Geometría Analítica I: Equivalencias afines e isométricas

Por Leonardo Ignacio Martínez Sandoval

Introducción

En entradas anteriores hablamos de los objetos que nos interesa clasificar: los polinomios cuadráticos y las curvas cuadráticas. Ahora hablaremos de las nociones que usaremos para considerar a dos polinomios cuadráticos o curvas cuadráticas como «equivalentes». Para ello, definiremos las nociones de «afínmente equivalentes» e «isométricametne equivalentes».

Composición de un PCDV y una transformación afín

Antes de enunciar propiamente el problema de clasificación que queremos resolver, vamos a demostrar un resultado auxiliar fundamental. A grandes rasgos, lo que nos dice es que si combinamos un polinomio cuadrático en dos variables con una transformación afín, entonces de nuevo obtenemos un polinomio cuadrático en dos variables. La demostración hará evidente cómo a veces es más útil la forma matricial de un PCDV.

Teorema. Consideremos $P:\mathbb{R}^2\to \mathbb{R}$ un polinomio cuadrático en dos variables y $T:\mathbb{R}^2\to \mathbb{R}^2$ una transformación afín dados por

\begin{align*}
P(v)&=v^t M v + k^t v + F\\
T(v)&=Av+b
\end{align*}

para $A,M$ matrices de $2\times 2$, para $k,b$ vectores columna en $\mathbb{R}^2$ y $F$ un real. Entonces $P\circ T$ es nuevamente un polinomio cuadrático en dos variables y, explícitamente,

\begin{align*}
(P\circ T)(v)= v^t(A^tMA)v + (2b^t MA + k^t A) v + P(b) .
\end{align*}

Demostración. La expresión que queremos encontrar es $(P\circ T)(v)=P(T(v))=P(Av+b)$. Para evaluar $P$, hagamos cada término poco a poco. A continuación usaremos las propiedades de la multiplicación matricial y de la transposición de matrices. Recordemos que $M$ es una matriz simétrica.

Hagamos las operaciones término a término. En el primer sumando tenemos:

\begin{align*}
(Av+b)^t M (Av+b) &= (v^tA^t+b^t) M (Av+b)\\
&=v^tA^tMAv + v^t A^t M b + b^t M A v + b^t M b\\
&=v^t(A^tMA)v + (A^t M b)^t v + (b^t M A) v + b^t M b\\
&= v^t(A^tMA)v + (b^t M^t A) v + (b^t M A) v + b^t M b \\
&= v^t(A^tMA)v + 2 (b^t M A) v + b^t M b.
\end{align*}

En el segundo sumando tenemos:

\begin{align*}
k^t(Av+b)=k^tAv + k^t b.
\end{align*}

Y el último sumando es $F$. Al sumar todo notemos que aparece un término $b^t M b + k^t b + F=P(b)$. Así, concluimos que: $$(P\circ T)(v)= v^t(A^tMA)v + (2b^t MA + k^t A) v + P(b).$$

Esto muestra que $P\circ T$ es de nuevo un polinomio cuadrático en dos variables y que la fórmula es como se establece en el enunciado del teorema.

$\square$

Aunque parezca que se hicieron varias cuentas, son muchas menos a que si usáramos la expresión en coordenadas. Además, usaremos repetidamente el resultado para ahorrarnos cuentas posteriores. Veamos un pequeño ejemplo de lo que sucede al componer una transformación afín con un PCDV.

Ejemplo. Consideremos al polinomio cuadrático en dos variables $P((x,y))=2x^2-y^2+3x+2$ y a la transformación afín $T((x,y))=(2x,y+1)$. Al realizar la composición obtenemos lo siguiente:

\begin{align*}
(P\circ T)((x,y))&=P(T((x,y))\\
&=P((2x,y+1))\\
&=2(2x)^2-(y+1)^2+3(2x)+2\\
&=4x^2-y^2-2y-1+6x+2\\
&=4x^2-y^2+6x-2y+1.
\end{align*}

En efecto, como lo afirma el teorema, obtenemos nuevamente un polinomio cuadrático en dos variables.

$\triangle$

La imagen de una curva cuadrática bajo una transformación afín

La sección anterior nos dice qué pasa si «combinamos» un polinomio cuadrático en dos variables y una transformación afín. También podemos preguntarnos qué es lo que sucede si «combinamos» una transformación afín y una curva cuadrática. Aquí lo que estamos pensando es que la transformación afín se la aplicaremos a cada punto de la curva.

Ejemplo. Tomemos la curva cuadrática descrita por el polinomio cuadrático $y^2+3x-y+1=0$. Al trazarla en el plano obtenemos la siguiente figura.

Aparentemente, obtenemos una parábola. Tomemos ahora la transformación afín $T((x,y))=(y-1,x+y)$. Al aplicar esta transformación a cada punto de la curva cuadrática anterior obtenemos la curva roja de la siguiente figura.

Aparentemente estamos obteniendo nuevamente una parábola. Entonces, parece ser que la transformación afín envió una curva cuadrática a otra curva cuadrática.

$\triangle$

Lo que sucede en el ejemplo anterior de hecho es algo que sucede en general: cuando aplicamos una transformación afín a una curva cuadrática entonces de nuevo obtenemos una curva cuadrática. Esto es lo que afirma el siguiente resultado.

Teorema. Sea $\mathcal{C}$ la curva cuadrática descrita por el polinomio cuadrático en dos variables $P$. Sea $T$ una transformación afín. Entonces $$T(\mathcal{C})=\{T((x,y)): (x,y)\in \mathcal{C}\}$$ también es una curva cuadrática. Más específicamente, es la curva cuadrática descrita por el polinomio cuadrático en dos variables $P\circ Tˆ{-1}$.

Demostración. Como $T$ es transformación afín, entonces es invertible y su inversa $Tˆ{-1}$ también es una transformación afín. Por el teorema anterior, $P\circ Tˆ{-1}$ en efecto es una transformación afín.

Tenemos que un punto $(w,z)$ pertenece a $T\mathcal{C}$ si y sólo si es de la forma $T((x,y))$ con $(x,y)$ en $\mathcal{C}$ es decir, con $P((x,y))=0$. Aplicando $Tˆ{-1}$ en $(w,z)=T((x,y))$, obtenemos que $(x,y)=Tˆ{-1}((w,z))$. Así, $(w,z)$ está en $T(\mathcal{C})$ si y sólo si $P(Tˆ{-1})((x,y))=0$. De esta manera, $T\mathcal{C}$ es precisamente el conjunto de puntos en donde se anula el PCDV $P\circ Tˆ{-1}$.

$\square$

Podemos resumir el teorema anterior como sigue: las transformaciones afines mandan curvas cuadráticas en curvas cuadráticas.

Equivalencias de polinomios y curvas cuadráticas

Al aplicar una transformación afín a un polinomio cuadrático en dos variables, de nuevo obtenemos un polinomio cuadrático. Pero no podemos ir de un polinomio cuadrático a cualquier otro haciendo esto. De hecho, es especial que esto suceda.

Definición. Diremos un polinomio cuadrático en dos variables $P$ es afínmente equivalente a otro polinomio cuadrático en dos variables $Q$ si existe una transformación afín $T$ tal que $P=Q\circ T$.

Así mismo, no cualquier curva cuadrática puede ir a cualquier otra mediante transformaciones afines. Esto es especial.

Definición Diremos que una curva cuadrática $\mathcal{C}$ es afínmente equivalente a otra curva cuadrática $\mathcal{D}$ si existe una transformación afín $T$ tal que $\mathcal{C}=D$.

Tanto en el caso de polinomios cuadráticos en dos variables, como en el caso de curvas cuadráticas, la relación de ser afínmente equivalente es una relación de equivalencia. Demostraremos esto para el caso de polinomios cuadráticos. El caso de curvas queda como tarea.

