Introducción
En las últimas entradas hemos revisado el método de valores y vectores propios para resolver sistemas lineales homogéneos con coeficientes constantes de la forma $\dot{\textbf{X}}=\textbf{A}\textbf{X}$. Revisamos los casos cuando la matriz asociada tiene valores propios reales y todos distintos, y cuando tiene valores complejos. Para el primer caso las funciones $e^{\lambda_{i} t}\textbf{v}_{i}$ son soluciones linealmente independientes, donde $\lambda_{i}$ es un valor propio y $\textbf{v}_{i}$ es un vector propio asociado a $\lambda_{i}, \; \forall i \in \{1,…,n\}$. La solución general es la combinación lineal de dichas soluciones. Para el caso de valores propios complejos vimos que de una solución compleja $e^{\lambda_{i} t}\textbf{v}_{i}$ podíamos encontrar dos soluciones reales: la parte real y la parte imaginaria de dicha solución. Además estas soluciones resultaron ser linealmente independientes por lo que no fue difícil hallar la solución general al sistema de esta forma.
Vamos a terminar de revisar el método de valores y vectores propios analizando el caso cuando la matriz $\textbf{A}$ asociada al sistema tiene valores propios repetidos, tanto si es diagonalizable como si no lo es.
Iniciaremos con el caso cuando es $\textbf{A}$ es diagonalizable. Veremos que es bastante sencillo hallar $n$ vectores propios linealmente independientes ya que si $\lambda_{i}$ es un valor propio con multiplicidad $k$, entonces existirán $k$ vectores propios linealmente independientes asociados a dicho valor propio. Por lo tanto, podremos encontrar $n$ soluciones linealmente independientes al sistema y la solución general será la combinación lineal de estas.
Finalizaremos con el caso cuando $\textbf{A}$ no es diagonalizable, donde no existirán $n$ vectores propios linealmente independientes ya que para algún valor propio $\lambda_{i}$ con multiplicidad $k$ no existirán $k$ vectores propios linealmente independientes. Sin embargo, con ayuda de la exponencial de la matriz $\textbf{e}^{t \textbf{A}}$ y el concepto de vector propio generalizado podremos encontrar $k$ soluciones linealmente independientes correspondientes al valor propio $\lambda_{i}$. Nuevamente la solución general será la combinación lineal de las $n$ soluciones generadas de esta manera.
Método de valores y vectores propios para matrices diagonalizables con valores propios repetidos
Analizamos el caso cuando la matriz $\textbf{A}$ asociada al sistema $\dot{\textbf{X}}=\textbf{A}\textbf{X}$ es diagonalizable y tiene valores propios repetidos. Resolvemos un par de sistemas para ejemplificar el caso correspondiente.
Método de valores y vectores propios para matrices no diagonalizables
En el primer video analizamos de manera general el caso cuando la matriz asociada al sistema $\dot{\textbf{X}}=\textbf{A}\textbf{X}$ no es diagonalizable. Definimos el concepto de vector propio generalizado y con ayuda de la exponencial $\text{e}^{t \textbf{A}}$ generamos la solución general al sistema. En el segundo video resolvemos un par de ejemplos referentes al caso analizado.
Tarea moral
Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.
- ¿Es posible tener una matriz $\textbf{A}$ de tamaño $3 \times 3$ con valores propios complejos repetidos?
- Prueba que si $\lambda$ es un valor propio complejo con multiplicidad $k$ de $\textbf{A}$, entonces su conjugado $\bar{\lambda}$ tiene multiplicidad $k$.
- Encuentra la solución general al sistema $$\dot{\textbf{X}}=\begin{pmatrix} 0 & 0 & 0 & -1\\ 1 & 0 & 0 & 0\\ 0 & 1 & 0 & -2\\ 0 & 0 & 1 & 0\end{pmatrix}\textbf{X}.$$
- Resuelve el problema de condición inicial $$\dot{\textbf{X}}=\begin{pmatrix} 1 & 3 & 3\\ 3 & 1 & 3\\ 3 & 3 & 1\end{pmatrix}\textbf{X} \, \, \, \, \, ; \, \, \, \, \, \textbf{X}(0)=\begin{pmatrix} 1\\ 0\\ 0 \end{pmatrix}.$$
- Encuentra la solución general al sistema $$\dot{\textbf{X}}=\begin{pmatrix} 0 & -1 & 1\\ 2 & -3 & 1\\ 1 & -1 & -1\end{pmatrix}\textbf{X}.$$
Más adelante
Con esta entrada terminamos de analizar el método de valores y vectores propios para sistemas lineales homogéneos con coeficientes constantes. Una vez que logramos resolver tales sistemas, es tiempo de estudiar el caso no homogéneo.
Como ya sabemos, la solución general a estos sistemas serán la suma de la solución general al sistema homogéneo correspondiente mas una solución particular al sistema no homogéneo. El método por el cual encontraremos esta solución particular será el de variación de parámetros, el cual estudiaremos en la siguiente entrada.
Entradas relacionadas
- Ir a Ecuaciones Diferenciales I
- Entrada anterior del curso: Método de valores y vectores propios para sistemas lineales homogéneos con coeficientes constantes. Raíces complejas del polinomio característico
- Siguiente entrada del curso: Sistemas de ecuaciones lineales no homogéneas. Solución por variación de parámetros
- Notas escritas relacionadas con el tema: Sistemas lineales homogéneos con coeficientes constantes. Valores propios repetidos
Agradecimientos
Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»