Conjuntos anidados

Por Lizbeth Fernández Villegas

Introducción:

En esta ocasión nos vamos a fijar en colecciones de conjuntos que están contenidos unos en otros. Vamos a suponer que es una cantidad numerable de conjuntos. El primer conjunto contiene al segundo, que a su vez contiene a un tercero y así, sucesivamente.

Ahora pensemos en la intersección de todos esos conjuntos. Intuitivamente podemos visualizar que se tratará de un conjunto muy pequeño, que estará contenido en todos los demás.

Aquí tenemos un ejemplo de una sucesión de conjuntos donde los últimos términos corresponden al mismo conjunto. La intersección de todos los conjuntos es, evidentemente, ese último conjunto

Observemos la sucesión de intervalos $[-\frac{1}{n},\frac{1}{n}]_{n \in \mathbb{N}}.$

Nota que todos tienen como elemento al cero. Además es el único elemento que pertenece a la intersección de todos los intervalos, pues si suponemos que hay otro más, dado que $\frac{1}{n} \to 0$ es posible encontrar un intervalo suficientemente pequeño, que deje fuera este elemento.

Con un radio menor a la distancia entre $0$ y el punto rojo, este último queda fuera.

Ahora consideremos el subespacio $\mathbb{Q}$ con la métrica usual. En esta ocasión los intervalos serán $(\sqrt{2}-\frac{1}{n},\sqrt{2}+\frac{1}{n}), \, n \in \mathbb{N}.$ Queda como ejercicio al lector demostrar que la intersección de estos conjuntos es vacía en $\mathbb{Q}$.

Entonces, ¿bajo qué condiciones podremos asegurar que la intersección no es vacía pese a que los conjuntos se hagan «cada vez más pequeños» y estén contenidos unos en otros? Veamos la siguiente definición:

Definición bolas encajadas: Sea $(X,d)$ un espacio métrico y $(\overline{B}(x_n,\varepsilon_n))_{n \in \mathbb{N}} \,$ una sucesión de bolas cerradas en $X$. Si $\forall n \in \mathbb{N}$ se cumple que $\overline{B}(x_{n+1},\varepsilon_{n+1}) \subset \overline{B}(x_{n},\varepsilon_{n})$ diremos que la sucesión $(\overline{B}(x_n,\varepsilon_n))_{n \in \mathbb{N}}$ es de bolas encajadas.

Sucesión de bolas cerradas encajadas

Proposición principio de bolas encajadas: $(X,d)$ es un espacio métrico completo si y solo si para cualquier sucesión de bolas cerradas encajadas $(\overline{B}(x_n,\varepsilon_n))_{n \in \mathbb{N}}$ cuyos radios tienden a cero, es decir $\varepsilon_n \to 0,$ se cumple que la intersección de todas las bolas cerradas es no vacía. Además $\underset{n \in \mathbb{N}}{\cap} \, \overline{B}(x_n,\varepsilon_n) = \{x\}$ para algún $x \in X.$

Demostración:
Supongamos que $(X,d)$ es completo. Sea $(\overline{B}(x_n,\varepsilon_n))_{n \in \mathbb{N}} \,$ una sucesión de bolas encajadas. Vamos a probar primero que la sucesión de los centros de las bolas cerradas $(x_n)_{n \in \mathbb{N}} \,$ es de Cauchy. Sea $\varepsilon > 0,$ como $\varepsilon_n \to 0,$ existe $N \in \mathbb{N}$ tal que $\forall \, n \geq N, \, \varepsilon_n < \frac{\varepsilon}{2}.$ Como la sucesión es de bolas encajadas, tenemos que $\forall \, l,m \geq N, \, \overline{B}(x_l,\varepsilon_l) \subset \overline{B}(x_N,\varepsilon_N)$ y $\overline{B}(x_m,\varepsilon_m) \subset \overline{B}(x_N,\varepsilon_N)$ entonces $d(x_l,x_m) \leq d(x_l,x_N) + d(x_N,x_m) \leq \frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon.$ Por lo tanto $(x_n)$ es de Cauchy. Como $X$ es completo, se sigue que $x_n \to x$ para algún $x \in X$


Vamos a demostrar que $x \in \underset{n \in \mathbb{N}}{\cap} \, \overline{B}(x_n,\varepsilon_n).$ Sea $n \in \mathbb{N}.$ Como las bolas son encajadas, tenemos que $\forall k \geq n, \, B(x_k,\varepsilon_k) \subset B(x_n,\varepsilon_n)$ en consecuencia $\forall k \geq n,$ el término de la sucesión $x_k$ es elemento de $B(x_n,\varepsilon_n),$ que es un conjunto cerrado. Ya que la subsucesión formada por estos últimos términos converge en $x$ se sigue de lo que vimos en Convergencia que $x \in B(x_n,\varepsilon_n).$ Como esto ocurre $\forall n \in \mathbb{N},$ concluimos que $x \in \underset{n \in \mathbb{N}}{\cap} \, \overline{B}(x_n,\varepsilon_n).$

Además $x$ es el único punto en la intersección, pues si existe otro punto $x’ \in \underset{n \in \mathbb{N}}{\cap} \, \overline{B}(x_n,\varepsilon_n)$ existen también bolas cerradas suficientemente pequeñas que no contienen a ambos puntos. La demostración de este hecho se deja como ejercicio.

Para el regreso buscamos demostrar que $(X,d)$ es completo. Sea $(x_n)_{n \in \mathbb{N}}$ una sucesión de Cauchy.

Vamos a construir una sucesión de bolas encajadas de la siguiente forma:
Ya que la sucesión $(x_n)$ es de Cauchy, podemos afirmar que existe $N_1 \in \mathbb{N}$ tal que $\forall \, n,m \geq N_1, \, d(x_n,x_m)\leq \frac{1}{2}.$ Entonces $\forall \, n \geq N_1, \, x_n \in B(x_{N_1}, \frac{1}{2}) \subset B(x_{N_1},1).$

Nuevamente, como $(x_n)$ es de Cauchy, existe $N_2 \in \mathbb{N}$ tal que $\forall \, n,m \geq N_2, \, d(x_n,x_m)\leq \frac{1}{2^2}.$ Entonces $\forall \, n \geq N_2, \, x_n \in B(x_{N_2}, \frac{1}{2^2}) \subset B(x_{N_2},\frac{1}{2}).$ Nota que esta bola está contenida en la anterior.