Proposición. La relación «ser afínmente equivalente a» es una relación de equivalencia para polinomios cuadráticos en dos variables.

Demostración. Debemos mostrar que la relación es reflexiva, simétrica y transitiva. La relación es reflexiva pues cualquier polinomio cuadrático en dos variables $P$ es afínmente equivalente a sí mismo a través de la transformación afín $$I((x,y))=\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}+ \begin{pmatrix} 0 \\ 0 \end{pmatrix},$$ pues como simplemente es la identidad, tenemos $P \circ I = P$.

Si un polinomio $P$ es afínmente equivalente a uno $Q$, es porque existe una transformación afín $T$ tal que $P=Q\circ T$. Como $T$ es afín, su inversa también lo es, de modo que la igualdad $Q=P\circ Tˆ{-1}$ nos dice que $Q$ es afínmente equivalente a $P$. Esto muestra la simetría de la relación.

Finalmente, para la transitividad tomemos polinomios $P$, $Q$ y $R$ con $P$ afínmente equivalente $Q$ mediante una transformación afín $T$ y $Q$ afínmente equivalente a $R$ mediante una transformación afín $S$. Tenemos entonces las igualdades $P=Q\circ T$ y $Q=R\circ S$. De este modo $$P=Q\circ T = (R\circ S)\circ T=R\circ (S \circ T).$$

Como la composición de transformaciones afines es una transformación afín, entonces esto nos dice que $P$ es afínmente equivalente a $R$, como queríamos.

$\square$

Ambas nociones de equivalencia afín están muy relacionadas entre sí, aunque no son exactamente lo mismo. En la siguiente proposición veremos que la equivalencia afín de PCDVs implica la equivalencia afín de las curvas cuadráticas que describen. Sin embargo, en los ejercicios verás que hay que ser mucho más cuidadosos con el regreso.

Proposición. Si $\mathcal{C}$ y $\mathcal{D}$ son curvas curvas cuadráticas descritas por polinomios cuadráticos en dos variables $P$ y $Q$ afínmente equivalentes, entonces $\mathcal{C}$ y $\mathcal{D}$ son afínmente equivalentes.

Demostración. Como $P$ y $Q$ son afínmente equivalentes, existe una transformación afín $T$ tal que $P=Q\circ T$. Tenemos entonces que $(x,y)\in \mathcal{C}$ si y sólo si $P((x,y))=0$, lo cual sucede si y sólo si $Q(T((x,y)))=0$, si y sólo si $T((x,y))$ está en $\mathcal{D}$. Esto muestra que $\mathcal{D}=T(\mathcal{C})$.

$\square$

Con menos transformaciones es más difícil ser equivalente

Así como definimos la relación de «ser afínmente equivalente» también podríamos definir relaciones similares usando otros grupos de transformaciones. Por ejemplo:

Definición. Diremos un PCDV $P$ es isométricamente equivalente a otro PCDV $Q$ si existe una isometría $T$ tal que $P=Q\circ T$. Diremos que una curva cuadrática $\mathcal{C}$ es isométricamente equivalente a otra curva cuadrática $\mathcal{D}$ si existe una isometría $T$ tal que $\mathcal{C}=T(\mathcal{D})$

La noción de «ser isométricamente equivalentes» es, en cierto sentido «más fuerte» que la de ser «afínmente equivalentes». ¿Por qué? Porque todas las isometrías son transformaciones afines, pero lo contrario no es cierto. Así, «hay menos» isometrías que transformaciones afines. De esta forma, es «más difícil» que dos curvas cuadráticas sean isométricamente equivalentes, a que sean afínmente equivalentes. Veamos un ejemplo.

Ejemplo. Consideremos las curvas cuadráticas descritas por los siguientes polinomios:

\begin{align*}
P_1((x,y))&=x^2+2x+y^2\\
P_2((x,y))&=x^2+y^2-1\\
P_3((x,y))&=2x^2+y^2-1.
\end{align*}

Al graficarlas obtenemos respectivamente las curvas $\mathcal{C}_1, \mathcal{C}_2, \mathcal{C}_3$ en la siguiente figura. De lo que sabemos de circunferencias y elipses, tenemos que $\mathcal{C}_1$ y $\mathcal{C}_2$ son circunferencias de radio $1$ y que $\mathcal{C}_3$ es una elipse canónica con focos en el eje $y$ y centro en $(0,0)$.

Pensemos primero en equivalencia afín. Las tres curvas cuadráticas son afínmente equivalentes. Para ello, basta ver que los PCDVs que las describen son afínmente equivalentes. Para la equivalencia entre $P_1$ y $P_2$ tomamos la transformación afín $(x,y)\mapsto (x+1,y)$ y notamos que $$P_2((x+1,y))=(x+1)^2+y^2-1=x^2+2x+y^2=P_1((x,y)).$$ Para la equivalencia entre $P_2$ y $P_3$ tomamos la transformación afín $(x,y)\mapsto (\sqrt{2}x,y)$ y notamos que $$P_2((\sqrt{2}x,y))=(\sqrt{2}x)^2+y^2-1=2x^2+y^2-1=P_3((x,y)).$$ La equivalencia afín entre $P_1$ y $P_3$ se obtiene por transitividad.

Como la transformación afín $(x,y)\mapsto (x+1,y)$ es de hecho una traslación, entonces es una isometría. De esta manera, $P_1$ y $P_2$ no sólo son afínmente equivalentes, sino que también son isométricamente equivalentes. Sin embargo, es imposible encontrar una isometría que envíe $\mathcal{C}_2$ a $\mathcal{C}_3$, pues tendría que llevar a $(0,0)$ a un punto equidistante a todos los puntos de $\mathcal{C}_3$. Pero $\mathcal{C}_3$ no es una circunferencia.

En resumen:

  • $\mathcal{C}_1,\mathcal{C}_2,\mathcal{C}_3$ son todas ellas afínmente equivalentes.
  • $\mathcal{C}_1$ es isométricamente equivalente a $\mathcal{C}_2$.
  • $\mathcal{C}_3$ no es isométricamete equivalente a $\mathcal{C}_2$, y por lo tanto tampoco a $\mathcal{C}_1$.

$\triangle$

Más adelante…

Ya dijimos qué objetos nos interesa clasificar: los polinomios cuadráticos y las curvas cuadráticas. También ya dijimos qué noción de clasificación usaremos: la equivalencia afín o la equivalencia isométrica. Estamos listos para enunciar los teoremas de clasificación que queremos demostrar. Haremos esto en la siguiente entrada. Después, en entradas posteriores, nos enfocaremos a dar la demostración poco a poco. Esto a su ves nos permitirá resolver problemas prácticos de cónicas como poder encontrar su centro o qué tan rotadas están.

Tarea moral

  1. Demuestra que la relación «es afínmente equivalente a» es una relación de equivalencia para curvas cuadráticas.
  2. Encuentra de manera explícita una transformación afín que ayude a ver que los polinomios cuadráticos $x^2+6x+y^2+8$ y $x^2+y^2-4y+3$ son afínmente equivalentes. ¿Son isométricamente equivalentes?
  3. Demuestra que los polinomios cuadráticos en dos variables $P((x,y))=x^2+y^2+1$ y $Q((x,y))=x^2+1$ no pueden ser afínmente equivalentes. Luego, muestra que las curvas cuadráticas que definen sí son afínmente equivalentes. Como sugerencia, para ver que los polinomios no son afínmente equivalentes procede por contradicción. Supón que sí y obtén una contradicción con el coeficiente de $y^2$.
  4. Muestra lo siguiente:
    1. Dos parábolas canónicas cualesquiera (i.e. descritas por ecuaciones de la forma $y=cx^2$) son afínmente equivalentes.
    2. Dos elipses canónicas cualesquiera (i.e. descritas por ecuaciones de la forma $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$) son afínmente equivalentes.
    3. Dos hipérbolas canónicas cualesquiera (i.e. descritas por ecuaciones de la forma $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$) son afínmente equivalentes.
  5. Usa como ejemplo las definiciones de la entrada para definir la noción de ser «traslacionalmente equivalente». Demuestra lo siguiente:
    1. La relación «es traslacionalmente equivalente a» es una relación de equivalencia.
    2. Dos rectas son traslacionalmente equivalentes si y sólo si son paralelas.
    3. Dos circunferencias son traslacionalmente equivalentes si y sólo si son del mismo radio.
    4. Existen elipses isométricamente equivalentes, pero que no son traslacionalmente equivalentes.

