gpuexq9c

39. Dos definiciones equivalentes de longitud de arco.

Por Mariana Perez

Teorema

Si $\alpha : [a, b] \subset \mathbb{R} \rightarrow \mathbb{R} $ es de clase $\mathcal{C}^1$, entonces la función que a cada $t \rightarrow \|{\alpha}’ (t)\|$ es continua, es de $ [a, b] \subset \mathbb{R} \rightarrow \mathbb{R}$ y podemos integrar, es decir, existe $$\int_{a}^{b} \|{\alpha}’ (t)\| dt$$

y $\mathcal{L} (\alpha) = \int_{a}^{b} \|{\alpha}’ (t)\| dt.$

Demostración:

$\mathcal{L} (\alpha) := \{ \mathcal{L} (C) \mid \mathcal{L} (C) = \sum\limits_{i = 1}^{n} \| \alpha (t_i) \, – \, \alpha(t_{i-1})\| \}$

En $\mathbb{R}^2$, $$\alpha (t) = ( x (t), y (t))$$

$$\alpha (t_i) = ( x (t_i), y (t_i))$$

$$\alpha (t_{i-1}) = ( x (t_{i-1}), y (t_{i-1}))$$

Luego $$\alpha (t_i) \, – \, \alpha (t_{i-1}) = ( x (t_i)\, – \, x (t_{i-1}), y (t_i) \, – \, y (t_{i-1}))$$

Entonces $$\Big\|\alpha (t_i) \, – \, \alpha (t_{i-1}) \Big\|= \sqrt {( x (t_i)\, – \, x (t_{i-1}))^2 + (y (t_i) \, – \, y (t_{i-1}))^2}$$

Entonces $$\sum\limits_{i = 1}^n \Big\|\alpha (t_i) \, – \, \alpha (t_{i-1}) \Big\|= \sum\limits_{i = 1}^n \sqrt {( x (t_i)\, – \, x (t_{i-1}))^2 + (y (t_i) \, – \, y (t_{i-1}))^2}$$

Existen $\xi_i \in (t_{i-1}, t_i)$ tales que $$\dfrac{x(t_i) \, – \, x(t_{i-1})}{t_i \, – \, t_{i-1}} = x’ (\xi) $$

Entonces $$x(t_i) \, – \, x(t_{i-1}) = x’ (\xi) (t_i \, – \, t_{i-1}) $$

De manera análoga, existen $\eta_i \in (t_{i-1}, t_i)$ tales que: $$y(t_i) \, – \, y(t_{i-1}) = y’ (\eta) (t_i \, – \, t_{i-1}) $$

Entonces $$\sum\limits_{i = 1}^n \Big\|\alpha (t_i) \, – \, \alpha (t_{i-1}) \Big\|= \sum\limits_{i = 1}^n \sqrt {( x’ (\xi_i))^2 (\Delta t_i)^2 + (y’ (\eta_i))^2 (\Delta t_i)^2}$$

con $\Delta t_i = t_i \, – \, t_{i-1}$ tenemos que el segundo miembro de la igualdad es:

$$\sum\limits_{i = 1}^n \sqrt {( x’ (\xi_i))^2 (\Delta t_i)^2 + (y’ (\eta_i))^2 (\Delta t_i)^2} = \sum\limits_{i = 1}^n \sqrt {( x’ (\xi_i))^2 + (y’ (\eta_i))^2 } (\Delta t_i)^2 $$

mientras que en el primer miembro obtenemos:

$$ \sum\limits_{i = 1}^n \Big\|\alpha (t_i) \, – \, \alpha (t_{i-1}) \Big\|= \int_a^b \Big\|{\alpha}’ (t) \Big\| dt $$

es el límite cuando la norma de la partición tiende a cero, de sumas de Riemann de la forma $$\sum\limits_{i = 1}^n \Big\|{\alpha}’ (\xi_i) \Big\| \Delta t_i$$

donde $\Big\|{\alpha}’ (\xi_i) \Big\| = \sqrt {( x’ (\xi_i))^2 + (y’ (\xi_i))^2 }$

Tenemos $\sum\limits_{i = 1}^n \sqrt {( x’ (\xi_i))^2 + (y’ (\eta_i))^2 } (\Delta t_i)$

Consideremos una función $F : [a, b] \times [a, b] \subset \mathbb{R}^2 \rightarrow \mathbb{R}$, donde $$F (s, t) = \sqrt {( x’ (s))^2 + (y’ (s))^2 }$$

Como $x’$ y $y’$ son continuas, tenemos que $F$ es continua en un conjunto compacto $ [a, b] \times [a, b] = K$ por lo que podemos concluir que $F$ es uniformemente continua.

