Matemáticas Financieras: Tablas de amortización que involucran el pago de dos o más anualidades

Por Erick de la Rosa

Introducción

En ésta sección, se continúa analizando otro tipo de anualidades y la forma en que se puede construir su respectiva tabla de amortización, considerando el caso, en el que algunas empresas, de acuerdo con su experiencia, tienen contemplado el ingreso de recursos extras, a lo largo del año.

Concepto y construcción

En la sección donde se abordó el tema de anualidades, hubo algunos casos en donde se otorgaba un crédito en el que la forma de pagarlo, el acreditado realizaba pagos en el año, pero al final de éste agregaba más pagos, ya que, por ejemplo, consideraba recursos que podía tener, por concepto de aguinaldo, prestaciones, cajas de ahorro, por mencionar algunas. Para este tipo de situaciones, la tabla de amortización que puede representar el comportamiento de los pagos de dicho crédito, en general es semejante el proceso de construcción que hasta este momento se ha estado utilizando. Con la diferencia radica en la forma en que se hacen los registros de éstos pagos extras, los cuales también se harán en un mismo periodo.

Por ejemplo: Se otorga un crédito hipotecario a una empresa de refresco, la cual quiere modernizar su planta de producción, la cantidad de dicho crédito asciende a \$445,000 , para pagar en un lapso de tiempo de 3 años, mediante 12 trimestres en los que se hará un pago de \$33,573.45, los días 20 del mes. Posterior a ése tiempo, se realizarán pagos anuales por la cantidad de \$60,000 a partir del mes de diciembre.

El contrato en cuestión, entra en operación el día 20 de marzo del año 2021, acordando una tasa de interés de 4.4% fija efectiva trimestral, la cual aplicará durante toda la duración del crédito. Los pagos se realizarán en forma vencida, por lo que el primer pago se tendrá que hacer el día 20 de junio del 2021.

La ecuación de valor que se usará para resolver este problema es la siguiente:

$$445,000=X\prescript{}{12}{\mathbf{A}}_{0.044}+60,000\prescript{}{3}{\mathbf{\ddot{A}}}_{0.18342}v_{0.043}^3;$$

de donde $X=\$33,573.45$

A continuación, se muestra la tabla de amortización en la que se agregó una columna, en la que se anotara las fechas en las que se realizaran los pagos. Observe que hay dos columnas para el registro de las fechas de los pagos una que corresponde a los pagos trimestrales, y otra para los pagos anuales, los cuales son pagos que se recibirán al final de año, por concepto de los aguinaldos que en dichas fechas recibe.

Tabla de amortización de N pagos iguales y uno desigual

Este tipo de amortización ocurre, en los casos que la empresa que solicita el crédito pacta que la cantidad de los pagos es ajustada a su posibilidad de pago, en lugar de aceptar la que ofrece la institución que otorga el crédito. En estos casos se hace uso del concepto de anualidades tomando la cantidad que propone el deudor, y la variable n la cual va a representar el número de pagos, para conocer su valor será despejada de la ecuación de valor. Como la cantidad propuesta por el deudor, puede que no tenga considerados pagos completos para cubrir el pago total del préstamo, es por esta razón que se recurre al pago desigual, con el que será liquidado por completo en el último pago, la deuda. Para poder conocer la cantidad a la asciende éste pago desigual, será obtenido a partir de una segunda ecuación de valor, basada en la original, donde ya se conocen la cantidad de pagos completos.

La construcción de la amortización, sigue compartiendo muchas similitudes a como se han venido elaborando en los temas anteriores, con la diferencia de que el último pago es diferente.

Por ejemplo: a una empresa le otorgan un crédito de \$947,000, y de los recursos que tiene por concepto de ingresos, puede disponer de la cantidad \$87,000 de forma mensual, los cuales serán destinado al pago de dicho crédito. La tasa de interés que acordaron fue del 23.1% convertible mensualmente. Para resolver éste problema, la ecuación de valor que se va a utilizar es la siguiente:

$$947,000=87,000\prescript{}{n}{\mathbf{A}}_{0.01925}$$

recordemos que el valor 0.01925, se obtiene porque se está trabajando con una tasa convertible mensual, por lo que se hace lo siguiente para poder ocuparla:

$$\frac{23.1}{12}=1.925$$

$$\frac{1.925}{100}=0.01925$$

para obtener el valor de n, se hace lo siguiente:

$$947,000=87,000\left(\frac{1-v_{0.01925}^n}{0.01925}\right)$$

$$947,000=87,000\left(\frac{1-\left(\frac{1}{(1+0.01925)^n}\right)}{0.01925}\right)$$

$$\frac{947,00}{87,000}=\left(\frac{1-\left(\frac{1}{(1+0.01925)^n}\right)}{0.01925}\right)$$

$$10.88505747=\left(\frac{1-\left(\frac{1}{(1+0.01925)^n}\right)}{0.01925}\right)$$

$$(0.01925)(10.88505747)=1-\left(\frac{1}{(1+0.01925)^n}\right)$$

$$(-1)(0.2095373563-1)=(-1)\left(-\left(\frac{1}{(1+0.01925)^n}\right)\right)$$

$$1-0.2095373563=\left(\frac{1}{(1+0.01925)^n}\right)$$

$$0.7904626437=\frac{1}{(1+0.01925)^n}$$

$$(0.7904626437)(1.01925)^n=1$$

$$(1.01925)^n=\frac{1}{0.7904626437}=1.265081921$$

$$(n)(log(1.01925))=log(1.265081921)$$

$$n=\frac{log(1.265081921)}{log(1.01925)}=12.332222$$

de dicha ecuación se nos arroja el valor de n=12.332222, lo cual se interpreta como 12 pagos por la cantidad de \$870,000 con un pago desigual, dando un total de 13 pagos. El valor del último pago, se obtiene con la siguiente ecuación:

$$947,000=87,000\prescript{}{12}{\mathbf{A}}_{0.01925}+Xv_{0.1925}^13$$

$$947,000=87,000\left(\frac{1-v_{0.01925}^12}{0.01925}\right)+Xv_{0.01925}^{13}$$

$$947,000=87,000\left(\frac{1-\left(\frac{1}{(1+0.01925)^{12}}\right)}{0.01925}\right)+X\left(\frac{1}{(1+0.01925)^{13}}\right)$$

$$947,000=87,000(10.62421639)+X(10.7804599799)$$

despejando X:

$$X=\frac{22,693.17405}{0.7804599799}$$

se obtiene el valor que estamos buscando: X=29,076.67.