Entradas relacionadas

Teoría de los Conjuntos I: Conjunto cociente

Por Gabriela Hernández Aguilar

Introducción

En esta entrada partimos de una relación de equivalencia y con ella definimos al conjunto cociente. Dicho conjunto tendrá como elementos a las clases de equivalencia de una relación. Además probaremos que toda relación de equivalencia induce una partición y viceversa.

Conjunto cociente

A continuación definimos un nuevo conjunto. Como parte de los ejercicios de la tarea moral, se incluye verificar que en efecto esta definición da un conjunto a partir de los axiomas.

Definición. Sea $R$ una relación de equivalencia en $A$. Definimos al conjunto cociente por la relación $R$ como el conjunto:

$A/R=\set{[a]_R: a\in A}$.

Veamos algunos ejemplos.

Ejemplo.

Sea $A=\set{1,2,3,4}$ y $R$ la relación identidad en $A$. Sabemos que $R$ es de equivalencia en $A$. Luego, siguiendo la definición de conjunto cociente tenemos que $A\diagup R=\set{[1]_R, [2]_R, [3]_R, [4]_R}$, donde $[1]_R=\set{1}$, $[2]_R=\set{2}$, $[3]_R=\set{3}$, $[4]_R=\set{4}$.

$\square$

Ejemplo.

Sean $A=\set{1,2,3,4}$ y $R=\set{(1,1), (2,2), (3,3), (4,4), (1,4), (4,1)}$. Se tiene que $R$ es una relación de equivalencia en $A$. Luego, tenemos que

$A\diagup R=\set{[1]_R, [2]_R, [3]_R, [4]_R}$,

donde

  • $[1]_R=\set{1,4}$,
  • $[2]_R=\set{2}$,
  • $[3]_R=\set{3}$,
  • $[4]_R=\set{4,1}$, pero este conjunto es igual a $[1]_R$.

Por lo tanto, $A\diagup R=\set{[1]_R, [2]_R, [3]_R}$.

$\square$

Cada relación de equivalencia induce una partición

Teorema.1 Sea $R$ una relación de equivalencia en $A$. El conjunto cociente $A\diagup R$ es una partición de $A$.

Demostración.

Supongamos que $R$ es una relación de equivalencia en $A$. Veamos que $A\diagup R$ es una partición de $A$.

  1. Sea $a\in A$, vimos en la entrada de particiones que $[a]_R\not=\emptyset$.
  2. Sean $[a]_R,[b]_R\in A\diagup R$ tales que $[a]_R\not=[b]_R$ y veamos que $[a]_R\cap [b]_R=\emptyset$. En la entrada anterior probamos que $aRb$ si y sólo si $[a]_R=[b]_R$ lo cual ocurre si y sólo si $[a]_R\cap[b]_R=\emptyset$. De este modo, si $[a]_R\not=[b]_R$, $[a]_R\cap[b]_R=\emptyset$.
  3. Por último, $\bigcup_{a\in A} [a]_R= A$ pues para cada $a\in A$, $a\in [a]_R$.

$\square$

Este último teorema demuestra que toda relación de equivalencia induce una partición.

Las particiones inducen una relación de equivalencia

El teorema anterior nos permitió probar que cada relación de equivalencia induce una partición y de hecho, esta partición será el conjunto cociente, Podemos preguntarnos si el resultado se cumple «de regreso», en el sentido de si dada una partición podemos inducir una relación de equivalencia. Veamos el siguiente ejemplo.

Ejemplo.

Este ejemplo es todavía algo informal, pues no hemos introducido formalmente a los números naturales, a los pares y los impares. Haremos esto más adelante. Por el momento, puedes usar lo que ya sabes de los números naturales y de su paridad.

Sea $A=\set{0,1,2, 3, \cdots}$ y sean $A_1=\set{0,2,4,\cdots}$ y $A_2=\set{1,3, 5,\cdots}$. Resulta que $\mathcal{P}$ es una partición de $A$ pues tanto $A_1$ y $A_2$ son conjuntos no vacíos, además $A_1\cap A_2=\emptyset$ y $A_1\cup A_2=A$.

Queremos ver si existe la manera de relacionar a los elementos de $A$ tal que la relación que resulte sea de equivalencia. Consideremos la relación definida como sigue:

$R_\mathcal{P}=\set{(a,b)\in A\times A: a,b\in A_1\vee a,b\in A_2}$.

Notemos que la relación $R_\mathcal{P}$ es una relación en $A$ y además relaciona a los elementos si pertenecen a un mismo conjunto de la partición.

Veamos que $R_\mathcal{P}$ es una relación de equivalencia, para ello verifiquemos si es una relación reflexiva, simétrica y transitiva.

  1. Sea $a\in A$. Si $a$ es un número par (existe $k$ tal que $a= 2k$), entonces $a\in A_1$ y por lo tanto $(a,a)\in R_\mathcal{P}$.
    Si $a$ es un número impar (existe $k$ tal que $a= 2k+1$), entonces $a\in A_2$ y por lo tanto $(a,a)\in R_\mathcal{P}$.
    Por lo tanto, $R_\mathcal{P}$ es una relación reflexiva.
  2. Supongamos que $(a,b)\in R_\mathcal{P}$ y veamos que $(b,a)\in R_\mathcal{P}$.
    Como $(a,b)\in R_\mathcal{P}$ entonces $a,b\in A_1$ o $a,b\in A_2$, lo que es equivalente a decir que $b,a\in A_1$ o $b,a\in A_2$, es decir, $(b,a)\in R_\mathcal{P}$.
    Por lo tanto, $R_\mathcal{P}$ es una relación simétrica.
  3. Supongamos que $(a,b)\in R_\mathcal{P}$ y $(b,c)\in R_\mathcal{P}$.
    Como $(a,b)\in R_\mathcal{P}$ entonces $a,b\in A_1$ o $a,b\in A_2$. Luego, como $(b,c)\in R_\mathcal{P}$ entonces $b,c\in A_1$ o $b,c\in A_2$. Si $a,b\in A_1$, entonces $b,c\in A_1$, pues de lo contrario $b,c\in A_2$ y, por tanto, $b\in A_1$ al mismo tiempo que $b\in A_2$ y así, $b$ es par e impar, lo cuál no puede ocurrir. Por lo tanto, $b,c\in A_1$, de modo que $a,c\in A_1$ y así, $(a,c)\in R_\mathcal{P}$. Análogamente, si $a,b\in A_2$, entonces, $b,c\in A_2$ y, por tanto, $a,c\in A_2$ y $(a,c)\in R_{\mathcal{P}}$. Por lo tanto $R_\mathcal{P}$ es una relación transitiva.

Por lo tanto, $R_\mathcal{P}$ es una relación de equivalencia.

$\square$

Podemos demostrar que esto ocurre para cualquier conjunto y cualquier partición. Veamos el siguiente teorema.

Teorema.2 Toda partición induce una relación de equivalencia.

Demostración.

