Archivo del Autor: Julio César Soria Ramírez

Nota 43. Propiedad multiplicativa del determinante y teorema de invertibilidad de matrices.

Por Julio César Soria Ramírez

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

La propiedad multiplicativa del determinante establece que el determinante de un producto de matrices es igual al producto de los determinantes de cada matriz. En otras palabras, si $A$ y $B$ son dos matrices cuadradas de igual tamaño, entonces el determinante de su producto $AB$ es igual al producto de los determinantes de $A$ y $B$, es decir:

$det\,AB = det\,A\, det\,B.$

La propiedad multiplicativa del determinante es muy útil en muchos problemas de álgebra lineal, ya que permite calcular el determinante de una matriz grande dividiéndola en submatrices más pequeñas, calculando los determinantes de cada submatriz y utilizando esta propiedad para calcular entonces el determinante de la matriz completa.

Vamos a probar la propiedad multiplicativa del determinante primero cuando una de las matrices es elemental, es decir, probaremos que si $E$ es una matriz elemental, entonces:

$det\,EB = det\,E\, det\,B.$

Después veremos que si $R$ es una matriz escalonada reducida por renglones se tiene que:

$det\,RB = det\,R\, det\,B,$

para finalmente justificar con ello el caso general.

Observación 1

Si $E$ es una matriz elemental:

  • El determinante de $E$ es $-1$ si $E$ se obtiene de $I_n$ intercambiando dos renglones.
  • El determinante de $E$ es $\lambda$ si $E$ se obtiene de $I_n$ multiplicando un renglón por un escalar $\lambda$ no nulo.
  • El determinante de $E$ es $+1$ si $E$ se obtiene de $I_n$ sumando a un renglón un múltiplo de otro.

Lema 3

Sean $E,B\in \mathscr M_{n\times n}(\mathbb R)$ con $E$ una matriz elemental, entonces $det\,EB = det\,E\, det\,B.$

Demostración

$E,B\in \mathscr M_{n\times n}(\mathbb R)$ con $E$ una matriz elemental.

Caso 1

Si $E$ se obtiene de $I_n$ intercambiando los renglones $t$ y $s$, entonces $EB$ se obtiene de $B$ intercambiando los renglones $t$ y $s$, por la propiedad $3$ de determinantes vista en la nota 41 tenemos que:

$det\,EB=-det\,B=(-1)det\,B $

y por la observación 1 $(-1)det\,B =det\,E\,det\,B$. Por lo tanto $det\,EB = det\,E\, det\,B.$

Caso 2

Si $E$ se obtiene de $I_n$ multiplicando el renglón $s$ por $\lambda\in \mathbb R\setminus\set{0}$, entonces $EB$ se obtiene de $B$ multplicando el renglón $s$ por $\lambda\in \mathbb R\setminus\set{0}.$ Por la propiedad $2$ de determinantes tenemos que $det\,EB=\lambda\,detB$ y por la observación 1 $det\,E=\lambda$, así $det\,EB=det\,E\,det\,B.$

Caso 3

Si $E$ se obtiene de $I_n$ sumando al renglón $t$ $\lambda$ veces el renglón $s$, entonces $EB$ se obtiene de $B$ sumando al renglón $t$ $\lambda$ veces el renglón $s$, así por la propiedad $5$ de determinantes $det\,EB=+1\,det\,B$ y por la observación $1$ tenemos que $det\,E=+1$ y así $det\,EB = det\,E\, det\,B.$

$\square$

Observación 2

Si $R\in \mathscr M_{n\times n}(\mathbb R)$ es escalonada reducida, entonces $R=I_n$ o bien $R$ tiene al menos un renglón nulo.

Lema 4

Sean $R,B \in \mathscr M_{n\times n}(\mathbb R)$ con $R$ escalonada reducida, se tiene que $det\,RB=det\,R\,det\,B.$

Demostración

$R,B \in \mathscr M_{n\times n}(\mathbb R)$ con $R$ escalonada reducida

Caso 1

Si $R=I_n$ entonces:

$det\,RB=det\,I_nB=det\,B=det\,I_n\,det\,B=det\,R\,det\,B.$

Caso 2

Si $R$ tiene al menos un renglón nulo, tenemos que $RB$ tiene al menos un renglón nulo, y por la propiedad $6$ $det\,R=0=det\,RB$, así:

$det\,RB=0=0\,det\,B=det\,R\,det\,B.$

Teorema

Sean $A,B \in \mathscr M_{n\times n}(\mathbb R)$. Se tiene que $det\,AB=det\,A\,det\,B.$

Demostración

$A,B \in \mathscr M_{n\times n}(\mathbb R).$ Sabemos que $A\sim R$ con $R$ escalonada reducida, entonces $A=E_t\cdots E_1 R$, con $E_1,\dotsc,E_t$ matrices elementales. Así:

$det\,AB=det\,E_t\cdots E_1 R B$

Por el lema $3$ tenemos que:

$det\,AB=det\,E_t\,det\,E_{t-1}\cdots det\,E_1 det\,R B$

y por el lema $4$ tenemos que:

$det\,AB=det\,E_t\,det\,E_{t-1}\cdots det\,E_1\,det\,R\,det\,B.$

Por el lema $3$ tenemos que:

$det\,AB=det\,E_t\,det\,E_{t-1}\cdots det\,E_1 R\,det\,B$

y aplicando sucesivamente el lema $3$ obtenemos:

$det\,AB=det\,E_t E_{t-1}\cdots E_1 R\, det\, B.$

Concluimos que:

$det\,AB=det\,A\,det\,B$

$\square$

Observación 3

Sea $A \in \mathscr M_{n\times n}(\mathbb R)\,\,A\sim R$, con $R$ escalonada reducida. Tenemos que $det\,A\neq 0$ si y sólo si $det\,R\neq 0$.

Demostración

Las operaciones elementales sólo afectan el signo del determinante o lo modifican por un factor $\lambda\neq 0$, así $det A$ y $det R$ sólo difiere por un factor $\lambda\neq 0$, es decir $det R=\lambda det R$ con $\lambda\neq 0$, por lo cual $det\,R\neq 0$ si y sólo si $det\,A\neq 0$.