Continuando recursivamente, la bola $k$ de la sucesión en construcción estará dada por el centro $x_{N_k}$ donde $N_k$ es tal que $\forall \, n,m \geq N_k, \, d(x_n,x_m)\leq \frac{1}{2^k}.$ Entonces $\forall \, n \geq N_k, \, x_n \in B(x_{N_k}, \frac{1}{2^k}) \subset B(x_{N_k},\frac{1}{2^{k-1}}).$

Así, la sucesión $(B(x_{N_n},\frac{1}{2^{n-1}}))_{n \in \mathbb{N}}$ es de bolas encajadas y sus radios tienden a cero. Por hipótesis sabemos que la intersección de estos conjuntos es $\{x\},$ para algún $x \in X.$ Es sencillo probar que la sucesión de centros $(x_{N_n})_{n \in \mathbb{N}}$ converge en $x$ (se dejará como ejercicio). Entonces tenemos una subsucesión de la sucesión de Cauchy $(x_n)$ que es convergente y, como vimos en entrada anterior, esto demuestra que $(x_n) \to x$ por lo que $X$ es completo.

Notemos que para asegurar la contención de un conjunto en otro, necesitamos obtener información acerca de las distancias entre sus elementos. Esto motiva una definición para conjuntos más generales que una bola cerrada:

Definición diámetro de un conjunto: Sea $A \subset X$. Entonces el diámetro de $A$ se define como:
$$diam(A) = sup\{d(x_1,x_2): x_1,x_2 \in A \}$$.

Cuando el conjunto $\{d(x_1,x_2): x_1,x_2 \in A \}$ no es acotado, diremos que el diámetro es $\infty.$

Proposición: Sea $(x_n)_{n \in \mathbb{N}}$ una sucesión en $(X,d)$ y para cada $N \in \mathbb{N}, \, X_N=\{x_k:k\geq N\}$ el conjunto de los términos de la sucesión que van a partir de $x_N.$ Entonces $(x_n)$ es una sucesión de Cauchy si y solo si
$$\underset{N \to \infty}{lim}\, diam \, (X_N)=0$$

Demostración:
Supón que $(x_n)$ es una sucesión de Cauchy en $X$ y sea $\varepsilon>0$. Entonces existe $K \in \mathbb{N}$ tal que $\forall \, l,m \geq K, \, d(x_l,x_m)<\varepsilon$. En consecuencia $diam\,(X_K) \leq \varepsilon.$ Como para todo $L \geq K, \, (X_L) \subset (X_K)$ se sigue que para todo $L \geq K, \, diam(X_L) \leq diam(X_K) \leq \varepsilon.$ Por lo tanto $\underset{N \to \infty}{lim}\, diam \, (X_N)=0$

Ahora supongamos que $\underset{N \to \infty}{lim}\, diam \, (X_N)=0.$ Buscamos demostrar que $(x_n)$ es de Cauchy. Sea $\varepsilon >0$, como los diámetros tienden a cero, existe $K \in \mathbb{N}$ tal que en particular $(X_K)$ satisface que $diam \, (X_K) < \varepsilon.$ Entonces $\forall \, l,m \geq K, \, d(x_l,x_m) < \varepsilon$ lo cual demuestra que $(x_n)$ es de Cauchy.

Terminemos con la siguiente:

Proposición: Sean $(A_n)_{n \in \mathbb{N}}\,$ una sucesión de subconjuntos cerrados de un espacio métrico completo $(X,d)$ tales que para todo $n \in \mathbb{N}, \, A_{n+1} \subset A_{n}$ y además $\underset{n \to \infty}{lim} \, diam(A_n) \to 0.$ Entonces $\underset{n \in \mathbb{N}}{\cap}A_n=\{x\}$ para algún $x \in X$).

Demostración:
Para cada $n \in \mathbb{N}$ elegimos $x_n \in A_n.$ Entonces para cada $N \in \mathbb{N}$ el conjunto $X_N$ definido en la proposición anterior está contenido en $A_N$, pues los conjuntos están anidados. En consecuencia, $diam(X_N) \leq diam(A_n) \to 0.$ La proposición anterior nos permite concluir que $(x_n)$ es una sucesión de Cauchy. Como $X$ es completo, se sigue que $(x_n) \to x$ para algún $x \in X.$ Dejamos como ejercicio demostrar que $\underset{n \in \mathbb{N}}{\cap}A_n=\{x\}$.

¿Recuerdas la distancia de Hausdorff vista en La métrica de Hausdorff? Nota que si $A$ y $B$ son subconjuntos de $X$ entonces $d_H(A,B)\leq diam(A \cup B).$ En esa misma entrada vimos que conjuntos anidados convergen a la intersección de todos ellos, y que este conjunto está formado por los puntos de convergencia de sucesiones que tienen elementos en los conjuntos anidados. En entradas futuras veremos que los espacios compactos son cerrados. ¿Cómo justificarías las proposiciones vistas en esta entrada a partir de los resultados presentados en la métrica de Hausdorff?

Más adelante…

Veremos los conceptos de conjunto denso y conjunto nunca denso. Descubriremos un resultado que ha sido muy importante en el estudio de los espacios métricos completos: El teorema de Baire.