A continuación, se muestra la tabla de amortización:

Ejercicios resueltos

Ejercicio. La empresa de refacciones de maquilas, quiere ampliar su planta productora, para lograrlo solicito un crédito por la cantidad de \$800,000 pesos, y de acuerdo a su experiencia de ingresos anuales, puede disponer de la cantidad de \$70 mil pesos, para hacer pagos de forma mensual, con una tasa de interés convertible bimestral del 18%. El dueño de la empresa quiere saber: ¿Cuántos pagos tendría que hacer para liquidar totalmente la deuda? y también quiere conocer su tabla de amortización.

Solución

Para encontrar la solución a éste problema se hará uso de la siguiente ecuación de valor:

$$800,000=70,000\prescript{}{n}{\mathbf{A}}_{0.015}$$

Recordando que el valor de la tasa es de:

$$i=\frac{18}{12}=0.015$$

ya que es una tasa efectiva convertible mensualmente.

Luego, vamos a encontrar el valor de n, variable que nos permitirá conocer la cantidad de pagos que se van a realizar.

$$800,000=70,000\prescript{}{n}{\mathbf{A}}_{0.015}$$

$$\frac{800,000}{70,000}=\left(\frac{1-v_{0.015}^n}{0.015}\right)$$

$$11.42857143=\left(\frac{1-\left(\frac{1}{(1+0.015)^n}\right)}{0.015}\right)$$

$$(0.015)(11.42857143)=1-\left(\frac{1}{(1+0.015)^n}\right)$$

$$(-1)(0.1714285714-1)=\left(-\left(\frac{1}{(1.015)^n}\right)\right)(-1)$$

$$0.8285714286=\frac{1}{(1.015)^n}$$

$$(1.015)^n=\frac{1}{0.8285714286}$$

$$(n)log(1.015)=log(.8285714286)$$

$$n=\frac{log(.8285714286)}{log(1.015)}=12.63060823$$

Por lo tanto, el número de pagos a realizar es de 12.

Lo que sigue, es sustituir el valor de n en la ecuación de valor que se había planteado inicialmente, pero agregando el valor X del pago que aún no conocemos, por lo que la ecuación queda de la siguiente forma:

$$800,000=70,000\prescript{}{12}{\mathbf{A}}_{0.015}+Xv_{0.015}^{13}$$

$$800,000=70,000\left(\frac{1-\frac{1}{(1+0.015)^{12}}{0.015}\right)+X\left(\frac{1}{(1+0.015)^{13}}\right)$$

$$800,000=70,000(10.90750521)+X(0.8240270166)$$

$$800,000=763,525.3647+X(0.8240270166)$$

$$800,000-763,525.3647=X(0.8240270166)$$

$$\frac{36,474.6353}{(0.8240270166)}=X$$

$$X=44,263.88282$$

Éste valor representa la cantidad del último pago.

Finalmente, ya que se tiene todos los datos, estamos en posibilidades de hacer la construcción de la tabla de amortización, la cual se muestra a continuación.

Más adelante…

Se continuará, un poco más, abordando algunas variantes de construcción de las tablas de amortización, y ejemplificando algunas situaciones en las que se aplican, describiendo el contexto para su mejor comprensión.

  • Matemáticas Financieras
  • Entrada anterior
  • Entrada siguiente

Topología I: Espacios topológicos

Por Alfonso Zavala

Introducción

Antes de dar la definición de espacio topológico y ver ejemplos, siempre resulta conveniente familiarizarnos un poco con los conceptos a los que nos vamos a enfrentar, tratando de entender intuitivamente las bases de lo que vamos a estudiar. Seguramente ya has trabajado con conceptos de topología en tu curso de cálculo 3 (de hecho es altamente recomendado que hayas cursado esta materia antes de enfrentarte a un curso de topología) y conoces conceptos como abiertos, cerrados, compacidad, conexidad, etc., que usaste para entender las propiedades topológicas de $\mathbb{R}^n$. A grandes rasgos, la topología se ocupa de entender las relaciones entre objetos que viven en cierto ambiente (en el caso de cálculo 3 el ambiente era $\mathbb{R}^n$); estas relaciones no se preocupan por el tamaño o la forma específica de los objetos, más bien se ocupan de características como si el objeto está completamente conectado, la cantidad de agujeros que tiene, etc. Seguramente has escuchado el famoso ejemplo de que para un topólogo un taza y una dona son el mismo objeto. La explicación rápida de esto es que ambos objetos sólo tienen un agujero, y como a la topología no le interesa la forma específica de la taza y la dona, entonces topológicamente son lo mismo.

Nota. A lo largo de todo el curso se considerará al conjunto de los números naturales a partir del 1, es decir, $\mathbb{N} = \{1,2,3,\ldots\}$.

Definición de espacio topológico

Definición. Sean $X$ un conjunto y $\tau\subseteq\mathcal{P}(X)$. Decimos que $\tau$ es una topología para $X$ si cumple:

  1. $\varnothing\in\tau$, $X\in\tau$
  2. Si $U,V\in\tau$, entonces $U\cap V\in\tau$
  3. Si $\{U_i\}_{i\in I} \subseteq \tau$, entonces $\bigcup\limits_{i\in I}U_i\in\tau$

A los elementos de $\tau$ les llamamos abiertos.