$\square$

Teorema

Sea $A \in \mathscr M_{n\times n}(\mathbb R)$. Las siguientes afirmaciones son equivalentes:

$1.$ Los renglones de $A$ forman un conjunto linealmente independiente en $\mathbb R^n$.

$2.$ $rk\,A=n$.

$3.$ $A\sim I_n$.

$4.$ $A$ tiene inversa.

$5.$ $det\,A\neq 0$

Demostración

Sea $A \in \mathscr M_{n\times n}(\mathbb R).$

$1\Longrightarrow2$ Supongamos que los renglones de $A$ forman un conjunto $l.i$ en $\mathbb R^n$. Entonces como son $n$ vectores $l.i$ en $\mathbb R^n$ son una base de $\mathbb R^n$ y así el espacio de renglones de $A$ es $\mathbb R^n$ que tiene dimensión $n$ y por lo tanto $rk\,A=n.$

$2\Longrightarrow3$ Supongamos $rk\,A=n$. Entonces al escalonar $A$ se obtiene una matriz reducida $R \in \mathscr M_{n\times n}(\mathbb R)$ con $n$ renglones no nulos. Por la observación $2$ sabemos que $R=I_n$, y así $A\sim I_n$.

$3\Longrightarrow4$ Supongamos que $A\sim I_n$ entonces $A=E_t\cdots E_1 I_n$ con $E_1,\dotsc,E_t$ matrices elementales (que son invertibles). Así $A$ es producto de matrices invertibles y es por lo tanto invertible con $A^{-1}=E_1^{-1}\cdots E_t^{-1}.$

$4\Longrightarrow5$ Supongamos que $A$ es invertible, entonces existe $A^{-1}$ tal que $AA^{-1}=I_n$, así $1=det\,I_n=det\,AA^{-1}=det\,A\,det\,A^{-1}$. En particular $det\,A\neq 0$.

$5\Longrightarrow1$ Supongamos que $det\,A\neq 0$. Sea $R$ la matriz escalonada tal que $A\sim R$. Por la observación $3$ tenemos que $det\,R\neq 0$ y entonces $R$ no puede tener renglones nulos, usando la observación $2$ tenemos que $R=I_n$. Dado que $rk \,A=rk \,R=rk \,I_n,$ entonces el rango de $A$ es $n$, y así la dimensión del espacio de renglones de $A$ es $n$. Concluimos entonces que los $n$ renglones de $A$ deben formar un conjunto $l.i.$

$\square$

Tarea Moral

$1.$ Analiza si las matrices diagonales y triangulares superiores son invertibles.

$2.$ ¿Para que valores de $k$, si es que existen la matriz $C=\begin{equation*} \left(\begin{array}{ccc} k & -3 & 9\\ 2 & 4 & k+1\\ 1 & k^2 & 3 \end{array}\right) \end{equation*}$ es invertible?

$3.$ ¿Qué condiciones se deben pedir a $a,b,c$ para que la matriz $\begin{equation*} \left(\begin{array}{ccc} 1 & 1 & 1\\ a & b & c\\ a^2 & b^2 & c^2 \end{array}\right) \end{equation*}$ sea invertible?

Más adelante

Con esta entrada se terminan las notas del curso de Álgebra Superior I impartido por la Dra. Diana Avella Alaminos.

Enlaces relacionados

Página principal del curso.

Enlace a la nota anterior. Nota 42. Formula para obtener el determinante.

Nota 42. Formula para obtener el determinante.

Por Julio César Soria Ramírez

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

El cálculo del determinante de una matriz es una operación fundamental en la teoría de matrices y álgebra lineal. El método de los menores o cofactores es una técnica utilizada para calcular el determinante de una matriz cuadrada de cualquier tamaño.

El método se basa en la expansión del determinante a lo largo de una fila o columna de la matriz. Para cada elemento de esa fila o columna, se calcula su «menor», que es el determinante de la matriz que resulta de eliminar la fila y columna correspondientes al elemento en cuestión. Luego, se multiplican estos menores por los signos positivos o negativos que se alternan en función de la posición del elemento en la matriz, para obtener los cofactores correspondientes.

Finalmente, se suman estos productos para obtener el determinante de la matriz original. Este proceso puede ser repetido recursivamente para calcular el determinante de cualquier submatriz de la matriz original.

El método de los menores o cofactores puede ser un poco tedioso para matrices grandes, pero es una herramienta poderosa para calcular determinantes de matrices de cualquier tamaño y puede usarse junto con las propiedades que hemos estudiado de los determinantes para facilitar el cálculo de los mismos.

Ve el siguiente video con las demostraciones de los dos lemas.

Definición

Sea $A\in \mathscr M_{n\times n}(\mathbb R),\,\,i,j\in\set{1,\dotsc,n}.$ Denotamos por $A(i\mid j)$ a la matriz $(n-1)\times (n-1)$ que se obtiene de $A$ quitando el renglón $i$ y la columna $j$. El menor $i,j$ de $A$ es el determinante de $A(i\mid j).$

Ejemplo

Considera las siguientes matrices:

$A=\begin{equation*} \left(\begin{array}{rrr} 1 & -2 & 3 \\ 5 & 7 & 0 \\ 2 & 4 & -1 \end{array}\right) \end{equation*}$ y $A(1\mid 2)=\begin{equation*} \left(\begin{array}{rr} 5 & 0 \\ 2 & -1 \end{array}\right) \end{equation*}.$

El menor $1,2$ de $A$ es $det\,\begin{equation*} \left(\begin{array}{rr} 5 & 0 \\ 2 & -1 \end{array}\right) \end{equation*}=-5.$

$A(2\mid 3)=\begin{equation*} \left(\begin{array}{rr} 1 & -2 \\ 2 & 4 \end{array}\right) \end{equation*}$, el menor $2,3$ de $A$ es $det\,\begin{equation*} \left(\begin{array}{rr} 1 & -2 \\ 2 & 4 \end{array}\right) \end{equation*}=8.$

Lema 1

Sea $A\in \mathscr M_{n\times n}(\mathbb R)$ tal que $a_{n1}=\cdots=a_{nn-1}=0$, entonces $det\,A=a_{nn}det\,A(n\mid n).$

Demostración

Sea $A\in \mathscr M_{n\times n}(\mathbb R)$ tal que $a_{n1}=\cdots=a_{nn-1}=0$.