Entonces, para todo $\epsilon > 0$ existe $\delta > 0$ tal que para toda pareja de puntos $p, q \in [a, b] \times [a, b] $

si $ \Big\| p – q \Big\| < \delta \Rightarrow \Big| F(p) – F(q) \Big| < \epsilon.$

Tomemos la norma de la partición $\mathcal{P}$ menor que $\delta$, es decir $t_i \, – \, t_{i-1} < \delta$

Como $\vec{p} = (\xi_i, \eta_i)$ y $\vec{q} = (\xi_i, \xi_i)$

Si $ \Big\| \vec{p} \, – \, \vec{q} \Big\| = \Big| \eta_i \, – \, \xi_i \Big| < \delta \Longrightarrow \Big| F(\vec{p}) \, – \, F(\vec{q}) \Big| < \epsilon$

Luego

$$ \Bigg| \sqrt {( x’ (\xi_i))^2 + (y’ (\eta_i))^2 } \, – \, \sqrt {( x’ (\xi_i))^2 + (y’ (\xi_i))^2 }\Bigg| < \epsilon$$

Multiplicando por $(t_i \, – \, t_{i-1})$

$$ \Bigg| \left(\sqrt {( x’ (\xi_i))^2 + (y’ (\eta_i))^2 } \, – \, \sqrt {( x’ (\xi_i))^2 + (y’ (\xi_i))^2 }\right) \Bigg|(t_i \, – \, t_{i-1}) < \epsilon (t_i \, – \, t_{i-1})$$

Sumamos

$$ \sum\limits_{i = 1}^n \Bigg| \left(\sqrt {( x’ (\xi_i))^2 + (y’ (\eta_i))^2 } \, – \, \sqrt {( x’ (\xi_i))^2 + (y’ (\xi_i))^2 }\right) \Bigg|(t_i \, – \, t_{i-1}) < \epsilon \sum\limits_{i = 1}^n (t_i \, – \, t_{i-1})$$

Entonces

$$\epsilon \sum\limits_{i = 1}^n (t_i \, – \, t_{i-1}) = \epsilon (b – a) $$

Por otro lado:

$$\Big| \mathcal{L}(C) \, – \, \mathcal{S}(f, \mathcal{P}) \Big| = \sum\limits_{i = 1}^n \Bigg| \left(\sqrt {( x’ (\xi_i))^2 + (y’ (\eta_i))^2 } \, – \, \sqrt {( x’ (\xi_i))^2 + (y’ (\xi_i))^2 }\right) \Bigg|(t_i \, – \, t_{i-1}) < \epsilon (b – a)$$

donde $f(t) = \sqrt {( x’ (t))^2 + (y’ (t))^2 }$

Luego $ \Big| \mathcal{L}(C) \, – \, \mathcal{S}(f, \mathcal{P}) \Big| < \epsilon (b – a)$

$\mathcal{L}(\alpha) = sup\{ \mathcal{L}(C)\}$ , donde $C$ es la trayectoria poligonal.

Entonces $\int_a^b \Big\|{\alpha}’ (t) \Big\| dt = \lim\limits_{\|\mathcal{P}\| \to 0} \mathcal{S} (f, \mathcal{P})$

Para todo $\epsilon > 0$ existe $c$ tal que $|\mathcal{L}(\alpha) \, – \, \mathcal{L}(C)| < \dfrac{\epsilon}{2}$

Para todo $\epsilon > 0$ existe $\mathcal{P}$ tal que

$ \Big| \mathcal{S}(f, \mathcal{P}) \, – \, \int_a^b \Big\|{\alpha}’ (t) \Big\| dt \Big| < \dfrac{\epsilon}{2}$

Existe una sucesión de curvas poligonales $\{ C_k\}_{k \in \mathbb{N}}$ tal que $\lim\limits_{k \to \infty} \mathcal{L}(C_k) = \mathcal{L}(\alpha)$

$ \lim\limits_{k \to \infty} \mathcal{S}(f , \mathcal{P}_k) = \int\limits_a^b \Big\|{\alpha}’ (t) \Big\| dt $ donde $\mathcal{P}_k$ son particiones de $[a, b].$

Afirmación:

$\Big| \mathcal{L}(C) \, – \, \mathcal{S}(f, \mathcal{P}_k) \Big| \rightarrow 0$ cuando $k \rightarrow \infty$

$$\therefore \mathcal{L}(\alpha) = \int\limits_a^b \Big\| {\alpha}'(t) \Big\| dt \; _{\blacksquare}$$