Una de las primeras consecuencias de esta definición es que la intersección finita de abiertos es abierto, en un momento probaremos este resultado. Por otro lado, observemos que la tercera indica que $\tau$ es cerrada bajo uniones arbitrarias, es decir, cualquier unión de abiertos siempre resulta en un abierto, sin importar cuántos sean.

Proposición. Sean $X$ un conjunto, $\tau$ una topología para $X$ y $\{U_i\}_{i=1}^n \subseteq \tau$. Entonces $\bigcap\limits_{i=1}^n U_i \in \tau$.

Demostración. P.D. $\bigcap\limits_{i=1}^n U_i \in \tau$. Procedamos por inducción sobre $n$.

Si $n=2$, tenemos que $U_1,U_2 \in \tau$, aplicando la propiedad 2 de la definición de topología, tenemos que $U_1\cap U_2 \in \tau$.

Supongamos válido para $n=k$, i.e., $\bigcap\limits_{i=1}^k U_i \in \tau$.

P.D. $\bigcap\limits_{i=1}^{k+1} U_i \in \tau$. Por hipótesis $ \{U_i\}_{i=1}^{k+1} \subseteq \tau$, entonces $U_1,\ldots, U_{k+1}\in \tau$. Por hipótesis de inducción, $\bigcap\limits_{i=1}^k U_i \in \tau$, entonces aplicando la propiedad 2 de la definición de topología, tenemos que $\left(\bigcap\limits_{i=1}^k U_i \right) \cap U_{k+1} \in \tau$, i.e., $\bigcap\limits_{i=1}^{k+1} \in \tau$.

Por lo tanto, $\bigcap\limits_{i=1}^n U_i \in \tau$.

$\square$

Después de esta proposición, es natural preguntarse si la intersección arbitraria de abiertos siempre resulta ser un abierto. La respuesta es que no, y esto lo podemos comprobar con un simple ejemplo usando la topología usual de los números reales (esta es la topología con la que se trabaja en cálculo, más adelante la definiremos formalmente). Consideremos la familia de abiertos $\{U_n\}_{n\in\mathbb{N}}$, donde $U_n := \left(-\frac{1}{n}, \frac{1}{n}\right)$. Cada $U_n$ es un intervalo abierto en la recta real, y el único elemento que tienen en común todos los intervalos es el cero, es decir, $\bigcap\limits_{n\in\mathbb{N}} U_n = \{0\}$, pero un conjunto unitario no puede ser abierto en la topología usual de los reales. Por lo tanto, concluimos que la intersección arbitraria de abiertos no necesariamente resulta en un abierto.

Ya que hemos definido qué es una topología, es natural tener la siguiente definición.

Definición. Si $\tau$ es topología para $X$, decimos que $(X,\tau)$ es un espacio topológico.

Veamos algunos ejemplos.

Ejemplos

Sea $X=\{a,b,c,d,e\}$.

  • $\tau_1 = \{\{b,c\}, X, \{a,d,e\}\}$. $\tau_1$ no es topología, pues $\varnothing\notin\tau_1$.
  • $\tau_2 = \{\varnothing, X\}$. $\tau_2$ sí es topología. Contiene el vacío y el total, y la intersección o unión entre ellos vuelve a ser el vacío o el total. A esta topología se le llama topología indiscreta y se suele denotar por $\tau_{\text{indis}}$.
  • $\tau_3 = \mathcal{P}(X)$. $\tau_3$ sí es topología, pues contiene a todos los subconjuntos de $X$. A esta topología se le llama topología discreta y se suele denotar por $\tau_{\text{dis}}$.
  • $\tau_4 = \{\varnothing, X, \{a,d,e\}, \{b,c,d,e\}, \{d\}\}$. $\tau_4$ no es topología, pues $\{a,d,e\}\cap\{b,c,d,e\} = \{d,e\} \notin \tau_4$.
  • $\tau_5 = \{\varnothing, X, \{a,d,e\}, \{b,d,e\}, \{d,e\}\}$. $\tau_5$ no es topología, pues $\{a,d,e\}\cup\{b,d,e\} = \{a,b,d,e\} \notin \tau_5$.
  • $\tau_6 = \{\varnothing, X, \{a,b\}, \{c,d\}, \{a,b,c,d\}\}$. $\tau_5$ sí es topología.

Hasta ahora todos los ejemplos que hemos visto son finitos, y para verificar si cierto conjunto es topología o no, basta verificar que se cumplan las propiedades con todos los elementos del conjunto, o encontrar algunos elementos que no cumplan con las propiedades. Ahora veremos un ejemplo con un conjunto que no necesariamente tiene que ser finito, y para verificar si es topología o no, tendremos que verificar las propiedades usando las propiedades del conjunto.

Topología del punto fijo

Sean $X$ un conjunto (puede ser finito o infinito) y $p\in X$. Definimos $\tau = \{A\subseteq X \,:\, p\in A\}$. Inmediatamente podemos ver que $\tau$ no es topología ya que $\varnothing\notin\tau$, pues por definición todo elemento de $\tau$ contiene a $p$. Entonces definimos $\tau_p = \{A\subseteq X \,:\, p\in A\}\cup \{\varnothing\}$. A esta topología se le llama topología del punto fijo. Veamos que $\tau_p$ sí es topología.

Demostración. Para demostrar que $\tau_p$ es topología tenemos que verificar las tres propiedades de la definición.