Tarea moral

  1. Sea $\mathbb{Q}$ el subespacio de $\mathbb{R}$ con la métrica usual. Demuestra que la intersección de los intervalos $[\sqrt{2}-\frac{1}{n},\sqrt{2}+\frac{1}{n}], \, n \in \mathbb{N}$ es vacía.
  2. Demuestra que si $x$ está en la intersección de bolas encajadas $\underset{n \in \mathbb{N}}{\cap} \, \overline{B}(x_n,\varepsilon_n)$ entonces es único.
  3. Demuestra que la sucesión de centros $(x_{N_n})_{n \in \mathbb{N}}$ de la proposición converge en $x$.
  4. Sea $A \subset X.$ Demuestra que $diam(A)=diam(\overline{A}).$
  5. Da un ejemplo de un espacio métrico completo y de una sucesión de bolas cerradas en este espacio, encajadas unas en otras que tenga intersección vacía.

Enlaces

Espacios métricos completos

Por Lizbeth Fernández Villegas

Introducción

En la entrada anterior vimos que no es suficiente que una sucesión sea de Cauchy para asegurar que sea convergente. Hay espacios donde sí lo es y serán llamados «completos». Contar con este recurso nos permite solo tener que justificar que una sucesión satisface la condición de Cauchy cuando esto resulte ser más sencillo que demostrar su convergencia en un punto. Comencemos con la definición:

Definición espacio métrico completo y espacio de Banach: Sea $(X,d)$ un espacio métrico. Decimos que $X$ es un espacio métrico completo si toda sucesión de Cauchy $(x_n)_{n \in \mathbb{N}}$ es convergente en $X$.
A un espacio normado que es completo con la métrica inducida por su norma le llamaremos espacio de Banach.

Ejemplos:

  1. El espacio métrico euclideano $\mathbb{R}^n$ es completo. La demostración la vimos en la sección anterior. (Sucesiones de Cauchy).
  2. Sea $X$ un conjunto no vacío con la métrica discreta. Entonces $X$ es completo. La demostración se propondrá como ejercicio.
  3. $\mathbb{R}^n$ con la métrica $d_\infty(x,y)=máx \{ |x_1-y_1|,…,|x_n-y_n| \}$ donde $x=(x_1,…,x_n)$ y $y=(y_1,…,y_n)$ es completo.

Demostración:
Sea $(x_n)_{n \in \mathbb{N}}$ una sucesión de Cauchy en $\mathbb{R}^n$. En la sección anterior vimos que $(x_n)$ converge en la métrica euclidiana $d_2$. Sea $x$ el punto de convergencia. En la entrada Más conceptos de continuidad vimos que $d_\infty$ y $d_2$ son métricas equivalentes, entonces para todo $\varepsilon >0$ existe $N \in \mathbb{N}$ y $c>0$ tales que para todo $n \geq N$:
$d_\infty(x_n,x)\leq c\,d_{2}(x_n,x) \leq c \frac{\varepsilon}{c}=\varepsilon$
Por lo tanto $x_n \to x$ en $(\mathbb{R}^n, d_\infty),$ lo cual demuestra que es un espacio métrico completo.

En general, la completitud no es una propiedad invariante bajo homeomorfismos. Esto es, un espacio completo puede ser homeomorfo a otro que no lo sea.

Ejemplo: El espacio euclidiano $\mathbb{R}$ es homeomorfo al subespacio $(-1,1).$

En efecto:

$$ \phi: (-1,1) \longrightarrow \mathbb R, \qquad \phi(x) = \frac{x}{1-x^2} $$

Es un homeomorfismo entre ambos espacios. No obstante la sucesión $(1- \frac{1}{n})_{n \in \mathbb{N}} \,$ tiene sus elementos en $(-1,1)$ y es de Cauchy pero no converge en el subespacio. Por lo tanto $(-1,1)$ no es completo pese a que $\mathbb{R}$ sí lo es.

$(-1,1)$ es homeomorfo a $\mathbb{R}$

Por otro lado, la completitud sí se conserva bajo equivalencias. (Concepto visto en Más conceptos de continuidad):

Proposición: Sean $(X,d_X)$ y $(Y,d_Y)$ espacios métricos con $\phi: X \to Y$ una equivalencia entre ellos. Entonces $X$ es completo si y solo si $Y$ lo es.

Demostración:
Supongamos que $X$ es completo. Buscamos demostrar que $Y$ también lo es. Sea $(y_n)_{n \in \mathbb{N}}$ una sucesión de Cauchy en $Y$. Como $\phi$ es equivalencia entonces $\phi^{-1}$ es lipschitz continua. Considera la sucesión $\phi^{-1}(y_n)_{n \in \mathbb{N}}$ en $X$. Dadas las hipótesis, para toda $\varepsilon >0$ existe $N \in \mathbb{N}$ y $c>0$ tales que si $n,m \geq N$ entonces:
$d_X(\phi^{-1}(y_n),\phi^{-1}(y_m))\leq c\, d_Y(y_n,y_m) \leq c \, \frac{\varepsilon}{c} = \varepsilon$ lo cual prueba que la sucesión $\phi^{-1}(y_n)_{n \in \mathbb{N}}$ es de Cauchy en $X$, espacio que es completo, en consecuencia $\phi^{-1}(y_n) \to x$ en $X$ para algún $x \in X.$

Finalizamos aplicando $\phi$ a la última sucesión. En la entrada de Funciones continuas en espacios métricos vimos que podemos concluir que $\phi(\phi^{-1}(y_n)) \to \phi(x)$ en $Y$. Por lo tanto $(y_n)$ es una sucesión convergente lo cual demuestra que $Y$ es un espacio métrico completo.
El regreso es análogo y se propondrá como ejercicio al final de esta sección.

Proposición: Todo espacio normado de dimensión finita es de Banach.