Sea $A$ un conjunto y $\mathcal{P}$ una partición de $A$. Defimos a $R_\mathcal{P}$ como el siguiente conjunto:

$R_\mathcal{P}=\set{(a,b)\in A\times A: \exists p\in \mathcal{P}\ \text{tal que}\ a,b\in p}$.

Notemos que $R_\mathcal{P}$ es una relación en $A$ pues es un subconjunto de $A\times A$. Veamos que $R$ es de equivalencia, es decir, $R$ es reflexiva, simétrica y transitiva.

  1. Sea $a\in A$. Dado que $\mathcal{P}$ es una partición de $A$, entonces $A=\bigcup\mathcal{P}$. Entonces existe $p\in \mathcal{P}$ tal que $a\in p$, de donde $(a,a)\in R_\mathcal{P}$. Por lo tanto, $R_\mathcal{P}$ es una relación reflexiva.
  2. Supongamos que $(a,b)\in R_\mathcal{P}$ y veamos que $(b,a)\in R_\mathcal{P}$.
    Como $(a,b)\in R_\mathcal{P}$, existe $p\in \mathcal{P}$ tal que $a, b\in p$. Lo que es equivalente a decir que existe $p\in \mathcal{P}$ tal que $b,a\in p$, es decir, $(b,a)\in R_\mathcal{P}$. Por lo tanto, $R_\mathcal{P}$ es una relación simétrica.
  3. Supongamos que $(a,b)\in R_\mathcal{P}$ y $(b,c)\in R_\mathcal{P}$.
    Como $(a,b)\in R_\mathcal{P}$, existe $p\in \mathcal{P}$ tal que $a, b\in p$. Luego, como $(b,c)\in R_\mathcal{P}$, existe $q\in \mathcal{P}$ tal que $b,c\in q$. Además $p=q$ pues de lo contrario, $p\not= q$ y $b\in p$ al mismo tiempo que $b\in q$ y así, $b\in p\cap q$ lo cual es una contradicción a la definición de partición. Por lo tanto, $p=q$ y así $a,c\in p$, por lo que $(a,c)\in R_\mathcal{P}$. Por lo tanto, $R_\mathcal{P}$ es una relación transitiva.

Por lo tanto, $R_\mathcal{P}$ es una relación de equivalencia en $A$.

$\square$

Con este último teorema hemos probado que en efecto, así como cada relación de equivalencia induce una partición, se cumple que cada partición induce una relación de equivalencia. Además, estas correspondencias son en cierto sentido «una la inversa de la otra» como explorarás en los ejercicios a continuación.

Tarea moral

La siguiente lista de ejercicios te ayudará a reforzar el contenido de esta entrada:

  1. Demuestra mediante los axiomas que si $A$ es un conjunto y $R$ es una relación de equivalencia en $A$, entonces $A\diagup R$ es un conjunto.
  2. Sea $A=\set{1,2,3,4,5,6}$ y $R=\set{(1,1), (2,2), (3,3), (4,4), (5,5), (6,6), (5,6), (6,5), (4,6), (6,4), (4,5), (5,4)}$ relación de equivalencia en $A$. Determina al conjunto cociente de $A$ con respecto a $R$.
  3. Demuestra mediante los axiomas que $R_{\mathcal{P}}$ del último teorema en efecto es un conjunto.
  4. Demuestra lo siguiente, en términos de la notación usada en esta entrada:
    • Si $A$ es conjunto y $R$ es relación de equivalencia en $A$, entonces $R_{A\diagup R}=R$.
    • Si $A$ es conjunto $\mathcal{P}$ es partición de $A$, entonces $A\diagup R_{\mathcal{P}}=\mathcal{P}$.
  5. Si $R_1$ y $R_2$ son relaciones de equivalencia en $A$, ya demostramos que $R_1\cap R_2$ también lo es. ¿Cómo es $A\diagup (R_1\cap R_2)$ con respecto a $A\diagup R_1$ y $A\diagup R_2$?

Más adelante…

En la siguiente entrada introduciremos el concepto de orden parcial y de orden total. Estos son otro tipo especial de relaciones. Volveremos a usar las propiedades de reflexividad y transitividad. Sin embargo, tendremos que introducir otras como la asimetría, la antisimetría y la irreflexibilidad.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

  1. También puedes consultar la prueba de este teorema en: Hernández, F., Teoría de Conjuntos, México: Aportaciones Matemáticas No.13,
    SMM, 1998, p. 65. ↩︎
  2. También puedes consultar la prueba de este teorema en: Hernández, F., Teoría de Conjuntos, México: Aportaciones Matemáticas No.13,
    SMM, 1998, p. 66. ↩︎

Geometría Analítica I: Polinomios cuadráticos y curvas cuadráticas

Por Leonardo Ignacio Martínez Sandoval

Introducción

Lo primero que queremos determinar en un problema de clasificación es cuáles son los objetos que clasificaremos. En esta entrada los definimos con toda precisión: serán los polinomios cuadráticos en dos variables y las curvas cuadráticas.

Los primeros son expresiones algebraicas que mezclan a dos variables $x$ y $y$ mediante sumas y productos, pero teniendo grado dos. Las segundas son aquellos conjuntos del plano en donde se anula un polinomio cuadrático.

Polinomios cuadráticos en dos variables

Comencemos con una definición algebraica.

Definición. Un polinomio cuadrático en dos variables $P$ es una función $P:\mathbb{R}^2\to \mathbb{R}$ de la forma $$P((x,y))=Ax^2+Bxy+Cy^2+Dx+Ey+F,$$ para algunos reales $A,B,C,D,E,F$, en donde alguno de $A$, $B$ ó $C$ es distinto de cero.

En ocasiones, para abreviar «polinomio cuadrático en dos variables» simplemente usaremos las siglas «PCDV».

Ejemplo. Todas las expresiones que aparecen en las cónicas canónicas que hemos estudiado son PCDVs. Por ejemplo, la ecuación canónica de la elipse $$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$$ puede reescribirse como $$b^2x^2+a^2y^2-a^2b^2=0.$$ Del lado izquierdo de esta igualdad tenemos un PCDV. De manera similar, la ecuación canónica de la parábola $y^2=4px$ puede reescribirse como $y^2-4px=0$. Una vez más al lado izquierdo nos aparece un PCDV.

$\triangle$

Ejemplo. Si consideramos las dos rectas $3x+5y+1=0$ y $2x-2y+1=0$ y «multiplicamos» sus ecuaciones, entonces obtenemos de nuevo un PCDV pues el producto es:

\begin{align*}
(3x+5y+1)(2x-2y+1)&=6x^2-6xy+3x+10xy-10y^2+5y+2x-2y+1\\
&=6x^2+4xy-10y^2+5x+3y+1.
\end{align*}

$\triangle$

Curvas cuadráticas

Cuando tenemos una expresión algebraica que depende de dos variables $x$ y $y$, entonces podemos preguntarnos por cómo es la figura geométrica que se obtiene al considerar los puntos $(x,y)$ del plano que hacen que la expresión algebraica sea igual a cero. Un ejemplo de esto es cuando consideramos las expresiones del estilo $Ax+By+C$. Las parejas $(x,y)$ que hacen que esta expresión sea igual a cero forman una recta en el plano. En efecto, forman la recta en forma normal dada por la ecuación $(A,B)\cdot (x,y)=-C$, como puedes verificar.

Esta idea es mucho más general. A partir de los polinomios cuadráticos en dos variables también podemos hacernos la misma pregunta: ¿cómo se ven las parejas $(x,y)$ que anulan un polinomio cuadrático? La respuesta será importante, así que las figuras que se construyen así les damos su propio nombre.