  1. $\varnothing\in \tau_p$ por definición. Además, como $p\in X$, entonces $X\in\tau_p$. $\checkmark$
  2. Sean $U,V\in \tau_p$. P.D. $U\cap V\in\tau_p$.
    Caso 1: $U=\varnothing$ o $V=\varnothing$. Entonces $U\cap V = \varnothing\in \tau_p$. $\checkmark$
    Caso 2: $U\neq \varnothing$ y $V\neq \varnothing$. Como $U,V\in\tau_p$ y no son vacíos, entonces $p\in U$ y $p\in V$, por lo que $p\in U\cap V$, así $U\cap V\in\tau_p$. $\checkmark$
  3. Sea $\{U_\alpha \,:\, \alpha\in\Gamma\}\subseteq\tau_p$. P.D. $\bigcup\limits_{\alpha\in\Gamma} U_\alpha \in \tau_p$.
    Caso 1: $U_\alpha \neq \varnothing$, $\forall \alpha \in \Gamma$. Entonces $\bigcup\limits_{\alpha\in\Gamma} U_\alpha = \varnothing \in \tau_p$. $\checkmark$
    Caso 2: $\exists \alpha_0\in\Gamma$ tal que $U_{\alpha_0}\neq\varnothing$. Como $U_{\alpha_0} \in\tau_p$, entonces $p\in U_{\alpha_0}$, por lo que $p\in\bigcup\limits_{\alpha\in\Gamma} U_\alpha$, así $\bigcup\limits_{\alpha\in\Gamma} U_\alpha \in \tau_p$. $\checkmark$

Hemos demostrado que $\tau_p$ cumple todas las propiedades de la definición de topología, por lo tanto, $\tau_p$ es una topología para $X$.

$\square$

Topología cofinita

En $\mathbb{R}$ definimos $\tau = \{A\subseteq X \,:\, \mathbb{R}\backslash A \text{ es finito}\}$. Al igual que en el ejemplo anterior, inmediatamente podemos ver que $\tau$ no es topología pues $\varnothing \notin\tau$. Ahora definimos $\tau_{\text{cof}} = \{A\subseteq X \,:\, \mathbb{R}\backslash A \text{ es finito}\}\cup\{\varnothing\}$. Con esta definición resulta que $(\mathbb{R},\tau_{\text{cof}})$ sí es un espacio topológico. A $\tau_{\text{cof}}$ se le llama topología cofinita.

Observación. En la topología cofinita, $\mathbb{R}$ puede ser cualquier conjunto.

Más adelante…

En la próxima entrada veremos más ejemplos de espacios topológicos y su relación con espacios métricos.

Tarea moral

  1. Demuestra que $(\mathbb{R},\tau_{\text{cof}})$ como se definió anteriormente es un espacio topológico. Es decir, demuestra que $\tau_{\text{cof}}$ es una topología para $\mathbb{R}$.
  2. Sea $X=\{0,1\}$. Determina si $\tau = \{\varnothing, \{0\}, \{0,1\}\}$ es una topología para $X$.
  3. Sea $X = \{a, b, c\}$. Encuentra todas las familias $\tau \subseteq \mathcal{P}(X)$ tales que $\tau$ es una topología en $X$.
  4. Determina si $\tau_1 = \{U \subseteq X \,|\, 0 \in U \vee \{0,1\}\cap U=\varnothing\}$ es una topología en $X=[0,1]$.
  5. Determina si $\tau_2= \left\{[0, b] \,|\, \frac{1}{2}<b \leq 1 \right\} \cup\{0\}$ es una topología en $X=[0,1]$.

Entradas relacionadas

  • Ir a Topología 1
  • Entrada siguiente del curso: Espacios métricos y topología inducida

Sucesiones $\mathbb{R}$

Por Angélica Amellali Mercado Aguilar

Introducción

Definición.Una sucesión en $\mathbb{R}^{n}$ es cualquier lista infinita de vectores en $\mathbb{R}^{n}$ $\overline{x_{1}},\overline{x_{2}},…,\overline{x_{k}},…$ algunos de los cuales o todos ellos pueden coincidir entre si. Dada una sucesión $\overline{x_{1}},\overline{x_{2}},…,\overline{x_{k}},…$ se define de manera natural una función de los enteros positivos $\mathbb{N}$ en $\mathbb{R}^{n}$ tal que a cada entero positivo $k$ se le asigna un vector $\overline{x_{k}}\in \mathbb{R}^{n}$
A la colección ordenada de los elementos de una sucesión la denotaremos

$$\left\{ \overline{x}_{k}\right\} _{k=1}^{\infty },\left\{\overline{x}_{k}\right\}$$

Ejemplo. Considerando el espacio $\mathbb{R}^{2}$ sea la sucesión $\left\{\overline{x_{k}}\right\}_{k=1}^{\infty}$ dada por $\overline{x_{k}}=\left(k,\frac{1}{k}\right)$ cuyos elementos podemos listar como sigue:

$$\left\{(1,1),\left(2,\frac{1}{2}\right),\left(3,\frac{1}{3}\right),…\right\}$$

Considerando la sucesión $\left\{\overline{x_{k}}\right\}\in \mathbb{R}^{n}$. Cada vector $\overline{x_{k}}\in \left\{\overline{x_{k}}\right\}$ esta dado de la siguiente manera:

$$\overline{x_{k}}=\left(x_{1,k},x_{2,k},…,x_{n,k}\right)$$

Es decir, dicho vector define de manera natural $n$ sucesiones $\left\{\overline{x}\right\}$ en $\mathbb{R}$ , las cuales, llamaremos sucesiones componentes o sucesiones proyección, así, la primera sucesión componente del ejemplo anterior es: $\left\{x_{1,k}\right\}=k$ y la segunda sucesión proyección del ejemplo anterior es $\left\{x_{2,k}\right\}=\frac{1}{k}$

Ejemplo. Sea la sucesión $\left\{\overline{x_{k}}\right\}_{k=1}^{\infty}$ dada por $\overline{x_{k}}=\left(\frac{k+1}{k+2},\frac{1}{2^{k}}\right)$ cuyas sucesiones componentes son:

$$\overline{x_{1_{k}}}=\left(\frac{k+1}{k+2}\right)\quad \overline{x_{2_{k}}}=\left(\frac{1}{2^{k}}\right)$$