Demostración:
Sea $V$ un espacio con norma asociada $\norm{\cdot}_V$ con dimensión finita $n$. En la entrada anterior probamos que el espacio euclideano $\mathbb{R}^n$ es de Banach. En la entrada Más conceptos de continuidad probamos que la norma $\norm{\cdot}_2$ es equivalente a $\norm{\cdot}_1$. De acuerdo a la proposición anterior, bastará con encontrar una equivalencia entre $(\mathbb{R}^n,\norm{\cdot}_1)$ y $(V, \norm{\cdot}_V)$.
Sea $\{e_1,…,e_n\}$ la base canónica de $\mathbb{R}^n,$ $\{v_1,…,v_n\},$ una base ordenada de $V$ y $\mathcal{L}: \mathbb{R}^n \to V$ tal que para cada $i=1,…,n, \, \mathcal{L}(e_i)=v_i.$ Es sencillo demostrar que $\mathcal{L}$ es una transformación lineal y que es también una función biyectiva. Esta afirmación se propondrá como ejercicio.
Sean $a,b \in \mathbb{R}^n$ tales que $a=\sum_{i=1}^{n}a_i e_i$ y $b=\sum_{i=1}^{n}b_i e_i$ con $a_i,b_i \in \mathbb{R}, 1\leq i\leq n.$ Sea $c=\underset{1 \leq i \leq n}{máx} \, \{ \norm{v_i}_V\},$ entonces:

\begin{align*}
\norm{\mathcal{L}(\sum_{i=1}^{n}a_i e_i) -\mathcal{L}(\sum_{i=1}^{n}b_i e_i)}_V&=\norm{\sum_{i=1}^{n}a_i \mathcal{L}(e_i)-\sum_{i=1}^{n}b_i \mathcal{L}(e_i)}_V\\
&=\norm{\sum_{i=1}^{n}a_i v_i-\sum_{i=1}^{n}b_i v_i}_V\\
&=\norm{\sum_{i=1}^{n}(a_i-b_i) v_i}_V \\
&\leq \sum_{i=1}^{n}|a_i-b_i| \norm{v_i}_V \\
&\leq \underset{1 \leq i \leq n}{máx} \, \{ \norm{v_i}_V\}\sum_{i=1}^{n}|a_i-b_i|\\
&=c \sum_{i=1}^{n}|a_i-b_i| \\
&=c \norm{a-b}_1
\end{align*}

Entonces $\mathcal{L}$ es una función Lipschitz continua. La prueba de que la inversa es Lipschitz continua se deja como ejercicio. Esto demostraría que $V$ también es un espacio de Banach.

La completitud no siempre se hereda a los subespacios de un espacio métrico completo. La siguiente proposición nos muestra las condiciones requeridas para que esto ocurra:

Proposición: Sea $(X,d)$ un espacio métrico completo y $A \subset X.$ Entonces el subespacio $(A,d)$ es completo si solo si $A$ es cerrado en $X.$

Demostración:

Supón que $(A,d)$ es completo. Buscamos demostrar que $\overline{A} \subset A.$ Sea $x \in \overline{A}.$ En la entrada de Convergencia concluimos que existe una sucesión $(x_n)_{n \in \mathbb{N}}$ de términos en $A$ tal que $x_n \to x.$ Como converge, se concluye que es de Cauchy. Como todos los términos están en $A$, que es completo, se concluye que es convergente en $A.$ Como el límite es único, concluimos que el punto de convergencia $x \in A.$ Por lo tanto $\overline{A} \subset A,$ probando así que $A$ es cerrado.

Ahora partamos de suponer que $A \subset X$ es cerrado. Sea $(x_n)_{n \in \mathbb{N}}$ una sucesión de Cauchy en $A.$ Como $X$ es completo, se sigue que $x_n \to x$ en $X$ para algún $x \in X.$ Por el mismo resultado de la entrada de Convergencia concluimos que $x \in A.$ por lo tanto $x_n \to x$ en $A$ lo cual demuestra que $A$ es completo.

Ya que sabemos que un espacio normado de dimensión finita es de Banach, es natural preguntarse qué ocurre con los de dimensión infinita. Como ejemplo tenemos al espacio de los polinomios $\mathcal{P}[0,1].$ Visto como subespacio del espacio de funciones continuas $C^0[0,1]$ es de dimensión infinita pero no es cerrado. La proposición anterior nos permite concluir que $\mathcal{P}[0,1]$ no es completo. La demostración del ejemplo se puede consultar en las notas de Luis O. Manuel. El documento se encuentra en este link.

Más adelante…

Buscaremos aplicar estos resultados en conjuntos anidados, unos dentro de otros. Partir de una sucesión de Cauchy nos permitirá asegurar la existencia de un punto de convergencia, cuando estemos en un espacio completo. Conoceremos condiciones en las que dicho punto existe y pertenece a la intersección de los conjuntos anidados.

Tarea moral

  1. Demuestra que si $X$ es un conjunto no vacío con la métrica discreta entonces $X$ es completo.
  2. Sean $(X,d_X)$ y $(Y,d_Y)$ espacios métricos con $\phi: X \to Y$ una equivalencia entre ellos. Prueba que si $Y$ es completo entonces $X$ lo es.
  3. Sea $V$ un espacio con norma asociada $\norm{\cdot}_V$ con dimensión finita $n$ y $\{v_1,…,v_n\},$ una base ordenada de $V.$ Sea $\{e_1,…,e_n\}$ la base canónica de $\mathbb{R}^n,$ y $\mathcal{L}: \mathbb{R}^n \to V$ tal que para cada $i=1,…,n, \, \mathcal{L}(e_i)=v_i.$ Demuestra que $\mathcal{L}$ es una transformación lineal y que es también una función biyectiva.
  4. Prueba que la función inversa de la función del ejercicio anterior es Lipschitz continua.
  5. Sea $(x_n)_{n \in \mathbb{N}}$ una sucesión creciente y acotada en $\mathbb{R}.$ Concluye que $(x_n)$ es convergente en $\mathbb{R}$ demostrando que es de Cauchy.

Enlaces

Sucesiones de Cauchy

Por Lizbeth Fernández Villegas

Introducción

En otros cursos, donde el conjunto de los números reales es el protagonista, se suele hablar de una propiedad: El conjunto $\mathbb{R}$ es completo. Esto puede concluirse a partir de 3 situaciones que son válidas en $\mathbb{R}:$

  1. El axioma del supremo o de completitud.
  2. La intersección de intervalos cerrados encajados cuya longitud tiende a cero es no vacía.
  3. Las sucesiones de Cauchy son convergentes en $\mathbb{R}$.