Definición. Una curva cuadrática es el conjunto de puntos $(x,y)$ del plano que anulan a un polinomio cuadrático en dos variables $P$. En otras palabras, es un conjunto de la forma $$\mathcal{C}:=\{(x,y)\in \mathbb{R}^2: Ax^2+Bxy+Cy^2+Dx+Ey+F = 0\}.$$

A $P$ le llamamos el polinomio asociado a $\mathcal{C}$. A $\mathcal{C}$ le llamamos la curva descrita (o dada) por $P$. Quizás usaremos terminología un poco distinta, pero que siga dejando evidente que $P$ y $\mathcal{C}$ están relacionados.

Ejemplo. Ya hemos estudiado anteriormente algunas curvas cuadráticas: las cónicas canónicas. Por ejemplo, si tomamos el PCDV $P((x,y))=4x^2-9y^2-36$ y nos preguntamos para cuáles parejas $(x,y)$ esto es igual a cero, como respuesta tenemos que son aquellas parejas $(x,y)$ tales que $ 4x^2-9y^2-36=0$, lo cual podemos reescribir como $$\frac{x^2}{9}-\frac{y^2}{4}=1.$$ Esta es la hipérbola canónica de semieje mayor $3$ y semieje menor $2$. Podemos verla en la siguiente figura.

$\triangle$

Ejemplo. ¿Qué sucede si nos fijamos en la curva descrita por el polinomio cuadrático en dos variables $$ 6x^2+4xy-10y^2+5x+3y+1$$ que construimos en un ejemplo anterior? Si recuerdas, obtuvimos este polinomio cuadrático en dos variables a partir de multiplicar dos expresiones. De esta forma, tenemos que $$ 6x^2+4xy-10y^2+5x+3y+1=0$$ si y sólo si $$ (3x+5y+1)(2x-2y+1) =0.$$ Pero el producto de dos cosas es igual a cero si y sólo si alguna es igual a cero. Así, alguna de las expresiones $3x+5y+1$ y $2x-2y+1$ debe ser igual a cero. Si la primera es cero, entonces $(x,y)$ es un punto en la recta normal $\ell_1$ de ecuación $(3,5)\cdot (x,y) = -1$. Si la segunda es cero, entonces $(x,y)$ es un punto en la recta normal $\ell_2$ de ecuación $(2,-2)\cdot(x,y) = -1$. Así, la curva cuadrática descrita por el PCDV es la unión de $\ell_1$ con $\ell_2$. Podemos verla en la siguiente figura.

$\triangle$

Forma matricial de polinomios cuadráticos en dos variables

Cuando trabajamos con rectas, nos convenía tener varias formas de expresarlas: la forma paramétrica ayudaba a determinar fácilmente el paralelismo, la forma baricéntrica nos daba fórmulas sencillas para los puntos medios, la forma normal nos permitía encontrar distancias, etc. Así mismo, cuando trabajamos con polinomios cuadráticos en dos variables es de ayuda tener más de una expresión.

Podemos reescribir un polinomio cuadrático en dos variables $$P((x,y))=Ax^2+Bxy+Cy^2+Dx+Ey+F$$ de una manera más compacta usando multiplicación matricial. Para ello, definimos $$M=\begin{pmatrix} A & \frac{B}{2} \\ \frac{B}{2} & C \end{pmatrix}, k=\begin{pmatrix} D \\ E \end{pmatrix}, v=\begin{pmatrix} x \\ y \end{pmatrix}.$$ Con esta notación, e interpretando a las matrices de $1\times 1$ como reales, tenemos que $P$ se puede reescribir de la siguiente manera: $$P(v)=v.$$

En efecto, al realizar las operaciones en el lado derecho obtenemos:

\begin{align*}
v^t M v + k^t v + F &=\begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} A & \frac{B}{2} \\ \frac{B}{2} & C \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} D & E \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + F\\
&=\begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} Ax + \frac{B}{2} y \\ \frac{B}{2} x + C y \end{pmatrix} + Dx + Ey + F\\
&=Ax^2 + Bxy + Cy^2+Dx+Ey+F.
\end{align*}

Observa que cuando pasamos un polinomio cuadrático en dos variables a forma matricial entonces siempre obtenemos una matriz $M$ simétrica.

Ejemplo. La forma matricial del PCDV que encontramos anteriormente $$6x^2+4xy-10y^2+5x+3y+1$$ es

$$ \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} 6 & 2 \\ 2 & 10 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} 5 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + 1.$$

nota que el coeficiente de $xy$ se tuvo que dividir entre $2$ para llegar a las entradas de la matriz. Es importante recordar esto al pasar de la forma en coordenadas a la forma matricial.

$\triangle$

En caso de ser necesario, también podemos pasar fácilmente de la forma matricial de un polinomio cuadrático en dos variables a su forma en coordenadas.

Ejemplo. Si comenzamos con el polinomio cuadrático en dos variables con forma matricial $$ \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} 2 & -1 \\ -1 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} 0 & -3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} – 1, $$

entonces su forma en coordenadas es $$2x^2-2xy+3y^2 – 3y -1.$$

Observa que las entradas $-1$ fuera de la diagonal principal de la matriz al salir se duplican para conformar el coeficiente de $xy$. Es importante recordar esto al pasar de forma matricial a forma en coordenadas.

$\triangle$

Más adelante…

En esta entrada definimos qué son los polinomios cuadráticos en dos variables y qué son las curvas cuadráticas.

Por un lado, mencionamos que todas las ecuaciones de cónicas canónicas que hemos visto tienen polinomios cuadráticos en dos variables. ¿Será que todas las ecuaciones de cónicas también tienen polinomios cuadráticos en dos variables? Por otro lado, vimos que algunas curvas cuadráticas son cónicas. Pero nos pasó algo un poco raro: en un ejemplo salieron dos rectas que se intersectan, que quizás estrictamente no pensamos como una cónica usual (elipse, hipérbola, parábola).

¿Cómo serán todas las curvas cuadráticas? ¿Serán sólo las cónicas usuales y algunas excepciones o podrán tener formas muy extrañas? Eso lo estudiaremos después.

También en esta entrada vimos la forma matricial de un polinomio cuadrático en dos variables. De momento, no hemos hablado de la utilidad que tiene pensar a un PCDV así. Sin embargo, en la siguiente entrada veremos que esta expresión es fundamental para ver qué sucede cuando «combinamos» un polinomio cuadrático con una transformación afín.

Tarea moral

  1. Usa alguna herramienta tecnológica (como GeoGebra) para trazar las curvas cuadráticas descritas por los siguientes polinomios cuadráticos en dos variables:
    • $x^2-2xy+3y^2+x-5y+7$
    • $3y^2+5y+x$
    • $x^2+y^2-5x-5y+3$
    • $xy-x-y+7$
    • $-x^2+2xy-3y^2-x+5y-7$
  2. Sea $P:\mathbb{R}^2\to \mathbb{R}$ dada por $P((x,y))=(Ax+By+C)(Dx+Ey+F)$. Demuestra que $P$ es un polinomio cuadrático en dos variables. Luego, demuestra que:
    1. Si $AE-BD\neq 0$, entonces la curva cuadrática dada por $P$ es la unión de dos rectas que se intersectan.
    2. Si $AE-BD=0$, entones la curva cuadrática dada por $P$ es la unión de dos rectas paralelas (no necesariamente distintas).
  3. Demuestra que la intersección de una recta con una curva cuadrática sólo puede ser:
    1. Vacía,
    2. Un punto,
    3. Dos puntos, o
    4. Una infinidad de puntos.
  4. Demuestra que cualquier curva cuadrática $\mathcal{C}$ puede ser descrita a través de una infinidad de polinomios cuadráticos en dos variables.
  5. Considera la gráfica de la función $f(x)=\sin(x)$. ¿Será que esta gráfica es una curva cuadrática? Intenta demostrar por qué sí o por qué no.