Ejemplo. Sea la sucesión $\left\{\overline{x_{k}}\right\}_{1}^{\infty}$ dada por $\overline{x_{k}}=\left(\left(1+\frac{1}{k}\right)^{k},\sqrt[k]{k},\sqrt[k]{\frac{1}{k}}\right)$ cuyas sucesiones componentes son:

$$\overline{x_{1_{k}}}=\left(1+\frac{1}{k}\right)^{k}\quad \overline{x_{2_{k}}}=\sqrt[k]{k}\quad \overline{x_{3_{k}}}=\sqrt[k]{\frac{1}{k}}$$

Convergencia de Sucesiones en $\mathbb{R}^{n}$}}$

Definición. Una sucesión $\left\{\overline{x_{k}}\right\}_{k=1}^{\infty}$ en $\mathbb{R}^{n}$ se dice que converge a un vector $\overline{x}$ en $\mathbb{R}^{n}$ si $$\forall\quad \epsilon>0\quad \exists\quad N_{0}\in\mathbb{N}\quad tal\quad que \quad |\overline{x_{k}}-\overline{x}|<\epsilon\quad \forall k>N_{0}$$
En este caso diremos que la sucesión es convergente y que $\overline{x}$ es el limite de la sucesión y escribimos $$\lim_{k\rightarrow\infty}\overline{x_{k}}=\overline{x}$$

Proposición. Unicidad del Limite: Consideremos una sucesión $\left\{\overline{x_{k}}\right\}_{k=1}^{\infty}$ en $\mathbb{R}^{n}$ y sean $\overline{x},\overline{y}\in \mathbb{R}^{n}$ tal que $$\overline{x}=\lim_{k\rightarrow\infty}\overline{x_{k}}\quad y \quad \overline{y}=\lim_{k\rightarrow\infty}\overline{x_{k}}$$ entonces $\overline{x}=\overline{y}$

Demostración. Supongamos que $\overline{x}\neq\overline{y}$ y tomemos $\epsilon=\frac{1}{2}|\overline{x}-\overline{y}|>0$.Por definición $\overline{x}=\lim_{k\rightarrow\infty}\overline{x_{k}}$ por lo que $\exists N_{0_{x}} \in \mathbb{N}$ tal que $|\overline{x_{k}}-\overline{x}|<\epsilon$ para $k>N_{0_{x}}$ y analogamente se tiene que $\overline{y}=\lim_{k\rightarrow\infty}\overline{x_{k}}$ por lo que $\exists N_{0_{y}} \in \mathbb{N}$ tal que $|\overline{x_{k}}-\overline{y}|<\epsilon$ para $k>N_{0_{y}}$. Sea ahora $N_{0}=m\acute{a}x\left\{N_{0_{x}},N_{0_{y}}\right\}$ entonces se cumple simultaneamente que $|\overline{x_{k}}-\overline{x}|<\epsilon$ y $|\overline{x_{k}}-\overline{y}|<\epsilon$ para $k>N_{0}$ $\therefore$ $$|\overline{x}-\overline{y}|=|\overline{x}-\overline{x_{k}}+\overline{x_{k}}-\overline{y}|\leq |\overline{x}-\overline{x_{k}}|+|\overline{x_{k}}-\overline{y}|<2\epsilon=2\left(\frac{1}{2}|\overline{x}-\overline{y}|\right)=|\overline{x}-\overline{y}|(falso)$$ $\square$

Proposición. Sea $\left\{\overline{x_{k}}\right\}_{k=1}^{\infty}$ una sucesión en $\mathbb{R}^{n}$ y sean $${\overline{x_{1_{k}}}}_{1}^{\infty}=(x_{1_{1}},x_{1_{2}},…)$$ $${\overline{x_{2_{k}}}}_{1}^{\infty}=(x_{2_{1}},x_{2_{2}},…)$$ $$\vdots$$ $${\overline{x_{n_{k}}}}_{1}^{\infty}=(x_{n_{1}},x_{n_{2}},…)$$ las sucesiones componentes de la sucesión ${\overline{x_{k}}}_{1}^{\infty}$. Entonces la sucesión ${\overline{x_{k}}}_{1}^{\infty}$ converge a $\overline{x}=(x_{1},x_{2},…)$ en $\mathbb{R}^{n}$ si y solo si para cada $j=1,2,…$ se tiene que $x_{n_{j}}$ converge a $x_{j}$.

Demostración. Supóngase que la sucesión $\left\{\overline{x_{k}}\right\}_{k=1}^{\infty}$ converge a $\overline{x}=(x_{1},x_{2},…)$ esto quiere decir que $\exists N_{0}\in \mathbb{N}$ tal que $|\overline{x_{k}}-\overline{x}|<\epsilon$ para $k>N_{0}$ y dado que $$0\leq|x_{j_{k}}-x_{j}|\leq|\overline{x_{k}}-\overline{x}|<\epsilon$$ entonces se tiene que $$0\leq|x_{j_{k}}-x_{j}|<\epsilon$$ lo que significa que $$\lim_{k\rightarrow\infty}x_{j_{k}}=x_{j}$$
Reciprocamente, supongamos que para cada j $$\lim_{k\rightarrow\infty}x_{j_{k}}=x_{j}$$ lo que significa que
$$|x_{j_{k}}-x_{j}|<\frac{\epsilon}{n}$$
$$\therefore\quad 0\leq|\overline{x_{k}}-\overline{x}|\leq |x_{1_{k}}-x_{1}|+|x_{2_{k}}-x_{2}|+…+|x_{n_{k}}-x_{n}|<\frac{\epsilon}{n}+\frac{\epsilon}{n}+…+\frac{\epsilon}{n}=\epsilon$$
$$\therefore \quad \lim_{k\rightarrow\infty}\overline{x_{j_{k}}}=\overline{x}$$