Por definición de determinante tenemos que:

$\det\,A=\displaystyle\sum_{\sigma\in S_n}sgn\,\sigma\,a_{1\sigma(1)}\cdots a_{n\sigma(n)}.$

Como todos los elementos de la fila $n$ son cero salvo en $n$-ésimo entonces los únicos sumandos que pueden contribuir con algún valor no nulo son aquellos tales que $\sigma(n)=n$, así:

$\det\,A=\displaystyle\sum_{\sigma\in S_n, \sigma(n)=n}sgn\,\sigma\,a_{1\sigma(1)}\cdots a_{n-1\sigma(n-1)} a_{nn}.$

Factorizando $a_{nn}$ tenemos que:

$\det\,A=a_{nn}\displaystyle\sum_{\sigma\in S_n, \sigma(n)=n}sgn\,\sigma\,a_{1\sigma(1)}\cdots a_{n-1\sigma(n-1)}.$

Pero cada $\sigma\in S_n$ tal que $\sigma(n)=n$ da lugar a una $\gamma\in S_{n-1}$, a saber $\gamma:\{1,2,\dots ,n-1\}\rightarrow\{1,2,\dots ,n-1\}$ tal que $\gamma(i)=\sigma(i)$ para toda $i\in\{1,2,\dots ,n-1\}$, y recíprocamente, cada $\gamma\in S_{n-1}$ da lugar a una $\sigma\in S_{n}$ tal que $\sigma(n)=n$, a saber $\sigma:\{1,2,\dots ,n\}\rightarrow\{1,2,\dots ,n\}$ tal que $\sigma(i)=\gamma(i)$ para toda $i\in\{1,2,\dots ,n-1\}$ y $\sigma(n)=n$. Podemos reescribir lo anterior entonces como:

$\det\,A= a_{nn} \displaystyle\sum_{\gamma\in S_{n-1}}sgn\,\gamma\,a_{1\gamma(1)}\cdots a_{n-1\gamma(n-1)}$

y por definición de determinante tenemos que:

$det\,A=a_{nn}det\,A(n\mid n).$

$\square$

Lema 2

Sea $A\in \mathscr M_{n\times n}(\mathbb R),\,\,i,j\in\set{1,\dotsc,n}.$ Si todos los elementos del renglón $i$ de $A$ salvo quizás $a_{ij}$ son cero, entonces $det\,A=(-1)^{i+j}a_{ij}det\,A(i\mid j).$

Al número $(-1)^{i+j}det\,A(i\mid j)$ se le conoce como el cofactor $i,j$ de $A$.

Demostración

Sea $A\in \mathscr M_{n\times n}(\mathbb R),\,\,i,j\in\set{1,\dotsc,n},\,\,a_{il}=0\,\,\forall l\neq j.$

Entonces todos los elementos del renglón $i$ de $A$ son cero salvo quizás $a_{ij}$, la matriz $A$ se ve de la siguiente forma (el renglón $i$ está marcador en rojo):

$A=\begin{equation*} \left(\begin{array}{ccccc} a_{11} & \cdots& a_{1j} & \cdots & a_{1n}\\ \vdots & \cdots & \vdots & \cdots & \vdots \\\colorbox{Red}{$0$}& \colorbox{Red}{$\cdots$} & \colorbox{Red}{$a_{ij}$} & \colorbox{Red}{$\cdots$} & \colorbox{Red}{$0$}\\ \vdots & \cdots & \vdots & \cdots & \vdots\\ a_{n1} & \cdots & a_{nj} & \cdots & a_{nn} \end{array}\right) \end{equation*}.$

Vamos a intercambiar renglones y columnas para llevar esta matriz a una del tipo de las requeridas en las hipótesis del lema 1.

Nuestro objetivo es transformar la matriz $A$ en una equivalente $A’$, que tenga en el último renglón ceros en todas sus entradas salvo en la última, y cuyo menor $n,n$ que es $det\,A'(n\mid n)$, sea igual al menor $i,j$ de $A$, es decir el determinante de la matriz que se obtiene de quitar el $i$-ésimo renglón y la $j$-ésima columna de $A$.

La matriz $A’$ es de la forma:

$A’=\begin{equation*} \left(\begin{array}{ccccccc} a_{11} & \cdots& a_{1j-1} & a_{1j+1} & \cdots & a_{1n} & a_{ij}\\ \vdots & \cdots & \vdots & \vdots & \cdots &\vdots &\vdots \\ a_{i-11} & \cdots & a_{i-1j-1} & a_{i-1j+1} &\cdots & a_{i-1n} & a_{i-1j} \\ a_{i+11} & \cdots & a_{i+1j-1} & a_{i+1j+1} &\cdots & a_{i+1n} & a_{i+1j} \\ \vdots & \cdots & \vdots & \vdots & \cdots &\vdots &\vdots\\ a_{n1} & \cdots& a_{nj-1} & a_{nj+1} & \cdots & a_{nn} & a_{nj} \\ \colorbox{Red}{$0$}& \colorbox{Red}{$\cdots$}&\colorbox{Red}{$0$} & \colorbox{Red}{$0$}& \colorbox{Red}{$\cdots$} & \colorbox{Red}{$0$} & \colorbox{Red}{$a_{ij}$} \end{array}\right) \end{equation*}.$

Observa que para llegar a $A’$, movimos primero el renglón $i$ de $A$ $n-1$ veces, intercambiándolo con cada uno de los renglones subsecuentes, y después intercambiando la columna $j$ de la matriz obtenida $n-j$ veces con las columnas subsecuentes.