Entradas relacionadas

Teoría de los Conjuntos I: Funciones inversas

Por Gabriela Hernández Aguilar

Introducción

En la entrada de composición de relaciones vimos que al componer una relación $R$ con la relación $Id$ obtenemos la relación $R$. Lo mismo ocurre para funciones. Ahora podríamos preguntarnos si dada una función $f$ existe alguna función que al componerla con $f$ nos devuelva la función identidad. Veremos que no siempre es posible y analizaremos cuáles condiciones se requieren para que sí ocurra. Funciones que satisfagan la propiedad de que al componerlas con alguna otra función el resultado sea la identidad les llamaremos funciones invertibles o diremos que tienen una inversa. Como la composición de funciones no es conmutativa, esto nos lleva a tres preguntas: ¿cuándo una función tiene inversa izquierda? ¿cuándo tiene inversa derecha? ¿cuándo tiene una función que sirva de inversa por ambos lados?

En esta entrada exploramos estas preguntas en las siguientes secciones, y las conectamos con las nociones de inyectividad, suprayectividad y biyectividad que trabajamos previamente.

Inversa izquierda

Estudiemos primero la noción de invertibilidad por la izquierda.

Definición. Sea $f:X\to Y$ una función. Si $g:Y\to X$ es una función tal que $g\circ f=Id_X$, entonces decimos que $g$ es inversa izquierda de $f$.

Ejemplo.

Sean $X=\set{1,2}$ y $Y=\set{1,2,3}$ conjuntos. Sea $f:X\to Y$ la función dada por el conjunto $f=\set{(1,1), (2,2)}$.

Luego, si tomamos $g:Y\to X$ definida como $g=\set{(1,1), (2,2), (3,2)}$ es inversa izquierda de $f$. En efecto, tenemos que $g\circ f=Id_X$ pues:

$(g\circ f)(1)= g(f(1))= g(1)=1= Id_X(1)$ y $(g\circ f)(2)= g(f(2))= g(2)=2= Id_X(2)$.

Por lo tanto, $g\circ f=Id_X$ y así $g$ es inversa izquierda de $f$.

$\square$

La invertibilidad por la izquierda está conectada con la inyectividad, como lo afirma la siguiente proposición.

Proposición. Sea $f:X\to Y$ una función, se tiene que $f$ es inyectiva si y sólo si $f$ tiene inversa izquierda.

Demostración. Un caso aparte sencillo es qué sucede si el conjunto $X$ es vacío. En este caso, cualquier función $f:\emptyset \to Y$ es vacía y por lo tanto inyectiva por vacuidad, y $f\circ f = \emptyset =Id_{\emptyset}$, es decir, $f$ es inversa izquierda de sí misma. Así que supondremos que $X\neq \emptyset$.

Supongamos que $f$ es inyectiva, es decir, para cualesquiera $x,y\in X$ se tiene que $f(x)= f(y)$ implica $x=y$. Vamos a demostrar que existe $g:Y\to X$ función tal que $g\circ f= Id_X$.

Para ello, como $X\neq \emptyset$, podemos tomar un $x_0\in X$ cualquiera y definir la siguiente función de $Y$ en $X$:

$$g(y)=\begin{cases} x & \text{si $y\in \text{Im}(f)$ y $f(x)=y$}\\ x_0 & \text{si $y\not \in \text{Im}(f)$}\end{cases}.$$

Veamos primero que $g$ en efecto está bien definida. Esta forma de asignar sí es total, pues para cualquier $y\in Y$ se tiene que o bien $y\in \text{Im}(f)$ o bien $y \not \in \text{Im}(f)$. En el primer caso, por definición existe un $x$ tal que $f(x)=y$ y entonces podemos usar la primera parte de la definición. En el segundo caso usamos la segunda parte de la definición. Además, esta forma de asignar sí es funcional. Cualquier $y\in Y$ está en uno y sólo uno de los casos de arriba. Si está en el primer caso, existe una y sólo una $x$ que cumple $f(x)=y$, pues $f$ es inyectiva. Si está en el segundo caso, $f(y)$ sólo puede valer $x_0$.

Ahora veamos que $g$ es inversa izquierda de $f$. En efecto, sea $x\in X$, entonces

$(g\circ f)(x)=g(f(x))= x=Id_X(x)$.

Ahora, supongamos que $f$ es una función invertible por la izquierda, es decir, existe $g$ tal que $g\circ f=Id_X$. Veamos que $f$ es inyectiva. Sean $x_1, x_2$ tales que $f(x_1)=f(x_2)$. Tenemos que

\begin{align*}
x_1&=Id_X(x_1)\\
&=(g\circ f)(x_1)\\
&=g(f(x_1))\\
&=g(f(x_2))\\
&=(g\circ f)(x_2)\\
&=Id_X(x_2)\\
&=x_2.
\end{align*}

Por lo tanto, $f$ es inyectiva.

$\square$

Inversa derecha

Una noción parecida a la invertibilidad por la izquierda es la invertibilidad por la derecha.

Definición. Sea $f:X\to Y$ una función. Si $g:Y\to X$ es una función tal que $f\circ g=Id_Y$, entonces decimos que $g$ es inversa derecha de $f$.

Ejemplo.

Sean $X=\set{1,2,3}$ y $Y=\set{1,2}$ conjuntos. Sea $f:X\to Y$ la función dada por el conjunto $f=\set{(1,1), (2,2), (3,1)}$.

Luego, se tiene que $g:Y\to X$ definida como $g=\set{(1,1), (2,2)}$ es inversa derecha de $f$. En efecto, tenemos que $f\circ g=Id_Y$ pues:

$(f\circ g)(1)= f(g(1))= f(1)=1= Id_Y(1)$ y $(f\circ g)(2)= f(g(2))= f(2)=2= Id_Y(2)$.

Por lo tanto, $f\circ g=Id_Y$ y así $g$ es inversa derecha de $f$.

$\square$

Del ejemplo anterior podrás notar que $f$ es suprayectiva pero no inyectiva por lo que $f$ no puede tener ninguna inversa izquierda. En general, el siguiente resultado nos dice que $f$ es invertible por la derecha justo cuando es suprayectiva.

Teorema. Sea $f:X\to Y$ una función, se tiene que $f$ es suprayectiva si y sólo si $f$ tiene inversa derecha.

Demostración (parcial).

Ahora, supongamos que $f$ tiene inversa derecha, digamos $g$. Sea $y\in Y$, veamos que existe $x\in X$ tal que $f(x)=y$.
Dado que $g$ es inversa derecha de $f$, entonces $f\circ g=Id_Y$, por lo que para cualquier $y\in Y$, $(f\circ g)(y)= Id_Y(y)=y$, por lo que al tomar $x= g(y)\in X$, se cumple que $f(x)=f(g(y))=y$. Por lo tanto, $f$ es suprayectiva.

Nos faltaría demostrar que si $f$ es suprayectiva, entonces tiene inversa derecha. Esto no lo podemos hacer ahora y postergamos la demostración para la última parte del curso, cuando hablemos del axioma de elección.

$\square$

¿Por qué no podemos hacer la demostración todavía? Un poco más adelante hablaremos de cómo incluir axiomáticamente a los números naturales en todo lo que estamos construyendo, así que en nuestra teoría tendremos conjuntos infinitos. La razón por la que no podemos hacer la demostración anterior es que los axiomas de teoría de conjuntos que hemos presentado hasta ahora no nos dicen cómo le podemos hacer para tomar «una infinidad de decisiones» para crear un conjunto, y justo necesitamos esto en este momento. ¿Por qué? Sabemos que $f:X\to Y$ es una función suprayectiva, y que entonces todos los elementos de $f$ vienen de por lo menos un elemento de $X$. Pero si cada elemento de $Y$ viene de dos elementos de $X$ (digamos) y $Y$ es infinito, ¿cómo construimos la inversa derecha $g$ de $f$? Tendríamos que decidir para cada $y\in Y$ el valor de $g(y)$ entre dos posibilidades. Esto lo resolveremos incluyendo otro axioma que nos permita tomar una infinidad de decisiones, conocido como Axioma de elección, el cual veremos en entradas posteriores.