$\square$

Ejemplo. Consideremos la sucesión $\overline{x_{k}}=\left(\frac{1}{k},\frac{k}{k+1}\right)$ tenemos que $$\lim_{k\rightarrow\infty}\overline{x_{1_{k}}}=\lim_{k\rightarrow\infty}\frac{1}{k}=0$$ $$\lim_{k\rightarrow\infty}\overline{x_{2_{k}}}=\lim_{k\rightarrow\infty}\frac{k}{k+1}= \lim_{k\rightarrow\infty}\frac{\frac{k}{k}}{\frac{k}{k}+\frac{1}{k}}=\lim_{k\rightarrow\infty}\frac{1}{1+\frac{1}{k}}=1$$
$\therefore$ $\lim_{k\rightarrow\infty}\overline{x_{k}}=(0,1)=\overline{x}$

Ahora para comprobarlo tenemos que $$\left\|\overline{x_{k}}-\overline{x}\right\|=\left\|\left(\frac{1}{k},\frac{k}{k+1}\right)-(0,1)\right\|=\sqrt{\frac{1}{k^{2}}+\left(\frac{k}{k+1}-1\right)^{2}}=\sqrt{\frac{1}{k^{2}}+\frac{1}{(k+1)^{2}}}<\sqrt{\frac{2}{k^{2}}}=\frac{\sqrt{2}}{k}$$ $$\therefore\quad \frac{\sqrt{2}}{k}<\epsilon\Leftrightarrow \frac{\sqrt{2}}{\epsilon}N_{0}\therefore \quad \left|\left(\frac{1}{k},\frac{k}{k+1}\right)-(0,1)\right|<\epsilon$$

Definición. Deciimos que $A\subset \mathbb{R}^{n}$ es un conjunto acotado si y solo si $\exists M>0$ tal que $\forall \overline{a}\in A$ se cumple $|\overline{a}|\leq M$

Proposición. Sea $\left\{\overline{x}_{k}\right\}\subset \mathbb{R}^{n}$, si $\left\{\overline{x}_{k}\right\}$ converge, entonces $\left\{\overline{x}_{k}\right\}$ es acotada.

Si $\left\{\overline{x}_{k}\right\}$ converge entonces $\lim_{k\rightarrow \infty}\overline{x}_{k}=\overline{x}\Rightarrow \lim_{k\rightarrow \infty}x_{k,j}=x_{j} \forall j=1,…,n$ por lo tanto se tiene que $\left\{x_{k,j}\right\}$ es acotada y por tanto $\exists M_{j}>0$ tal que $|x_{k,j}|\leq M_{j}$ $\forall k$ $\therefore$ se tiene que $$\left\|\overline{x_{k}}\right\|\leq|x_{1,k}|+|x_{2,k}|+\cdot\cdot\cdot+|x_{n,k}|\leq n\cdot \max\left\{x_{k,j}\right\}=n \cdot M_{j}=M$$ $\therefore \left\{\overline{x}_{k}\right\}$ es acotada. $\square$

Teorema. Un subconjunto $A\subset \mathbb{R}^{n}$ es cerrado si y solo si contiene a todos sus puntos de acumulación.

Demostración. ( $\Rightarrow$ ) Suponemos que A es cerrado. Sea $\overline{x}$ un punto de acumulación de A y suponemos que $\overline{x}\notin A$. Como $A^{c}$ es abierto y $\overline{x}\in A^{c}$ existe $r>0$ tal que $B(\overline{x},r)\subset A^{c}$ $\therefore$ $B(\overline{x},r)\cap A=\emptyset$ $\nabla$ pues $\overline{x}$ es punto de acumulaión de A.

( $\Leftarrow$ ) Supongamos que A contiene a todos sus puntos de acumulación. Sea $U=A^{c}$ queremos probar que $U$ es abierto. Sea $\overline{x}\in U$ como $\overline{x}$ no es de acumulación $\exists r>0$ tal que $B(\overline{x},r)\cap A=\emptyset$ $\therefore$ $B(\overline{x},r)\subset A^{c}$ $\therefore$ $A^{c}$ es abierto. $\square$

Teorema. Sea $A\subset \mathbb{R}^{n}$ y $\overline{x}\in \mathbb{R}^{n}$. Entonces, $\overline{x}$ es un punto de acumulación de $A$ si y solo si $\exists\left\{\overline{x}_{k}\right\}\in A$ con $\overline{x_{k}}\neq \overline{x}$ $\forall k$ tal que $\overline{x}_{k}\rightarrow \overline{x}$$

Demostración. Suponemos que $\overline{x}$ es punto de acumulación de $A$ entonces para cada $k \in \mathbb{N}$ $\exists$ $\overline{x_{k}}\in A\cap B(\overline{x},\frac{1}{k})$ con $\overline{x_{k}}\neq \overline{x}$ $\therefore$ $\overline{x_{k}}\rightarrow \overline{x}$
$\textcolor{Red}{\Leftarrow}$ Sea $B(\overline{x},r)$ como $\overline{x_{k}}\rightarrow \overline{x}$ $\exists k_{0}\in\mathbb{N}$ tal que $\overline{x_{k}}\in B(\overline{x},r)$ $\forall k>k_{0}$ $\therefore$ $\exists$ $\overline{x_{k}}\in A\cap B(\overline{x},r)$ $\therefore$ $\overline{x}$ es punto de acumulación. $\square$

Criterio de Convergencia de Cauchy

Definición. Sea ${\overline{x_{k}}}$ una sucesión de puntos de $\mathbb{R}^{n}$. Se dice que ${\overline{x_{k}}}$ es una sucesión de Cauchy si dado $\epsilon>0$ $\exists N_{0}\in \mathbb{N}$ tal que $|\overline{x_{k}}-\overline{x_{l}}|<\epsilon$ $\forall k,l\geq N_{0}$

Teorema. Una sucesión $\overline{x_{k}}\in \mathbb{R}^{n}$ es convergente si y solo si cumple el criterio de Cauchy