Por la propiedad $3$ de la nota anterior tenemos que:

$det\,A=(-1)^{(n-i)+(n-j)}det\,A’.$

Desarrollando tenemos que:

$det\,A=(-1)^{2n-(i+j)}det\,A’=(-1)^{2n}(-1)^{-(i+j)}det\,A’$

y dado que $(-1)^{2n}=1$ y que $(-1)^{-(i+j)}=\frac{1}{(-1)^{i+j}}=(-1)^{i+j}.$

Obtenemos por el lema 1 que:

$det\,A=(-1)^{i+j}a_{ij}det\,A(i\mid j).$

$\square$

Teorema

Sea $A\in \mathscr M_{n\times n}(\mathbb R)$ se tiene que:

$det\,A=(-1)^{i+1}a_{i1}det\,A(i\mid 1)+(-1)^{i+2}a_{i2}det\,A(i\mid 2)+\cdots+(-1)^{i+n}a_{in}det\,A(i\mid n).$

O bien

$det\,A=(-1)^{1+j}a_{1j}det\,A(1\mid j)+(-1)^{2+j}a_{2j}det\,A(2\mid j)+\cdots+(-1)^{n+j}a_{nj}det\,A(n\mid j).$

Ve el siguiente video de la demostración del teorema

Demostración

Sea $A\in \mathscr M_{n\times n}(\mathbb R)$

Vamos a considerar el renglón $i$, y pensaremos que en cada término $a_{ij}$ aparece una suma de $n$ términos, $n-1$ son ceros y el otro $a_{ij}$ en el sumando $j$-ésimo. Así vamos a escribir $A$ como:

$A=\begin{equation*} \left(\begin{array}{ccccc} a_{11} & \cdots& a_{1j} & \cdots & a_{1n}\\ \vdots & \cdots & \vdots & \cdots & \vdots \\\colorbox{Red}{$a_{i1}+0+\cdots+0$}& \colorbox{Red}{$\cdots$} & \colorbox{Red}{$0+\cdots+a_{ij}+\cdots+0$} & \colorbox{Red}{$\cdots$} & \colorbox{Red}{$0+\cdots+0+a_{in}$}\\ \vdots & \cdots & \vdots & \cdots & \vdots\\ a_{n1} & \cdots & a_{nj} & \cdots & a_{nn} \end{array}\right) \end{equation*}.$

Desde esta perspectiva podemos visualizar al renglón $i$ como la suma de los siguientes $n$ vectores:

$(a_{i1},0,\dotsc,0),(0,a_{i2},0,\dotsc,0),\dotsc, (0,\dotsc,0,a_{in}).$

Consideraremos ahora para cada renglón $i$, una matriz que tiene los mismos renglones que $A$, excepto en el $i$-ésimo renglón, en el que tendremos precisamente al vector $i$-ésimo de la lista anterior.

Recordemos la propiedad uno de determinantes vista en la nota 41 que nos dice que: Si $R_t^{\prime}$ y $R_t^{\prime\prime}$ son los renglones $t$ de $A’$ y $A^{\prime\prime}$ respectivamente, el renglón $t$ de $A$ es $R_t^{\prime}+R_t^{\prime\prime}$, y el resto de los renglones de $A, A’$ y $ A^{\prime\prime}$ coinciden, entonces $det\,A=det\,A’+det\,A^{\prime\prime}.$ Gracias a dicha propiedad obtenemos que:

$detA=det\,\begin{equation*} \left(\begin{array}{ccccc} a_{11} & \cdots& a_{1j} & \cdots & a_{1n}\\ \vdots & \cdots & \vdots & \cdots & \vdots \\\colorbox{Red}{$a_{i1}$}& \colorbox{Red}{$\cdots$} & \colorbox{Red}{$0$} & \colorbox{Red}{$\cdots$} & \colorbox{Red}{$0$}\\ \vdots & \cdots & \vdots & \cdots & \vdots\\ a_{n1} & \cdots & a_{nj} & \cdots & a_{nn} \end{array}\right) \end{equation*}$ $+\cdots+$ $det\,\begin{equation*} \left(\begin{array}{ccccc} a_{11} & \cdots& a_{1j} & \cdots & a_{1n}\\ \vdots & \cdots & \vdots & \cdots & \vdots \\\colorbox{Red}{$0$}& \colorbox{Red}{$\cdots$} & \colorbox{Red}{$a_{ij}$} & \colorbox{Red}{$\cdots$} & \colorbox{Red}{$0$}\\ \vdots & \cdots & \vdots & \cdots & \vdots\\ a_{n1} & \cdots & a_{nj} & \cdots & a_{nn} \end{array}\right) \end{equation*}$ $+\dotsc+$ $\, \begin{equation*} \left(\begin{array}{ccccc} a_{11} & \cdots& a_{1j} & \cdots & a_{1n}\\ \vdots & \cdots & \vdots & \cdots & \vdots \\\colorbox{Red}{$0$}& \colorbox{Red}{$\cdots$} & \colorbox{Red}{$0$} & \colorbox{Red}{$\cdots$} & \colorbox{Red}{$a_{in}$}\\ \vdots & \cdots & \vdots & \cdots & \vdots\\ a_{n1} & \cdots & a_{nj} & \cdots & a_{nn} \end{array}\right) \end{equation*}.$

Y así por el lema 2 obtenemos que:

$det\,A=(-1)^{i+1}a_{i1}det\,A(i\mid 1)+\cdots+(-1)^{i+j}a_{ij}det\,A(i\mid j)+\cdots+(-1)^{i+n}a_{in}det\,A(i\mid n).$

La prueba es análoga para las columnas.

$\square$

Ejemplos

$1.$ Considera la matriz $A=\begin{equation*} \left(\begin{array}{rrrrr} 1 & -2 & 8 & 0 & 4 \\ 5 & 0 & 13 & 0 & 2 \\ 3 & 8 & 9 & 5 & 7 \\ 0 & 0 & -2 & 0 & 0\\ 9 & 0 & 11 & 0 & 1 \end{array}\right) \end{equation*}$

Vamos a desarrollar su determinante. Conviene al desarrollar hacerlo por los renglones o columnas que tengan muchos ceros, vamos a desarrollar por la cuarta columna.