En las siguientes entradas veremos cómo las propiedades $2$ y $3$ son generalizadas a los espacios métricos. La primera no es posible, por ejemplo, en conjuntos métricos que no están ordenados. Pero tampoco basta que un conjunto tenga un orden en sus elementos para que todos sus subconjuntos acotados tengan un supremo en el conjunto. Este es el caso de algunos conjuntos acotados en el subespacio $\mathbb{Q}$ que tendrán supremo en $\mathbb{R}$ pero no en $\mathbb{Q}.$ ¿Puedes dar un ejemplo?

Recordemos que en la entrada de Convergencia vista anteriormente, hablamos de sucesiones $(x_n)_{n \in \mathbb{N}}\,$ que se aproximan a un punto $x$ en un espacio métrico $(X,d)$. Según la definición, $x_n \to x$ significa que dado $\varepsilon >0$ existe $N \in \mathbb{N}$ que cumple para cada $n \geq N, \, d(x_n,x)< \varepsilon.$ Esta definición compara la distancia entre cada punto de la sucesión con un punto fijo $x$. Sin embargo, ¿qué podemos decir de la distancia entre cualesquiera dos puntos de la sucesión?

Sea $\varepsilon>0$. En una sucesión convergente $(x_n)_{n \in \mathbb{N}}\,$ ocurrirá que para algún $N \in \mathbb{N}$ si $n \geq N$ entonces $d(x_n,x)< \frac{\varepsilon}{2}.$

Sucesión convergente

Podemos ver que mientras más se aproximan los puntos de la sucesión al punto de convergencia $x$, los puntos de la sucesión se acercan cada vez más entre ellos también.

Los puntos de la bola abierta son más cercanos

Más aún, la desigualdad del triángulo garantiza que si $n,m \geq N$ entonces:
$$d(x_n,x_m) \leq d(x_n,x) + d(x,x_m) < \frac{\varepsilon}{2}+\frac{\varepsilon}{2}<\varepsilon.$$ como lo expresa la siguiente imagen:

Hay puntos con distancias arbitrariamente pequeñas

Esto indica que es posible identificar un término de la sucesión, a partir del cual las distancias entre cualesquiera dos de ellos será arbitrariamente pequeña. Aunque ya vimos que esto pasa en sucesiones convergentes también puede ocurrir en algunas que no lo son. Cuando las sucesiones tienen esta característica son denominadas como sigue:

Definición sucesión de Cauchy: Sea $(x_n)_{n \in \mathbb{N}}$ una sucesión de un espacio métrico $(X,d).$ Decimos que es una sucesión de Cauchy si satisface la condición de Cauchy que es que:
$\forall \, \varepsilon>0,$ existe $N \in \mathbb{N}$ tal que $\forall \, n,m \geq N$ ocurre que $d(x_n,x_m)< \varepsilon.$

Proposición: Si una sucesión es de Cauchy entonces es acotada.

Demostración:
Sea $(x_n)_{n \in \mathbb{N}}$ una sucesión de Cauchy. Entonces para $\varepsilon=1$ existe $N \in \mathbb{N}$ tal que $\forall \, n,m>N$ se cumple que $d(x_n,x_m)<1$ Entonces, $\forall \, m \geq N, d(x_N,x_m)< 1.$ Si definimos las distancias faltantes en los términos de la sucesión, es decir, las distancias $d_i= d(x_N,x_i)$ con $i=1,…,N-1$ y hacemos $M = máx \{ d_i,1 \} , i=1,…,N-1$ se concluye que existe una bola abierta que contiene todos los términos de la sucesión, la bola $B(x_N,M)$.

Una sucesión de Cauchy es acotada

A pesar de que una sucesión convergente es de Cauchy, no toda sucesión de Cauchy es convergente.

Ejemplo: La sucesión $(\frac{1}{n})_{n \in \mathbb{N}}$ en el subespacio euclideano $(0,1]$ es de Cauchy, pero no es convergente en $(0,1].$ La demostración se deja como ejercicio.

No obstante tenemos el siguiente resultado:

Proposición: Sea $(x_n)_{n \in \mathbb{N}}$ una sucesión de Cauchy en el espacio euclidiano $\mathbb{R}^n$, entonces la sucesión también es convergente.

Demostración:
Si el conjunto de términos de la sucesión dado por $\{ x_n \} :=\{x_n:n \in \mathbb{N}\}$ es finito entonces es convergente. (Ejercicio de la tarea moral de la entrada de Convergencia). Pero si es infinito entonces, al ser también acotado (por la proposición anterior) se sigue que el conjunto de los términos de la sucesión tiene un punto de acumulación $x \in \mathbb{R}^n$. Esto es resultado del teorema de Bolzano-Weierstrass, que se ve en los cursos de cálculo y dice que todo conjunto infinito acotado en $\mathbb{R}^n$ tiene un punto de acumulación. (La demostración puede consultarse en el libro «Análisis Matemático, Introducción Moderna al Cálculo Superior» de Tom. M. Apóstol).

Sea $\varepsilon >0$. Como $(x_n)$ es de Cauchy entonces existe $N \in \mathbb{N}$ tal que $\forall \, n,m \geq N$ ocurre que $d(x_n,x_m)<\frac{\varepsilon}{2}$.

Como $x$ es punto de acumulación del conjunto $\{x_n\}$ podemos garantizar que existe un término de la sucesión $x_k \in B(x,\frac{\varepsilon}{2})$ con $k \geq N.$ (Se te pedirá argumentar esto al final de esta sección).

Existe $x_k \in B(x,\frac{\varepsilon}{2})$

Entonces, $\forall \, n \geq N$
\begin{align*}
d(x_n,x) &\leq d(x_n,x_k)+d(x_k,x) \\
&\leq \frac{\varepsilon}{2}+\frac{\varepsilon}{2}\\
&= \varepsilon
\end{align*}
Por lo tanto $x_n \to x$.