Demostración. $\Rightarrow$ Suponemos que ${\overline{x_{k}}}\rightarrow \overline{x}$ $\therefore$ $|\overline{x_{k}}-\overline{x}|<\epsilon$ $\forall k>N_{0}$. Se tiene entonces que $$|\overline{x_{k}}-\overline{x_{l}}|=|\overline{x_{k}}-\overline{x}+\overline{x}-\overline{x_{l}}|\leq |\overline{x_{k}}-\overline{x}|+|\overline{x}-\overline{x_{l}}|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon$$ $\forall k,l>N_{0}$ $\therefore$ $\left\{\overline{x_{k}}\right\}$ es convergente. $\square$

Más adelante

Tarea Moral

Enlaces

Matemáticas Financieras: Tablas de amortización para créditos que combinan varios tipos de anualidades

Por Erick de la Rosa

Introducción

En este apartado por fin se va analizar el comportamiento de una tabla de amortización, así como su construcción haciendo uso de los temas que se han venido manejando, así mismo, se verán las diferentes combinaciones que pueden haber entre ellas.

Concepto y descripción

Como se ha estado haciendo mención en temas anteriores, se pueden hacer combinaciones de las diferentes anualidades que se han estado estudiando, cada una de ellas puede ser utilizada para resolver alguna eventualidad en particular, dependiendo del contexto que se trate, por ello es importante hacer notar que, también se pueden construir tablas de amortización que describen el comportamiento de los pagos de un crédito que por su naturaleza y diseño, en determinadas ocasiones es necesario hacer que se combinen entre ellos.

Para mostrar el proceso de construcción de ésta tabla de amortización, se hará a través del siguiente ejemplo:

La empresa del señor Juan, desea dar mantenimiento a su parque vehicular, para hacerlo solicita un crédito por un monto de \$35 mil pesos, y planea hacer el contrato dando un anticipo por la cantidad de \$8,400, el saldo que falta por pagar, tiene considerado liquidarla de la siguiente manera:

El banco que le otorgó un crédito de \$26,600, se los prestó a cambio de una tasa del 38% anual, y el señor Juan realizará pagos mensuales por un monto de \$1006.7136, los cuales irán incrementando el 2% en cada periodo, durante dos años y medio.

Sin embargo, al cabo de un año y medio la empresa del señor Juan, quiere re-negociar la deuda, para que el saldo que aún falta por pagar, lo pueda liquidar en pagos mensuales iguales, situación que le cuesta una penalización por parte del banco, de una tasa de interés del 3.3%.

El señor Juan necesita conocer la tabla de amortización bajo éstas condiciones.

Para poder construir la tabla de amortización que nos pide el problema, se requiere calcular primero:

La cantidad a la que asciende el pago de primera cuota, el cual queda determinado por la siguiente expresión:

$$X=\left(\frac{26600}{\left(1-\left(\frac{1.02}{1.0272}\right)^{30}\right)}\right)(0.0272-0.02)$$

$$X=\left(\frac{26600}{\left(1-(0.9929907)^{30}\right)}\right)(0.0072)$$

$$X=\left(\frac{26600}{\left(1-(0.8097572)\right)}\right)(0.0072)$$

$$X=\left(\frac{26600}{0.1902428}\right)(0.0072)$$

$$X=1006.713653$$

Ejercicios resueltos

Ejercicio. Don Felipe quiera abrir una empresa de reparación de autos, para poder hacerlo solicita un crédito a un banco por la cantidad de dos millones y medio, el banco le cobra por dicho monto una tasa de interés del 1.5% mensual, y los planes del señor Felipe es poder pagarlo de la siguiente forma:

Lo realizará por 3 etapas. La primera consiste en diferir los pagos durante los primeros 3 meses, una vez transcurrido dicho tiempo, realizará 6 pagos de forma mensual y crecientes, iniciando una cantidad de \$100 mil pesos, los demás pagos se irán incrementando \20 mil pesos.

Durante la etapa 2, planea hacer 8 pagos mensuales iguales, de forma vencida, cada uno por la cantidad de \$180 mil pesos.

Por último, quiere hacer 5 pagos mensuales, los cuales irán decreciendo por una cantidad de \$15 mil pesos, y dará inicio con un pago por la cantidad de \$150 mil pesos. Una vez transcurridos 4 meses, planea hacer el último pago con el que quiere liquidar el monto que a ése momento falte.

Se requiere obtener la cantidad del último pago, así como la elaboración de la tabla de amortización.

Solución

El planteamiento gráfico de la solución a éste ejercicio se muestra a continuación:

Elaboración propia, basado en Matemáticas Financieras, fundamentos y aplicaciones, Cánovas T. Ed. Trillas, pag. 196.

a continuación, se muestra su respectiva tabla de amortización:

Elaboración propia, extraído de Matemáticas Financieras, fundamentos y aplicaciones, Cánovas T. Ed. Trillas, pag. 197.

Más adelante…

Hasta este momento se cuenta con las herramientas suficientes para aplicar los conocimientos sobre lo que son las anualidades y se ejemplificó la forma en que se pueden ir combinando, en el siguiente capítulo se abordará el tipo de tablas de amortización que involucran pagos de más anualidades, los cuales suelen presentarse en situaciones en las que las empresas tienen la necesidad de asentar ingresos adicionales por motivo de incremento en ventas, como lo son las temporadas navideñas, o alguna otra fecha que represente un ingreso adicional.

  • Matemáticas Financieras
  • Entrada anterior
  • Entrada siguiente

Matemáticas Financieras: Compendio de conceptos y fórmulas

Por Erick de la Rosa

Introducción

Esta sección, está pensada para tener una forma de consulta rápida, en caso de que tengan duda en alguna fórmula o que se refiere cierto concepto, puede ser usada sólo como material de recordatorio.

Fundamentos de las matemáticas financieras

Modelo de interés simple

$$M=K(1+it)$$,

se caracteriza principalmente porque los intereses no generan intereses.