$det\,A=det\,\begin{equation*} \left(\begin{array}{rrrrr} 1 & -2 & 8 & \colorbox{Red}{$0$} & 4 \\ 5 & 0 & 13 & \colorbox{Red}{$0$} & 2 \\ 3 & 8 & 9 & \colorbox{Red}{$5$} & 7 \\ 0 & 0 & -2 & \colorbox{Red}{$0$} & 0\\ 9 & 0 & 11 & \colorbox{Red}{$0$} & 1 \end{array}\right) \end{equation*}$

Según el teorema tenemos que:

$det\,A=(-1)^{1+4}\,\colorbox{Red}{$0$}\,det\,A(1\mid 4)+(-1)^{2+4}\,\colorbox{Red}{$0$}\,det\,A(2\mid 4)+(-1)^{3+4}\,\colorbox{Red}{$5$}\,det\,A(3\mid 4)+(-1)^{4+4}\,\colorbox{Red}{$0$}\,det\,A(4\mid 4)+(-1)^{1+5}\,\colorbox{Red}{$0$}\,det\,A(5\mid 4).$

Eliminando los términos con cero obtenemos que:

$det\,A=(-1)^{3+4}\,5\,det\,A(3\mid 4)=5\,det\,\begin{equation*} \left(\begin{array}{rrrr} 1 & -2 & 8 & 4 \\ 5 & 0 & 13 & 2 \\ 0 & 0 & -2 & 0\\ 9 & 0 & 11 & 1 \end{array}\right) \end{equation*}$

Al desarrollar los términos con ceros no aportan a la suma, este nuevo determinante lo vamos a desarrollar por el tercer renglón que también tiene muchos ceros, sea: $A’=\begin{equation*} \left(\begin{array}{rrrr} 1 & -2 & 8 & 4 \\ 5 & 0 & 13 & 2 \\ \colorbox{Red}{$0$} & \colorbox{Red}{$0$} & \colorbox{Red}{$-2$} & \colorbox{Red}{$0$} \\ 9 & 0 & 11 & 1 \end{array}\right) \end{equation*}$.

Vamos a considerar su determinante

$det\,A’=det\,\begin{equation*} \left(\begin{array}{rrrr} 1 & -2 & 8 & 4 \\ 5 & 0 & 13 & 2 \\ \colorbox{Red}{$0$} & \colorbox{Red}{$0$} & \colorbox{Red}{$-2$} & \colorbox{Red}{$0$} \\ 9 & 0 & 11 & 1 \end{array}\right) \end{equation*}$.

Desarrollando por el tercer renglón, según el teorema tenemos que:

$det\,A’=(-1)^{3+1}\,\colorbox{Red}{$0$}\,det\,A'(3\mid 1)+(-1)^{3+2}\,\colorbox{Red}{$0$}\,det\,A'(3\mid 2) +(-1)^{3+3}\,\colorbox{Red}{$-2$}\,det\,A'(3\mid 3)+(-1)^{3+4}\,\colorbox{Red}{$0$}\,det\,A'(3\mid 4)$

Eliminando los términos con ceros tenemos que:

$det\,A’=(-1)^{3+3}\,\colorbox{Red}{$-2$}\,det\,A'(3\mid 3)=-2\,det\,A'(3\mid 3)=\begin{equation*} \left(\begin{array}{rrr} 1 & -2 & 4 \\ 5 & 0 & 2 \\ 9 & 0 & 1 \end{array}\right) \end{equation*}$

Y como $det\,A=5\,det\,A’=(5)(-2)\,det\,\begin{equation*} \left(\begin{array}{rrr} 1 & -2 & 4 \\ 5 & 0 & 2 \\ 9 & 0 & 1 \end{array}\right) \end{equation*}$

Sea $A^{\prime\prime}=\begin{equation*} \left(\begin{array}{rrr} 1 & \colorbox{Red}{$-2$} & 4 \\ 5 & \colorbox{Red}{$0$} & 2 \\ 9 & \colorbox{Red}{$0$} & 1 \end{array}\right) \end{equation*}$.

Obtenemos su determinante desarrollándolo por la segunda columna

$det\,A^{\prime\prime}=det\,\begin{equation*} \left(\begin{array}{rrr} 1 & \colorbox{Red}{$-2$} & 4 \\ 5 & \colorbox{Red}{$0$} & 2 \\ 9 & \colorbox{Red}{$0$} & 1 \end{array}\right) \end{equation*}= (-1)^{1+2}\,\colorbox{Red}{$-2$}\,det\, A^{\prime\prime} (1\mid 2) + (-1)^{2+2}\,\colorbox{Red}{$0$}\,det\, A^{\prime\prime} (2\mid 2) + (-1)^{3+2}\,\colorbox{Red}{$0$}\,det\, A^{\prime\prime} (3\mid 2)$.

Eliminando los términos con cero tenemos que:

$det\,A^{\prime\prime} = (-1)^{1+2}\,\colorbox{Red}{$-2$}\,det\, A^{\prime\prime} (1\mid 2) =2\,det\, A^{\prime\prime} (1\mid 2) = 2\, \begin{equation*} \left(\begin{array}{rr} 5 & 2 \\ 9 & 1 \end{array}\right) \end{equation*}$

Y como $det\,A=(-5)(-2)det\,A^{\prime\prime}$ obtenemos que:

$det\, A= (-5)(-2)(2)\,det\, \begin{equation*} \left(\begin{array}{rr} 5 & 2 \\ 9 & 1 \end{array}\right) \end{equation*}=(-5)(-2)(2)[5-18]=(-5)(-2)(2)(-13)=-260$

Para el siguiente ejemplo tienes que tener el consideración las siguientes propiedades de determinantes vistos en la nota anterior.

$2.$ Si $A$ se obtiene de $A’$ multiplicando el renglón $t$ por $\lambda$, entonces:

$det\,A=\lambda det\,A’.$

$3.$ Si $A$ se obtiene de $A’$ intercambiando dos renglones, entonces:

$det\,A=- det\,A’.$

$5.$ Si $A$ se obtiene de $A’$ sumando a un renglón un múltiplo de otro, entonces:

$det\,A= det\,A’.$

Esto es por que es mucho mas fácil obtener el determinante de una matriz escalonada reducida.