$x_n \to x$

Finalizamos esta sección con la siguiente:

Proposición: Sea $(X,d)$ un espacio métrico y $(x_n)_{n \mathbb{N}}$ una sucesión de Cauchy en $X$. Entonces $(x_n)$ es convergente si y solo si tiene una subsucesión convergente.

Demostración: Queda como ejercicio.

Más adelante…

Ya que conocemos el concepto de las sucesiones de Cauchy procederemos a explorar espacios donde este tipo de sucesiones sí es convergente. Esto motiva la definición de espacio métrico completo que conoceremos en la siguiente entrada.

Tarea moral

  1. Demuestra que la sucesión $(\frac{1}{n})_{n \in \mathbb{N}}$ en el subespacio euclideano $(0,1]$ es de Cauchy, pero no es convergente en $(0,1].$
  2. En la demostración de la proposición anterior, prueba que que existe un término de la sucesión $(x_n)$ de $\mathbb{R}^n$, digamos $x_k$ tal que $x_k \in B(x,\frac{\varepsilon}{2})$ con $k \geq N.$
  3. Demuestra que si $(x_n)_{n \mathbb{N}}$ es una sucesión de Cauchy en un espacio $X$, entonces $(x_n)$ es convergente si y solo si tiene una subsucesión convergente.
  4. Sea $X = [1,\infty)$ y sea $d(x,y)=|\frac{1}{x}-\frac{1}{y}|$. Demuestra que $d$ es una métrica en $X.$
  5. Para cada $n \in \mathbb{N}$ definimos $x_n=n+1$. Prueba que la sucesión $(x_n)$ es de Cauchy en el espacio métrico del ejercicio anterior.

Enlaces

Geometría Moderna II: Principio de dualidad y Triángulo autopolar

Por Armando Arzola Pérez

3.3 Principio de dualidad y Triángulo Autopolar

Introducción

Gracias a la relación de polos y polares con respecto a una circunferencia, se tenían correspondencias entre todos los puntos y todas las rectas del plano. Por lo cual nace el Principio de dualidad. Así mismo analizaremos el Triángulo Autopolar junto con algunas propiedades.

Principio de Dualidad

El principio de Dualidad, donde la propiedad que nos dé como resultado de intercambiar las palabras de recta y punto resulta verdadera, además de que guarda sus propiedades.

Por ejemplo, se tiene la siguiente dualidad del teorema con respecto a su corolario.

Teorema: Dada una circunferencia, la polar de $P$ pasa por $Q$, entonces la polar de $Q$ pasa por $P$.

Corolario: Dada una circunferencia, sean $p$ y $q$ rectas tales que, el polo de $p$ está en $q$, entonces el polo de $q$ está en $p$.

Se puede ver que ambos son duales, se puede dar un ejemplo más sencillo:

La unión de dos puntos es una recta, entonces la intersección de dos rectas es un punto.

Triángulo Autopolar

Definición: Se define como triángulo autopolar a aquel que, con respecto a una circunferencia, se tiene que cada vértice es el polo del lado opuesto, de tal modo que cada lado es polar del vértice opuesto.

Construcción del Triángulo Autopolar

Se tiene una circunferencia $C(O,r)$, tomemos un punto $A$ dentro de la circunferencia y tracemos su inverso $A’$ y $a$ su polar. Ahora tomemos un punto $B$ en $a$ tal que $A’ \neq B$ y trazamos $b$ su polar, y por el Teorema Fundamental de Polos y Polares se tiene que $b$ pasa por $A$. Además, a la intersección de $a$ y $b$ la llamaremos $C$, y su polar de $c$ pasa por $A$ y $B$ puntos.

De esta forma tenemos el $ \triangle ABC$ es autopolar con respecto a $C(O,r)$

Triángulo Autopolar

Propiedades

Se tienen varias propiedades del triángulo autopolar:

1.- El ortocentro del triángulo autopolar es el centro de la circunferencia.

Demostración

De la figura anterior se tiene que:

La polar de $A$ es $a$ que es el lado $BC$ del $ \triangle ABC$ y $BC \perp OA$ por $A’$ inverso de $A$.

La polar de $B$ es $b$ que es el lado $CA$ del $ \triangle ABC$ y $CA \perp OB$ por $B’$ inverso de $B$.

La polar de $C$ es $c$ que es el lado $AB$ del $ \triangle ABC$ y $AB \perp OC$ por $C’$ inverso de $C$.

Por lo cual $AA’$, $CC’$ y $BB’$ son las alturas del $ \triangle ABC$ y estas se intersecan en $O$.

Por lo tanto, $O$ es el ortocentro del $\triangle ABC$ $_\blacksquare$

2.- Uno de sus vértices está dentro de la circunferencia y los otros dos fuera de esta.

3.- El ángulo del triángulo cuyo vértice está en la circunferencia es obtuso.

Más adelante…

Se abordará el tema de circunferencia Polar.

Entradas relacionadas

Álgebra Lineal II: Aplicaciones de la forma canónica de Jordan

Por Leonardo Ignacio Martínez Sandoval

Introducción

En las entradas anteriores demostramos que cualquier matriz (o transformación lineal) tiene una y sólo una forma canónica de Jordan. Además, explicamos cómo se puede obtener siguiendo un procedimiento específico. Para terminar nuestro curso, platicaremos de algunas de las consecuencias del teorema de Jordan.

Clasificación de matrices por similaridad

Una pregunta que aún no hemos podido responder es la siguiente: si nos dan dos matrices $A$ y $B$ en $M_n(F)$, ¿son similares? Con la maquinaria desarrollada hasta ahora podemos dar una muy buena respuesta.

Proposición. Sean $A$ y $B$ matrices en $M_n(F)$ tales que el polinomio característico de $A$ se divide en $F$. Entonces, $A$ y $B$ son similares si y sólo si se cumplen las siguientes dos cosas:

  • El polinomio característico de $B$ también se divide en $M_n(F)$ y
  • $A$ y $B$ tienen la misma forma canónica de Jordan.

Demostración. Sea $J$ la forma canónica de Jordan de $A$.