Inversa izquierda pero no derecha y viceversa

Podemos preguntarnos por qué hasta este momento tenemos dos conceptos: uno de inversa izquierda y otro de inversa derecha. La respuesta es que en ocasiones la inversa izquierda no será inversa derecha y viceversa. Además habrá veces en las que una función sólo tenga inversa izquierda y no derecha, así como funciones que solo tengan inversa derecha pero no izquierda. Retomemos los ejemplos anteriores para ver esto último.

Ejemplo.

Sean $X=\set{1,2}$ y $Y=\set{1,2,3}$ conjuntos. Sea $f:X\to Y$ la función dada por el conjunto $f=\set{(1,1), (2,2)}$. Antes vimos que $g=\set{(1,1), (2,2), (3,2)}$ es inversa izquierda de $f$, sin embargo, $g$ no es inversa derecha pues $f\circ g= \set{(1,1), (2,2), (3, 2)}$ y $f\circ g\not= Id_Y$ pues $(f\circ g)(3)= 2\not= 3=Id_Y(3)$. Además $f$ no tiene inversa derecha pues $g$ debe enviar a $3$ a un elemento de $X$, en este caso las únicas posibilidades son $1$ o $2$. En cualquiera de los casos al componer a la función $g$ con $f$, la composición resulta ser distinta de la función identidad.

Ahora, sean $X=\set{1,2,3}$ y $Y=\set{1,2}$ conjuntos. Sea $f:X\to Y$ la función dada por el conjunto $f=\set{(1,1), (2,2), (3,1)}$. Vimos que $g=\set{(1,1), (2,2)}$ es inversa derecha de $f$. Sin embargo, $g$ no es inversa izquierda de $f$ pues $g\circ f=\set{(1,1), (2,2), (3,1)}$ y $g\circ f\not=Id_X$. De hecho, no podría tener inversa izquierda pues como ya demostramos arriba, $f$ tendría que ser inyectiva, pero no lo es pues $f(1)=1=f(3)$.

$\square$

Inversa de una función

La tercera noción que estudiaremos es la siguiente.

Definición. Sea $f:X\to Y$ una función. Si existe $g:Y\to X$ tal que $g$ es inversa izquierda e inversa derecha de $f$, entonces decimos que $g$ es una inversa de $f$. En este caso, diremos que $f$ es invertible.

Ejemplo.

Sea $X$ un conjunto, consideremos $Id_X$. Resulta que $Id_X$ es invertible. En efecto, si consideramos la función $g=Id_X$ tenemos $g\circ Id_X=Id_X\circ Id_X=Id_X=Id_X\circ Id_X=Id_X\circ g$. Por tanto, $g=Id_X$ es una inversa de $Id_X$.

$\square$

Ejemplo.

Sea $X=\set{0,1}$. Cualquier función inyectiva en $X$ es una función invertible. Para mostrar esto, notemos que las únicas funciones inyectivas en $X$ son $f_1=Id_X$ y $f_2=\set{(0,1),(1,0)}$. Luego, una inversa de $f_1$ es $f_1$ como lo vimos en el ejemplo anterior y, una inversa de $f_2$ es $f_2$ ya que $(f_2\circ f_2)(0)=f_2(f_2(0))=f_2(1)=0$ y $(f_2\circ f_2)(1)=f_2(f_2(1))=f_2(0)=1$, es decir, $f_2\circ f_2=Id_X$.

El siguiente resultado conecta varias propiedades de las que hemos platicado.

Teorema. Sea $f:X\to Y$. Las siguientes tres cosas son equivalentes:

  1. $f$ es biyectiva.
  2. $f$ tiene inversa.
  3. $f$ tiene inversa derecha y $f$ tiene inversa izquierda.

Demostración.

$1)\rightarrow 2)$. Supongamos que $f$ es biyectiva, entonces $f$ es inyectiva y suprayectiva. Para definir $g:Y\to X$ su inversa, notamos que para cada $y\in Y$ existe un único $x\in X$ tal que $f(x)=y$ y entonces definimos $g(y)=x$. Debemos ver que dicha $g$ compuesta tanto por la derecha como por la izquierda con $f$ nos da la identidad. Por un lado, para cualquier $x\in X$ tenemos que $g(f(x))=x$ por cómo definimos $g$, así que $g\circ f = Id_X$.

Tomemos ahora $y\in Y$ y estudiemos $f(g(y))$. Como $f$ es suprayectiva, existe un $x$ tal que $y=f(x)$. Por definición de $g$, tenemos $f(g(y))=f(g(f(x))=f(x)$. Y como $f$ es inyectiva, tenemos que $g(y)=x$. Así, $f(g(y))=f(x)=y$. Concluimos entonces que $f\circ g=Id_Y$. Con esto concluimos la prueba de que $g$ es inversa de $f$.

$2)\rightarrow 3)$. Si $f$ tiene inversa $g$, entonces $g\circ f = Id_X$ y $f\circ g = Id_Y$, que es justo lo que se pide para que $g$ sea inversa izquierda y derecha respectivamente.

$3)\rightarrow 1)$. Esto es conclusión de lo que ya mostramos anteriormente. Como $f$ tiene inversa derecha, entonces es suprayectiva. Como $f$ tiene inversa izquierda, entonces $f$ es inyectiva. Así, $f$ es biyectiva.

$\square$

Observa que en la demostración del resultado anterior estamos usando que si $f$ tiene inversa derecha, entonces es suprayectiva. Esto es algo que sí pudimos demostrar en esta entrada y por lo tanto la demostración que acabamos de hacer no necesita del axioma de elección. Por otro lado, observa que el teorema anterior nos da una condición necesaria y suficiente para determinar cuándo una función posee inversa, incluso sabemos que ésta es única y por ello podemos adoptar una notación para la inversa de una función; si existe la inversa de una función $f$, la denotaremos por $f^{-1}$, notación que coincide con la de la inversa de una relación.

Tarea moral

La siguiente lista de ejercicios te permitirá identificar cuándo una función tiene inversa ya sea izquierda o derecha

  • Sea $f:X\to Y$ una función inyectiva. Da un ejemplo en donde la relación inversa de $f$ no es total y por lo tanto no es función.
  • En la definición de función inversa para una función $f:X\to Y$ le llamamos a su inversa $f^{-1}$. Pero aquí implícitamente ya estamos suponiendo que la inversa es única. Demuestra que, en efecto, si una función $f:X\to Y$ tiene inversa, entonces dicha inversa es única.
  • Las inversas derechas e izquierdas no necesariamente son únicas. Para pensar en esto, haz lo siguiente:
    • Da una función que tenga dos inversas derechas distintas.
    • Da una función que tenga dos inversas izquierdas distintas.
  • Sean $f:X\to Y$ y $g:Y\to Z$ funciones biyectivas. Demuestra que $g\circ f$ es invertible, más aún que $(g\circ f)^{-1}= f^{-1}\circ g^{-1}$.