Considera la matriz:

$A=\begin{equation*} \left(\begin{array}{rrrr} -1 & 4 & 2 & 1 \\ 5 & 5 & 1 & 3 \\ 2 & 2 & 2 & 1 \\ 3 & 6 & 4 & 2 \end{array}\right) \end{equation*}$

Explicación de las igualdades
y operaciones elementales
$det\,A=det\,\begin{equation*} \left(\begin{array}{rrrr} -1 & 4 & 2 & 1 \\ 5 & 5 & 1 & 3 \\ 2 & 2 & 2 & 1 \\ 3 & 6 & 4 & 2 \end{array}\right) \end{equation*}$Efectúa las operaciones elementales:
$R_2\to R_2+5R_1$
$R_3\to R_3+2R_1$
$R_4\to R_4+3R_1$
$=det\,\begin{equation*} \left(\begin{array}{rrrr} -1 & 4 & 2 & 1 \\ 0 & 25 & 11 & 8 \\ 0 & 10 & 6 & 3 \\ 0 & 18 & 10 & 5 \end{array}\right) \end{equation*}$La igualdad se da por la propiedad 5.
Efectúa la operación elemental:
$\frac{1}{10} R_3$
$=10\,det\,\begin{equation*} \left(\begin{array}{rrrr} -1 & 4 & 2 & 1 \\ 0 & 25 & 11 & 8 \\ 0 & 1 & \frac{3}{5} & \frac{3}{10} \\ 0 & 18 & 10 & 5 \end{array}\right) \end{equation*}$La multiplicación por 10 se da por la propiedad 2.
Efectúa la operación elemental:
$R_2\leftrightarrow R_3$
$=-10\,det\,\begin{equation*} \left(\begin{array}{rrrr} -1 & 4 & 2 & 1 \\ 0 & 1 & \frac{3}{5} & \frac{3}{10}\\ 0 & 25 & 11 & 8 \\ 0 & 18 & 10 & 5 \end{array}\right) \end{equation*}$El cambio de signo es por la propiedad 3.
Efectúa las operaciones elementales:
$R_3\to R_3+(-2)R_2$
$R_4\to R_4+(-18)R_2$
$=-10\,det\,\begin{equation*} \left(\begin{array}{rrrr} -1 & 4 & 2 & 1 \\ 0 & 1 & \frac{3}{5} & \frac{3}{10}\\ 0 & 0 & -4 & \frac{1}{2} \\ 0 & 0 & -\frac{4}{5} & -\frac{2}{5} \end{array}\right) \end{equation*}$La igualdad se da por la propiedad 5.
Efectúa la operación elemental:
$R_4\to R_4+(-\frac{1}{5})R_2$
$=-10\,det\,\begin{equation*} \left(\begin{array}{rrrr} -1 & 4 & 2 & 1 \\ 0 & 1 & \frac{3}{5} & \frac{3}{10}\\ 0 & 0 & -4 & \frac{1}{2} \\ 0 & 0 & 0 & -\frac{1}{2} \end{array}\right) \end{equation*}$La igualdad se da por la propiedad 5.
$=-10(-1)(1)(-4)(-\frac{1}{2})=20$Por ser una matriz diagonal inferior su determinante es el producto de los elementos de la diagonal. Pruébalo de tarea moral.

Tarea Moral

$1.$ Una matriz cuadrada $A$ es diagonal si $A_{ij}=0$ para $i\neq j$. Por otro lado una matriz cuadrada $A$ es triangular superior si $A_{ij}=0$ para $i>j$. De acuerdo a la definición del determinante.

$i)$ ¿Cuál es el determinante de una matriz diagonal?

$ii)$ ¿Cuál es el determinante de una matriz triangular superior?

$2.$ Sea $A=\begin{equation*} \left(\begin{array}{rrrr} 1 & 2 & 3 & 4 \\ 0 & -1 & 0 & 4\\ 3 & 1 & 0 & 4 \\ 4 & 2 & 1 & 4 \end{array}\right) \end{equation*},$ calcula los menores $3\ 4$ y $1\,1$ de $A$.

$3.$ Calcula el determinante de $A,B,C.$

$A=\begin{equation*} \left(\begin{array}{rrr} 8 & 2 & -1\\ -3 & 4 & -6\\ 1 & 7 & 2 \end{array}\right) \end{equation*}$

$B=\begin{equation*} \left(\begin{array}{rrrr} 1 & -3 & 4 & 6 \\ -2 & 4 & 1 & 7\\ 3 & -1 & 2 & 5 \\ 1 & 2 & 3 & 7 \end{array}\right) \end{equation*}$

$C=\begin{equation*} \left(\begin{array}{rrr} k & -3 & 9\\ 2 & 4 & k+1\\ 1 & k^2 & 3 \end{array}\right) \end{equation*}$

$4.$ Considera la matriz $\begin{equation*} \left(\begin{array}{rrr} 1 & 1 & 1\\ a & b & c\\ a^2 & b^2 & c^2 \end{array}\right) \end{equation*}$

¿Cómo es su determinante en términos de $a,b,c$?. ¿Cómo generalizarías el resultado para matrices $n\times n$?

Más adelante

En la siguiente nota veremos la propiedad multiplicativa que tiene el determinante, así como condiciones del determinante para saber si una matriz es invertible.

Enlaces relacionados

Página principal del curso.

Enlace a la nota anterior. Nota 41. Propiedades de los determinantes.

Enlace a la nota siguiente. Nota 43. Propiedad multiplicativa del determinante y teorema de invertibilidad de matrices.

Nota 41. Propiedades de los determinantes.

Por Julio César Soria Ramírez

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

En esta nota deduciremos propiedades importantes que tienen los determinantes, para ello usaremos la definición dada en la nota anterior. Sería conveniente que, si no lo has hecho, revisaras los ejemplos de la nota anterior para que sea más natural su deducción.

Propiedades

Sean $A, A’, A^{\prime\prime}\in \mathscr M_{n\times n}(\mathbb R),\,\lambda\in \mathbb{R}.$

$1.$ Si $R_t^{\prime}$ y $R_t^{\prime\prime}$ son los renglones $t$ de $A’$ y $A^{\prime\prime}$ respectivamente, el renglón $t$ de $A$ es $R_t^{\prime}+R_t^{\prime\prime}$, y el resto de los renglones de $A, A’$ y $ A^{\prime\prime}$ coinciden, entonces:

$det\,A=det\,A’+det\,A^{\prime\prime}.$

$2.$ Si $A$ se obtiene de $A’$ multiplicando el renglón $t$ por $\lambda$, entonces:

$det\,A=\lambda det\,A’.$

$3.$ Si $A$ se obtiene de $A’$ intercambiando dos renglones, entonces:

$det\,A=- det\,A’.$

$4.$ Si $A$ tiene dos renglones iguales, entonces:

$det\,A=0.$

$5.$ Si $A$ se obtiene de $A’$ sumando a un renglón un múltiplo de otro, entonces:

$det\,A= det\,A’.$

$6.$ Si $A$ tiene un renglón de ceros, entonces:

$det\,A=0$

$7.$ $det\,A^t=det\,A.$

Ve el siguiente video con las demostraciones de las propiedades $1$ y $2$:

Demostración de las propiedades

Sean $A, A’, A^{\prime\prime}\in \mathscr M_{n\times n}(\mathbb R),\,\lambda\in \mathbb{R}.$

Demostración de la propiedad 1

Supongamos que $a_{ij}=a_{ij}^{\prime}=a_{ij}^{\prime\prime}$ para todo $i\neq t$ y para todo $j$, supongamos también que $a_{tj}=a_{tj}^{\prime}+a_{tj}^{\prime\prime}$ para todo $j$. Por definición de determinante:

$\det\,A=\displaystyle\sum_{\sigma\in S_n}sgn\,\sigma\,a_{1\sigma(1)}\cdots a_{t\sigma(t)}\cdots a_{n\sigma(n)},$

y entonces por hipótesis $a_{t\sigma(j)}=a_{t\sigma(j)}^{\prime}+a_{t\sigma(j)}^{\prime\prime}.$

Y así:

$\det\,A=\displaystyle\sum_{\sigma\in S_n}sgn\,\sigma\,a_{1\sigma(1)}\cdots ( a_{t\sigma(j)}^{\prime}+a_{t\sigma(j)}^{\prime\prime} )\cdots a_{n\sigma(n)}.$

Aplicando la propiedad distributiva tenemos que:

$\det\,A=\displaystyle\sum_{\sigma\in S_n}sgn\,\sigma\,a_{1\sigma(1)}\cdots a_{t\sigma(t)}^{\prime}\cdots a_{n\sigma(n)} + \displaystyle\sum_{\sigma\in S_n}sgn\,\sigma\,a_{1\sigma(1)}\cdots a_{t\sigma(t)}^{\prime\prime}\cdots a_{n\sigma(n)}$

y por hipótesis $a_{ij}=a_{ij}^{\prime}=a_{ij}^{\prime\prime}$ para todo $i\neq t$ y para todo $j$, por lo tanto:

$\det\,A=\displaystyle\sum_{\sigma\in S_n}sgn\,\sigma\,a_{1\sigma(1)}^{\prime}\cdots a_{t\sigma(t)}^{\prime}\cdots a_{n\sigma(n)}^{\prime} + \displaystyle\sum_{\sigma\in S_n}sgn\,\sigma\,a_{1\sigma(1)}^{\prime\prime}\cdots a_{t\sigma(t)}^{\prime\prime}\cdots a_{n\sigma(n)}^{\prime\prime}.$

Entonces por definición determinante tenemos que:

$det\,A=det\,A’+det\,A^{\prime\prime}.$

Demostración de la propiedad 2

Supongamos que $a_{ij}=a_{ij}^{\prime}$ para toda $ i\neq t$ y para toda $ j$, y que $a_{tj}=\lambda a_{tj}^{\prime}$ para toda $j$.

Por definición de determinante tenemos que:

$\det\,A=\displaystyle\sum_{\sigma\in S_n}sgn\,\sigma\,a_{1\sigma(1)}\cdots a_{t\sigma(t)}\cdots a_{n\sigma(n)}$

pero, por hipótesis, $a_{t\sigma(j)}=\lambda a_{t\sigma(j)}^{\prime}$, así:

$\det\,A=\displaystyle\sum_{\sigma\in S_n}sgn\,\sigma\,a_{1\sigma(1)}\cdots \lambda a_{t\sigma(j)}^{\prime}\cdots a_{n\sigma(n)}.$

También por hipótesis $a_{ij}=a_{ij}^{\prime}$ para toda $i\neq t$, entonces:

$\det\,A=\displaystyle\sum_{\sigma\in S_n}sgn\,\sigma\,a_{1\sigma(1)}^{\prime}\cdots \lambda a_{t\sigma(j)}^{\prime}\cdots a_{n\sigma(n)}^{\prime},$ y conmutando $\lambda$:

$\det\,A= \lambda \displaystyle\sum_{\sigma\in S_n}sgn\,\sigma\,a_{1\sigma(1)}^{\prime}\cdots a_{t\sigma(j)}^{\prime}\cdots a_{n\sigma(n)}^{\prime},$

entonces por definición:

$det\,A=\lambda det\,A’.$

Ve el siguiente video con las demostraciones de las propiedades $3$ y $4$

Demostración de la propiedad 3

Supongamos que $A$ se obtiene de $A’$ intercambiando los renglones $t$ y $s$.

Por definición tenemos que:

$\det\,A=\displaystyle\sum_{\sigma\in S_n}sgn\,\sigma\,a_{1\sigma(1)}\cdots a_{t\sigma(t)}\cdots a_{s\sigma(s)}\cdots a_{n\sigma(n)}$

Al intercambiar los renglones $t$ y $s$ tenemos que:

$a_{t\sigma(t)}=a_{s\sigma(t)}^{\prime}$ y $a_{s\sigma(s)}=a_{t\sigma(s)}^{\prime}$, y además $a_{i\sigma(i)}=a_{i\sigma(i)}^{\prime}$ para toda $i$ distinta de $t$ y de $s$.