Si $A$ y $B$ son similares, como $A$ es similar a $J$, se tiene que $B$ es similar a $J$. Entonces, $B$ tiene el mismo polinomio característico que $A$ y por lo tanto se divide en $F$. Además, como $J$ es similar a $B$, entonces por la unicidad de la forma canónica de Jordan, precisamente $J$ es la forma canónica de Jordan de $B$. Esto es un lado de nuestra proposición.

Supongamos ahora que el polinomio característico de $B$ también se divide en $M_n(F)$ y que la forma canónica de Jordan de $B$ también es $J$. Por transitividad de similaridad, $A$ es similar a $B$.

$\square$

Veamos un ejemplo de cómo usar esto en un problema específico.

Problema. Encuentra dos matrices en $M_2(\mathbb{R})$ que tengan como polinomio característico a $x^2-3x+2$, pero que no sean similares.

Solución. Las matrices $A=\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$ y $B=\begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}$ ya están en forma canónica de Jordan y son distintas, así que por la proposición anterior no pueden ser similares. Además, por ser triangulares superiores, en ambos casos el polinomio característico es $$(X-1)(X-2)=X^2-3X+2.$$

$\triangle$

El problema anterior fue sumamente sencillo. Piensa en lo difícil que sería argumentar con cuentas de producto de matrices que no hay ninguna matriz $P\in M_2(\mathbb{R})$ tal que $A=P^{-1}B P$.

Forma canónica de Jordan «para cualquier matriz»

Como en $\mathbb{C}[X]$ todos los polinomios se dividen, entonces tenemos el siguiente corolario del teorema de Jordan.

Corolario. Toda matriz en $M_n(\mathbb{C})$ tiene una única forma canónica de Jordan.

Aquí $\mathbb{C}$ es muy especial pues es un campo completo, es decir, en el cual cualquier polinomio no constante tiene por lo menos una raíz. En general esto no es cierto, y es muy fácil dar ejemplos: $x^2-2$ no tiene raíces en $\mathbb{Q}$ y $x^2+1$ no tiene raíces en $\mathbb{R}$.

Sin embargo, existe toda un área del álgebra llamada teoría de campos en donde se puede hablar de extensiones de campos. Un ejemplo de extensión de campo es que $\mathbb{C}$ es una extensión de $\mathbb{R}$ pues podemos encontrar «una copia de» $\mathbb{R}$ dentro de $\mathbb{C}$ (fijando la parte imaginaria igual a cero).

Un resultado importante de teoría de campos es el siguiente:

Teorema. Sea $F$ un campo y $P(X)$ un polinomio en $F[X]$. Existe una extensión de campo $G$ de $F$ tal que $P(X)$ se divide en $G$.

¿Puedes notar la consecuencia que esto trae para nuestra teoría de álgebra lineal? Para cualquier matriz en $M_n(F)$, podemos considerar a su polinomio característico y encontrar campo $G$ que extiende a $F$ en donde el polinomio se divide. Por el teorema de Jordan, tendríamos entonces lo siguiente.

Corolario. Sea $A$ una matriz en $M_n(F)$. Entonces, $A$ tiene una forma canónica de Jordan en un campo $G$ que extiende a $F$.

Por supuesto, la matriz $P$ invertible que lleva $A$ a su forma canónica quizás sea una matriz en $M_n(G)$.

Toda matriz compleja es similar a su transpuesta

Ya demostramos que para cualquier matriz $A$ en $M_n(F)$ se cumple que $\chi_A(X)=\chi_(A^T)(X)$. Esto implica que $A$ y su transpuesta $A^T$ tienen los mismos eigenvalores, traza y determinante. También vimos que $\mu_A(X)=\mu_{A^T}(X)$. Las matrices $A$ y $A^T$ comparten muchas propiedades. ¿Será que siempre son similares? A continuación desarrollamos un poco de teoría para resolver esto en el caso de los complejos.

Proposición. Sea $J_{\lambda,n}$ un bloque de Jordan en $M_n(F)$. Entonces, $J_{\lambda,n}$ y $J_{\lambda,n}^T$ son similares.

Demostración. Para bloques de Jordan, podemos dar explícitamente la matriz de similitud. Es la siguiente matriz, con unos en la diagonal no principal:

$$P=\begin{pmatrix} 0 & 0 & \ldots & 0 & 1 \\ 0 & 0 & \ldots & 1 & 0 \\ \vdots & & \ddots & \vdots & \\ 0 & 1 & \ldots & 0 & 0 \\ 1 & 0 & \ldots & 0 & 0 \end{pmatrix}.$$

Esta matriz es invertible, su inversa es ella misma y cumple lo siguiente (ver ejercicios). Si $A$ es una matriz en $M_n(F)$, entonces:

  • Si $A$ tiene columnas $C_1,\ldots, C_n$, entonces $AP$ tiene columnas $C_n, \ldots, C_1$.
  • Si $A$ tiene filas $R_1,\ldots, R_n$, entonces $PA$ tiene filas $R_n, \ldots, R_1$.

Para los bloques de Jordan, si revertimos el orden de las filas y luego el de las columnas, llegamos a la transpuesta. Así, $J_{\lambda,n}^T=PJ_{\lambda,n}P$ es la similitud entre las matrices dadas.

$\square$

La prueba anterior no funciona en general pues para matrices arbitrarias no pasa que $A^T=PAP$ (hay un contraejemplo en los ejercicios). Para probar lo que buscamos, hay que usar la forma canónica de Jordan.

Teorema. En $M_n(\mathbb{C})$, toda matriz es similar a su transpuesta.

