Ecuaciones Diferenciales I – Videos: Ecuación de Euler

Introducción

En la entrada anterior desarrollamos la teoría de soluciones en series de potencias alrededor de un punto ordinario de la ecuación diferencial $a_{0}(t)\frac{d^{2}{y}}{dt^{2}}+a_{1}(t)\frac{dy}{dt}+a_{2}(t)y=0$. En cierta forma el teorema de existencia de soluciones con desarrollo en series de potencias alrededor del punto ordinario que probamos nos facilitó las cosas.

Sin embargo, cuando tenemos puntos singulares la teoría falla. Es por eso que debemos encontrar un método alternativo para estudiar soluciones alrededor de puntos singulares a nuestra ecuación diferencial. Antes de comenzar de manera general, lo primero que haremos será considerar una ecuación diferencial en particular, con $t_{0}=0$ como punto singular, la cual es bastante sencilla de resolver: esta es la ecuación de Euler, debido al famoso matemático Leonhard Euler (si no lo conoces o quieres saber acerca de él, te dejo el siguiente enlace a su biografía), y que tiene la forma $$t^{2}\frac{d^{2}{y}}{dt^{2}}+\alpha t\frac{dy}{dt}+\beta y=0$$ donde $\alpha$ y $\beta$ son constantes.

Resolveremos esta ecuación y en la próxima entrada trataremos de generalizar este mismo resultado a una clase más general de ecuaciones con puntos singulares.

Vamos a comenzar!

Leonhard Euler
Leonhard Euler. Blog de matemática y TIC’s (2018).

Ecuación de Euler

En el primer video resolvemos de manera general la ecuación de Euler para cualquier intervalo que no contenga al punto singular $t_{0}=0$, y en el segundo video resolvemos un ejemplo particular de este tipo de ecuaciones.

Tarea moral

  • Prueba que si $(\alpha -1)^{2}-4\beta=0$ entonces $W[t^{r_{1}}, t^{r_{1}}\ln{t}]\neq0$, donde $r_{1}$ es la única raíz de la ecuación cuadrática $r^{2}+(\alpha -1)r+\beta=0$. Por tanto, la solución general a la ecuación de Euler cuando $(\alpha -1)^{2}-4\beta=0$ y $t>0$ es $y(t)=c_{1}t^{r_{1}}+c_{2}t^{r_{1}}\ln{t}$.
  • Si $(\alpha -1)^{2}-4\beta<0$ entonces las raíces $r_{1}$ y $r_{2}$ a la ecuación $r^{2}+(\alpha -1)r+\beta=0$ son complejas. Prueba que $t^{r_{1}}$ y $t^{r_{2}}$ son efectivamente soluciones a la ecuación de Euler, y que además son linealmente independientes. Por tanto, la solución general a la ecuación de Euler cuando $(\alpha -1)^{2}-4\beta<0$ y $t>0$ es $y(t)=c_{1}t^{r_{1}}+c_{2}t^{r_{2}}$. (Sigue el hint dado en el video para hacer las cuentas más sencillas).
  • La solución general encontrada en el problema anterior es una función de variable compleja. Haz elecciones adecuadas de $c_{1}$ y $c_{2}$ para ver que si $r_{1}=a+bi$ y $r_{2}=a-bi$, entonces $t^{a}cos(b\ln{t})$ y $t^{a}sin(b\ln{t})$ son soluciones a la ecuación de Euler para el caso del ejercicio anterior. Prueba que éstas son soluciones linealmente independientes, y por tanto $y(t)=k_{1}t^{a}cos(b\ln{t})+k_{2}t^{a}sin(b\ln{t})$ es solución general a la ecuación de Euler, donde $y$ es una función de valores reales.
  • Resolver la ecuación $$t^{2}\frac{d^{2}{y}}{dt^{2}}+2t\frac{dy}{dt}+4y=0$$ tanto para $t>0$ como para $t<0$.
  • Resuelve el problema de condición inicial $$t^{2}\frac{d^{2}{y}}{dt^{2}}-7t\frac{dy}{dt}+9y=0$$ con condiciones $y(1)=0$, $\frac{dy}{dt}(1)=2$, $t>0$.

Más adelante

Una vez que hemos encontrado la solución general a la ecuación de Euler, lo siguiente tratar de utilizar este mismo método para resolver una clase más general de ecuaciones diferenciales con puntos singulares. Dado que algunas de estas ecuaciones serán bastante complicadas de resolver, clasificaremos los puntos singulares en dos tipos: regulares e irregulares, y nos enfocaremos exclusivamente a resolver ecuaciones diferenciales alrededor de puntos singulares regulares.

Entradas relacionadas

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.