Modelo de interés y descuento, compuesto

Elaboración propia, basado en Matemáticas Financieras, fundamentos y aplicaciones, Cánovas T. Ed. Trillas, pag. 92.
  • Tomar en cuenta que, la tasa de interés o de descuento debe ser la misma con la periodicidad (días, meses, bimestres, trimestres, años, etc.) con la que esté dado el tiempo.
  • Cuando se estén utilizando las tasas de interés $i^{(m)}$ ó tasas de descuento $d^{(m)}$, conocidas como tasas nominales, éstas siempre son manejadas en años, por lo que la periodicidad igual tendrá que ser en años.
  • Para representar tasas efectivas por m-ésimos de año, se usa la siguiente expresión:

$$\frac{i^{(m)}}{m}=i’=i_m$$

ó

$$\frac{d^{(m)}}{m}=d’=d_m$$

  • Cuando se da el caso en el que la persona que está invirtiendo, no es su deseo re-invertir los intereses, la ecuación queda de la siguiente forma:

$$\left(1+\frac{i^{(m)}}{m}\right)^m-1$$

  • Recordar que en la ecuación $M=K e^{(\delta)(t)}$, la variable t, está dada en años.
  • Dos tasas de interés son equivalentes si y sólo si producen el mismo monto (o el mismo valor presente) en la misma cantidad de tiempo.

Tasas reales de interés

Valor del dinero está dado por:

$$V_t=\frac{V}{1+f}$$

Tasa de interés real estada dada por la siguiente ecuación:

$$i_r=\frac{1+i}{1+f} – 1$$

Ecuación de valor

Elaboración propia, basado en Matemáticas Financieras, fundamentos y aplicaciones, Cánovas T. Ed. Trillas, pag.107.

Además, es necesario no olvidar que:

Elaboración propia, basado en Matemáticas Financieras, fundamentos y aplicaciones, Cánovas T. Ed. Trillas, pag.73.

Anualidades

Elaboración propia, basada en Matemáticas Financieras, fundamentos y aplicaciones, Cánovas T. Ed. Trillas, pag. 227.

De donde hay que tener en cuenta las siguientes reglas:

  • Las ecuaciones que aparecen en cada una de las filas número 5 y 6, valor presente y monto, el primer pago que realizan está representado por la letra p, los pagos posteriores crecen (ecuación de la fila 5) o decrecen (ecuaciones de la fila 6) aritméticamente, con una diferencia del valor Q.
  • Las ecuaciones de las filas del 1 al 6, son tasas de interés efectivas por periodo, donde n, representa el número de periodos. En la anualidad número 3, la variable m está dada en la misma medida que n.
  • La anualidad pagadera p veces al año, se usa una tasa de interés i’, la cual es efectiva por p-ésimo año. En esta situación hay que trabajar con su respectiva tasa de equivalencia; en caso de ser necesario.
  • En la anualidad continua, se tiene que usar una tasa de interés efectiva anual, de forma análoga, si es necesario, hay que calcular su tasa equivalente instantánea $\delta$ para aplicar de forma correcta la ecuación.
  • SI se llega a trabajar con varias anualidades, es necesario llevarlas a valor presente a una fecha de valuación.

Construcción de tablas de amortización

Amortización de créditos con pagos predeterminados

Elaboración propia, basado en Matemáticas Financieras, fundamentos y aplicaciones, Cánovas T. Ed. Trillas, pag. 228.

Para calcular el cualquier renglón se usa:

Elaboración propia, basado en Matemáticas Financieras, fundamentos y aplicaciones, Cánovas T. Ed. Trillas, pag. 228.
  • Para ésta tabla se pueden hacer uso de cualquiera de las anualidades que se vieron a lo largo de éstas notas, dependiendo del tipo de crédito que se trate.
  • La tasa
  • La tasa de interés que se utiliza, tiene que ser efectiva por periodo
  • Cuando se trate de otorgar algún enganche o periodo de gracia o diferimiento, bastaría con agregar un renglón creo al inicio de la tabla.
  • Cuando se dé el caso en el que las tasas de intereses cambien en algún plazo de la vigencia del crédito, se puede agregar más columnas para hacer notar éste movimiento y registrarlo.
  • El saldo insoluto del último periodo siempre debe de dar cero.

Amortización de créditos con abonos fijos al capital

Elaboración propia, basado en Matemáticas Financieras, fundamentos y aplicaciones, Cánovas T. Ed. Trillas, pag. 229.
  • La cantidad de los pagos fijos al capital, se calcular dividiendo al principio del periodo del saldo insoluto entre el número de pagos.
  • De igual forma que la tabla de amortización anterior, la tasa que se usa debe ser efectiva por periodo.
  • En caso de que los involucrados deseen hacer uso de una tasa de referencia, cada renglón podrá ser calcula una vez que se tenga ése dato.

Valuación de valores de renta fija

Elaboración propia, basado en Matemáticas Financieras, fundamentos y aplicaciones, Cánovas T. Ed. Trillas, pag. 229.
  • Para que el comprador conozca el valor de compra o precio del bono, el inversionista fija la tasa de rendimiento, y luego se calcula el valor presente, con esto se determina el precio.
  • La tasa de rendimiento propuesta por el inversionista, deberá ser fija por la cantidad de periodos que se vayan a pagar los dividendos.
  • La cantidad que se paga por concepto de dividendos se calcula realizando el producto de gC, donde g representa un porcentaje del valor de redención para el cual se está usando la variable C. Hay una excepción en éste cálculo, y corresponde al caso en el de los bonos no redimibles, los cuales se calcular como porcentaje g de su valor nominal P
  • El valor de redención es determinado como un porcentaje de su valor nominal.
  • El precio del bono se incrementa si la tasa de rendimiento disminuye, y viceversa.

Ir a Matemáticas Financieras

Entrada anterior