Cálculo Diferencial e Integral II: Teorema del valor medio para integrales

Por Miguel Ángel Rodríguez García

Introducción

En las secciones anteriores vimos algunos métodos numéricos de integración que se utilizan para dar solución a la integral de funciones, en esta sección veremos el teorema del valor medio para integrales.

Teorema del valor medio para integrales

El teorema del valor medio es una consecuencia del teorema de valor medio para la derivada y el teorema fundamental del Cálculo [Hipervinculo: Calculo II-Teorema fundamental del calculo], geométricamente significa que para funciones no negativas y continuas en un intervalo $[a, b]$ existe un valor $c$ en el mismo intervalo, tal que, el rectángulo con base $[a, b]$ y altura $f(c)$ tiene la misma área que la región bajo la gráfica de $f$ en el intervalo $[a, b]$ o lo que es lo mismo decir, alcanza su valor promedio en al menos un punto $c$ (ver figura 1).

Figura 1: Teorema del valor medio para integrales.

Enunciamos el siguiente teorema:

Teorema del valor medio para integrales

Sea función continua $f(x)$ en un intervalo $[a, b]$ entonces existe $c \space \epsilon \space [a, b]$, tal que:

$$\int_{a}^{b}f(x)dx=f(c)(b-a)$$

Demostración:

Como $c \space \epsilon \space [a, b]$ supongamos sin perdida de generalidad que $a<c<b$ entonces:

$$\int_{a}^{b} f(x)dx=\int_{a}^{c} f(x)dx+\int_{c}^{b} f(x)dx$$

Por las propiedades de la integral [Hipervinculo: Calculo II-Propiedades de la integral], la función $f$ es integrable en $[a, c]$ y $[c, b]$.

Ahora por el teorema del valor extremo sabemos que $f$ alcanza sus valores máximo y mínimo absolutos en el intervalo, el cual se denotan como $M$ y $m$ respectivamente, así, sabemos que:

$$\int_{a}^{b} mdx\leq \int_{a}^{b} f(x)dx\leq \int_{a}^{b} Mdx$$

Las integrales de la izquierda y derecha se pueden evaluar fácilmente:

$$m(b-a)\leq \int_{a}^{b} f(x)dx\leq M(b-a) \tag{1}$$

Por otro lado, como $c \space \epsilon \space [a, b]$ entonces: $m\leq f(c) \leq M$ para alguna $c \space \epsilon \space [a, b]$.

Si $m$ y $M$ son infinitesimalmente pequeños, entonces $m=f(c)=M$, por lo que en $(1)$:

$$f(c)(b-a)\leq \int_{a}^{b} f(x)dx\leq f(c)(b-a)$$

$$\Rightarrow \int_{a}^{b}f(x)dx=f(c)(b-a)$$

$\square$

Veamos un ejemplo.

Ejemplo

  • Determine el valor promedio de la función $f(x)=1+x^{2}$ en el intervalo $[-1,2]$.

Vemos que $a=-1$ y $b=2$, para calcular el valor promedio de la función $f(x)$ utilizamos el teorema del valor medio como sigue:

$$f_{prom}=f(c)=\frac{1}{b-a}\int_{a}^{b}f(x)dx$$

Así tenemos que:

$$f(c)=\frac{1}{2-(-1)}\int_{-1}^{2}(1+x^{2})dx=\frac{1}{3}\left [ x+\frac{x^{3}}{3} \right ]\bigg{|}_{-1}^{2}$$

$$=\frac{1}{3}\left [ 2+\frac{2^{3}}{3}-(-1)-\frac{(-1)^{3}}{3} \right ]=2$$

Vemos que $f(c)=2$, evaluamos en la función $f(x)$ el valor $c$ para encontrar su valor:

$$f(c)=1+c^{2}=2 \Rightarrow c=\pm 1$$

Sucede que en este caso hay dos números $c=1$ y $c=-1$ que toman el valor medio de la función $f(x)$.

Tarea moral

Los siguientes ejercicios no son para evaluación, pero son ejercicios para que practiques lo aprendido que te ayudaran en el desarrollo del entendimiento del tema, por lo que te invitamos a resolver los siguientes ejercicios propuestos relacionados con el tema visto.

Halle el valor promedio de las siguientes funciones en el intervalo indicado.

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. $f(x)=4x-x^{2}$, $[0,4]$
  2. $f(x)=4-x$, $[0,3]$
  3. $f(x)=3x^{2}-2x$, $[1,4]$
  • Determine los números $b$ talque el valor promedio de la función $f(x)=2+6x-3x^{2}$ en el intervalo $[0,b]$ sea igual a 3.
  • Demuestre que la velocidad promedio de un automóvil en un intervalo de tiempo $[t_{1}, t_{2}]$ es la misma que el promedio de sus velocidades.

Más adelante…

En esta sección vimos el teorema del valor intermedio aplicado a las integrales, en las siguientes secciones veremos las integrales impropias, es decir, integrales en donde se evalúa una función dentro de un intervalo que tiende a infinito o casos en donde la integral de una función se evalúa en todo $\mathbb{R}$.

Entradas relacionadas

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.