Demostración. Sea $A$ una matriz en $M_n(\mathbb{C})$. Como en $\mathbb{C}$ todo polinomio se divide, tanto $A$ como $A^T$ tienen forma canónica de Jordan. Digamos que la forma canónica de Jordan es

\begin{equation}J=\begin{pmatrix} J_{\lambda_1,k_1} & 0 & 0 & \ldots & 0 \\ 0 & J_{\lambda_2,k_2} & 0 & \ldots & 0 \\ 0 & 0 & J_{\lambda_3,k_3} & \ldots & 0 \\ & \vdots & & \ddots & \vdots \\ 0 & 0 & 0 & \ldots & J_{\lambda_d,k_d}\end{pmatrix}.\end{equation}

Si $P$ es la matriz de similitud, tenemos que $A=P^{-1}JP$ y al transponer obtenemos que:

$$A^T=P^T\begin{pmatrix} J_{\lambda_1,k_1}^T & 0 & 0 & \ldots & 0 \\ 0 & J_{\lambda_2,k_2}^T & 0 & \ldots & 0 \\ 0 & 0 & J_{\lambda_3,k_3}^T & \ldots & 0 \\ & \vdots & & \ddots & \vdots \\ 0 & 0 & 0 & \ldots & J_{\lambda_d,k_d}^T\end{pmatrix}(P^T)^{-1}.$$

Como por la proposición anterior cada bloque de Jordan es similar a su transpuesta, existen matrices invertibles $Q_1,\ldots,Q_d$ tales $J_{\lambda_i,k_i}^T=Q_i^{-1}J_{\lambda_i,k_i}Q_i$ para todo $i\in\{1,\ldots,d\}$. Pero entonces al definir $Q$ como la matriz de bloques

$$Q=\begin{pmatrix} Q_1 & 0 & \ldots & 0 \\ 0 & Q_2 & \ldots & 0 \\ 0 & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & Q_d \end{pmatrix},$$

obtenemos la similaridad

$$A^T=P^TQ^{-1} \begin{pmatrix} J_{\lambda_1,k_1} & 0 & 0 & \ldots & 0 \\ 0 & J_{\lambda_2,k_2} & 0 & \ldots & 0 \\ 0 & 0 & J_{\lambda_3,k_3} & \ldots & 0 \\ & \vdots & & \ddots & \vdots \\ 0 & 0 & 0 & \ldots & J_{\lambda_d,k_d}\end{pmatrix} Q (P^T)^{-1}.$$

Así, $A$ y $A^T$ tienen la misma forma canónica de Jordan y por lo tanto son matrices similares.

$\square$

Más adelante…

¡Hemos terminado el curso de Álgebra Lineal II! Por supuesto, hay muchos temas de Álgebra Lineal adicionales que uno podría estudiar.

Un tema conectado con lo que hemos platicado es qué hacer con las matrices cuyo polinomio característico no se divide en el campo con el que estamos trabajando. Por ejemplo si tenemos una matriz $A$ en $M_n(\mathbb{R})$ cuyo polinomio característico no se divide, una opción es pensarla como matriz en $M_n(\mathbb{C})$ y ahí encontrar su forma canónica de Jordan. ¿Pero si queremos quedarnos en $\mathbb{R}$? Sí hay resultados que llevan una matriz a algo así como una «forma canónica» en $\mathbb{R}$ muy cercana a la forma canónica de Jordan.

Otro posible camino es profundizar en la pregunta de cuándo dos matrices en $M_n(F)$ son similares. Si tienen forma canónica de Jordan, ya dimos una buena caracterización en esta entrada. En los ejercicios encontrarás otra. Pero, ¿y si no tienen forma canónica de Jordan? Podríamos extender el campo a otro campo $G$ y comprar las formas canónicas ahí, pero en caso de existir la similaridad, sólo la tendremos en $M_n(G)$. Existe otra manera de expresar a una matriz en forma canónica, que se llama la forma canónica de Frobenius y precisamente está pensada para determinar si dos matrices son similares sin que sea necesario encontrar las raíces del polinomio característico, ni extender el campo.

Estos son sólo dos ejemplos de que la teoría de álgebra lineal es muy extensa. En caso de que estés interesado, hay mucho más por aprender.

Tarea moral

  1. Sea $A$ una matriz en $M_n(F)$ y tomemos $P$ en $M_n(F)$ la matriz
    $$P=\begin{pmatrix} 0 & 0 & \ldots & 0 & 1 \\ 0 & 0 & \ldots & 1 & 0 \\ \vdots & & \ddots & \vdots & \\ 0 & 1 & \ldots & 0 & 0 \\ 1 & 0 & \ldots & 0 & 0 \end{pmatrix}.$$
    • Demuestra que si $A$ tiene columnas $C_1,\ldots, C_n$, entonces $AP$ tiene columnas $C_n, \ldots, C_1$.
    • Demuestra que si $A$ tiene filas $R_1,\ldots,R_1$, entonces $PA$ tiene filas $R_n,\ldots,R_n$.
    • Concluye con cualquiera de los incisos anteriores que $P$ es invertible y su inversa es ella misma.
    • Tomemos explicitamente $n=2$ y $A=\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$. Encuentra explícitamente $PAP$. ¿Es $A^T$?
  2. ¿Cuál es la máxima cantidad de matrices que se pueden dar en $M_5(\mathbb{C})$ de manera que cada una de ellas tenga polinomio característico $x^2(x^2+1)(x+3)$ y tales que no haya dos de ellas que sean similares entre sí.
  3. Sea $A$ una matriz en $M_n(\mathbb{R})$ tal que su polinomio característico se divide en $\mathbb{R}$, con forma canónica de Jordan $J$. Sea $P(X)$ un polinomio en $\mathbb{R}[X]$.
    • Demuestra que el polinomio característico de $P(A)$ se divide en $\mathbb{R}$.
    • La forma canónica de Jordan de $P(A)$ no necesariamente será $P(J)$ pues puede que el polinomio altere el orden de los eigenvalores pero, ¿cómo se obtiene la forma canónica de $P(A)$ a partir de $J$?
  4. Sean $A$ y $B$ matrices en $M_n(F)$ cuyo polinomio característico se divide en $F$. Muestra que $A$ y $B$ son similares si y sólo si para cualquier polinomio $P(X)$ en $F[X]$ se tiene que $\text{rango}(P(A))=\text{rango}(P(B))$.
  5. Investiga sobre la forma canónica de Frobenius y sobre la variante a la forma canónica de Jordan restringida a $\mathbb{R}$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»