Más adelante…

En la siguiente sección comenzaremos con el tema de relaciones de equivalencia. En esta parte retomaremos el concepto de relación, sin embargo nos enfocaremos en las relaciones de un conjunto $A$ que cumplen determinadas propiedades, lo que las hará especiales y recibirán el nombre de relaciones de equivalencia.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Teoría de los Conjuntos I: Funciones suprayectivas y biyectivas

Por Gabriela Hernández Aguilar

Introducción

Si tenemos dos conjuntos $X$ y $Y$ y se nos pide definir una función $f:X\to Y$ lo que debemos hacer es relacionar a cada uno de los elementos de $X$ con un único elemento de $Y$. Esta forma de proceder no garantiza que cualquier elemento de $Y$ se encuentra relacionado con algún elemento de $X$. Aquellas funciones que sí cumplan esto último les llamaremos funciones suprayectivas y será el tema que trataremos en esta entrada.

Función suprayectiva

Definición. Sea $f:X\to Y$ una función. Si $f[X]=Y$, entonces decimos que $f$ es suprayectiva.

$\square$

Teorema. 1Sea $f:X\to Y$ una función. Entonces los siguientes enunciados son equivalentes:

  1. $f$ es suprayectiva.
  2. Para cualquier $y\in Y$, existe $x\in X$ tal que $f(x)=y$.
  3. Para cualesquiera $h,k:Y\to Z$ tales que $h\circ f= k\circ f$, se tiene que $h=k$.

Demostración.

$1)\rightarrow 2)$

Supongamos que $f$ es suprayectiva, es decir que $f[X]=Y$. Sea $y\in Y$, entonces $y\in f[X]$ por lo que existe $x\in X$ tal que $f(x)=y$. Por lo tanto, para cualquier $y\in Y$ existe $x\in X$ tal que $f(x)=y$.

$2)\rightarrow 3)$

Sean $h,k:Y\to Z$ tales que $h\circ f=k\circ f$. Veamos que $h=k$. Sea $y\in Y$, veamos que $h(y)=k(y)$. Dado que $y\in Y$, por hipótesis tenemos que existe $x\in X$ tal que $f(x)=y$, por lo que $h(y)= h(f(x))$ y $k(y)= k(f(x))$. Luego, como $(h\circ f)(x)= h(f(x))= k(f(x))= (k\circ f)(x)$, tenemos que $h(y)= k(y)$.

$3)\rightarrow 1)$

Observemos que $f[X]\subseteq Y$, por lo que resta probar que $Y\subseteq f[X]$. Definamos $h: Y\to \set{0,1}$ y $k: Y\to \set{0,1}$ funciones dadas por $h(y)=0$ para todo $y\in Y$ y

\begin{align*}
k(y) = \left\{ \begin{array}{lcc}
0 &  \text{si} & y\in f[X]\\
1 &  \text{si}  & y \notin f[X] \\
\end{array}
\right.
\end{align*}

respectivamente.

Sea $x\in X$, entonces $f(x)\in Y$ y así, $(h\circ f)(x)= h(f(x))=0$ y $(k\circ f)(x)= k(f(x))=0$. Por lo tanto, $h\circ f=k\circ f$ y, por hipótesis $h=k$.

Si tomamos $y\in Y$, $h(y)=k(y)$. Esto significa que $k(y)=0$, por lo tanto, debe ocurrir que $y\in f[X]$.

Algunas funciones suprayectivas

Ejemplo.

La función identidad es suprayectiva. En efecto, sea $Id_X:X\to X$ la función identidad y sea $y\in X$, entonces $y\in X$ satisface $Id_X(y)= y$.

Por lo tanto, $Id_X$ es suprayectiva.

$\square$

Ejemplo.

Sea $X$ un conjunto no vacío y $f:X\to \set{c}$ una función dada por $f(x)=c$ para todo $x\in X$. Tenemos que $f$ es suprayectiva.

Dado que $c$ es el único elemento de $\set{c}$, debemos encontrar que existe $x\in X$ tal que $f(x)=c$. Como $X$ no es vacío, existe $x\in X$ y es tal que que $f(x)=c$.

$\square$

Ejemplo.

Sea $X$ un conjunto y $A\subseteq X$ un subconjunto propio de $X$ (distinto de $X$ y no vacío). La función característica de $A$ es una función suprayectiva.

Deseamos ver que para cualquier $y\in \set{0,1}$ existe $x\in X$ tal que $\chi_A(x)=y$.

Caso 1: Si $y=0$, entonces tomemos $x\in X\setminus A$ de modo que $\chi_A(x)=0$.

Caso 2: Si $y=1$, entonces tomemos $x\in A$, de modo que $\chi_A(x)=1$.

Por lo tanto, $\chi_A$ es suprayectiva.

$\square$

Composición de funciones y suprayectividad

Así como lo hicimos en la entrada anterior con respecto a la inyectividad, también podemos averiguar qué pasa con la composición de funciones con respecto a la suprayectividad. Tenemos el siguiente teorema.

Teorema. Sean $f:X\to Y$ y $g:Y\to Z$ funciones suprayectivas, $g\circ f$ es suprayectiva.

Demostración.

Sea $z\in Z$, y veamos que existe $x\in X$ tal que $(g\circ f)(x)=z$.
Dado que $g$ es suprayectiva y $z\in Z$, entonces existe $y\in Y$ tal que $g(y)=z$. Luego, como $f$ es suprayectiva y $y\in Y$, entonces existe $x\in X$ tal que $f(x)=y$, así $z=g(y)=g(f(x))$. Por lo tanto, $g\circ f$ es suprayectiva.

$\square$

Funciones biyectivas

Definición. Decimos que $f:X\to Y$ es una función biyectiva si y sólo si $f$ es inyectiva y suprayectiva.

Ejemplo.

La función identidad es biyectiva.

Verificamos en la entrada de funciones inyectivas que la función identidad es una función inyectiva, además de que en esta entrada verificamos que es suprayectiva.

$\square$

Ejemplo.

Sean $X=\set{1,2,3}$ y $Y=\set{2,4,6}$ y sea $f:X\to Y$ la función dada por $f(x)=2x$. Tenemos que $f$ es inyectiva pues es una función uno a uno, es decir, elementos distintos van a dar a elementos distintos. Más explícitamente $1$ va a dar a $2$, $2$ a $4$ y $3$ a $6$.

Además $f$ es suprayectiva, pues para cualquier $y\in Y$, existe $x\in X$ tal que $f(x)=y$. En efecto, esto sucede ya que para $2\in Y$ existe $1\in X$ tal que $f(1)=2$; para $4\in Y$ existe $2\in X$ tal que $f(2)=4$ y por último para $6\in Y$ existe $3\in X$ tal que $f(3)=6$.

$\square$

Tarea moral

Realiza la siguiente lista de ejercicios que te ayudará a fortalecer los conceptos de función inyectiva, suprayectiva y biyectiva.

  1. Sean $f:X\to Y$ y $g:Y\to Z$ funciones. Demuestra que si $g\circ f$ es suprayectiva, entonces $g$ es suprayectiva.
  2. Demuestra o da un contraejemplo del siguiente enunciado: Si $f:X\to Y$ y $g:Y\to Z$ son funciones tales que $g\circ f$ es suprayectiva, entonces $f$ es suprayectiva.
  3. Sean $X=\set{1,2,3, \cdots}$ y $Y=\set{3,4,5,\cdots}$ y sea $f:X\to Y$ dada por $f(x)=2x+3$. ¿$f$ es suprayectiva? Argumenta tu respuesta. Quizás a estas alturas tengas que ser un poco informal en términos de teoría de conjuntos, pero usa lo que conoces de las operaciones de números.

Más adelante…

Ahora que aprendimos el concepto de función inyectiva y suprayectiva tenemos las bases suficientes para hablar de funciones invertibles. Veremos funciones invertibles por la derecha e invertibles por la izquierda, cuyos conceptos resultarán equivalentes al de función suprayectiva y función inyectiva respectivamente.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

  1. También puedes consultar la prueba de este teorema en: Hernández, F., Teoría de Conjuntos, México: Aportaciones Matemáticas No.13, SMM, 1998, pp. 52-53 ↩︎