Entonces:

$\det\,A=\displaystyle\sum_{\sigma\in S_n}sgn\,\sigma\,a_{1\sigma(1)}^{\prime}\cdots a_{s\sigma(t)}^{\prime}\cdots a_{t\sigma(s)}^{\prime}\cdots a_{n\sigma(n)}^{\prime}$

Observa que la permutación $\gamma = \begin{equation*} \left(\begin{array}{rrrrrrr} 1 & \cdots & t & \cdots & s & \cdots & n\\ \sigma(1) & \cdots & \sigma(s) & \cdots & \sigma(t) & \cdots & \sigma(n) \end{array}\right) \end{equation*}$ es muy parecida a $\sigma$ salvo en su evaluación en $t$ y en $s$. De modo más preciso $\tau\circ \sigma=\gamma$, con $\tau$ la transposición que intercambia a $\sigma(t)$ y a $\sigma(s)$. Entonces difieren sólo en una transposición y por lo tanto $sgn\,\sigma=-sgn\,\gamma$. Vamos a reescribir el determinante en términos de la permutación $\gamma$, y entonces:

$\det\,A=\displaystyle\sum_{\gamma\in S_n} – sgn\,\gamma\,a_{1\gamma(1)}^{\prime}\cdots a_{s\gamma(s)}^{\prime}\cdots a_{t\gamma(t)}^{\prime}\cdots a_{n\gamma(n)}^{\prime},$

entonces por definición tenemos que:

$det\,A=- det\,A’.$

Demostración de la propiedad 4

Supongamos que $A$ tiene iguales los renglones $t$ y $s$. Sea $A’=A$, al intercambiar los renglones $t$ y $s$ de $A’$ obtenemos $A$, por la propiedad $3$ tenemos que:

$det\,A=- det\,A’=-det\,A$, entonces $det\,A=-det\,A$. Así, $2det\,A=0$ y por lo tanto:

$det\,A=0$.

Ve el siguiente video con las demostraciones de las propiedades $5,6,7.$

Demostración de la propiedad 5

Supongamos que $A$ se obtiene de $A’$ sumando al renglón $s$, $\lambda$ veces el renglón $t.$

Entonces si:

$A’=\begin{equation*} \left(\begin{array}{ccccccc} a_{11}^{\prime} & && \cdots & && a_{1n}^{\prime}\\ \vdots & && \cdots & && \vdots\\a_{t1}^{\prime} & && \cdots & && a_{tn}^{\prime}\\ \vdots & && \cdots & && \vdots\\ a_{s1}^{\prime} & && \cdots & && a_{sn}^{\prime}\\ \vdots & && \cdots & && \vdots\\ a_{n1}^{\prime} & && \cdots & && a_{nn}^{\prime} \end{array}\right) \end{equation*}.$

Entonces $A$ es:

$A=\begin{equation*} \left(\begin{array}{ccccccc} a_{11}^{\prime} & &&\cdots &&& a_{1n}^{\prime}\\ \vdots &&& \cdots &&& \vdots\\a_{t1}^{\prime} &&& \cdots &&& a_{tn}^{\prime}\\ \vdots &&& \cdots && &\vdots\\ a_{s1}^{\prime}+\lambda a_{t1}^{\prime} &&& \cdots &&& a_{sn}^{\prime}+\lambda a_{tn}^{\prime}\\ \vdots &&& \cdots &&& \vdots\\ a_{n1}^{\prime} &&& \cdots &&& a_{nn}^{\prime} \end{array}\right) \end{equation*}.$

Así por la propiedad $1$ tenemos que:

$detA=$ $det \begin{equation*} \left(\begin{array}{ccccccc} a_{11}^{\prime} & &&\cdots &&& a_{1n}^{\prime}\\ \vdots &&& \cdots &&& \vdots\\a_{t1}^{\prime} &&& \cdots &&& a_{tn}^{\prime}\\ \vdots &&& \cdots && &\vdots\\ a_{s1}^{\prime}+\lambda a_{t1}^{\prime} &&& \cdots &&& a_{sn}^{\prime}+\lambda a_{tn}^{\prime}\\ \vdots &&& \cdots &&& \vdots\\ a_{n1}^{\prime} &&& \cdots &&& a_{nn}^{\prime} \end{array}\right) \end{equation*}$ $=det \begin{equation*} \left(\begin{array}{ccccccc} a_{11}^{\prime} &&& \cdots &&& a_{1n}^{\prime}\\ \vdots &&& \cdots &&& \vdots\\a_{t1}^{\prime} &&& \cdots &&& a_{tn}^{\prime}\\ \vdots &&& \cdots &&& \vdots\\ a_{s1}^{\prime} &&& \cdots &&& a_{sn}^{\prime}\\ \vdots &&& \cdots &&& \vdots\\ a_{n1}^{\prime} &&& \cdots &&& a_{nn}^{\prime} \end{array}\right) \end{equation*}$ $+det \begin{equation*} \left(\begin{array}{ccccccc} a_{11}^{\prime} &&& \cdots &&& a_{1n}^{\prime}\\ \vdots &&& \cdots &&& \vdots\\a_{t1}^{\prime} &&& \cdots &&& a_{tn}^{\prime}\\ \vdots &&& \cdots &&& \vdots\\ \lambda a_{t1}^{\prime} &&& \cdots &&& \lambda a_{tn}^{\prime}\\ \vdots &&& \cdots &&& \vdots\\ a_{n1}^{\prime} &&& \cdots &&& a_{nn}^{\prime} \end{array}\right) \end{equation*},$

y por la propiedad $2$ tenemos que:

$det\,A=$ $det \begin{equation*} \left(\begin{array}{ccccccc} a_{11}^{\prime} &&& \cdots &&& a_{1n}^{\prime}\\ \vdots &&& \cdots &&& \vdots\\a_{t1}^{\prime} &&& \cdots &&& a_{tn}^{\prime}\\ \vdots &&& \cdots &&& \vdots\\ a_{s1}^{\prime} &&& \cdots &&& a_{sn}^{\prime}\\ \vdots &&& \cdots &&& \vdots\\ a_{n1}^{\prime} &&& \cdots &&& a_{nn}^{\prime} \end{array}\right) \end{equation*}$ $+$ $\lambda det \begin{equation*} \left(\begin{array}{ccccccc} a_{11}^{\prime} &&& \cdots &&& a_{1n}^{\prime}\\ \vdots &&& \cdots &&& \vdots\\a_{t1}^{\prime} &&& \cdots &&& a_{tn}^{\prime}\\ \vdots &&& \cdots &&& \vdots\\ a_{t1}^{\prime} &&& \cdots &&& a_{tn}^{\prime}\\ \vdots &&& \cdots &&& \vdots\\ a_{n1}^{\prime} &&& \cdots &&& a_{nn}^{\prime} \end{array}\right) \end{equation*},$

y como la matriz que aparece en el segundo sumando tiene dos renglones repetidos, su determinante es cero. Por lo tanto:

$det\,A=$ $det \begin{equation*} \left(\begin{array}{ccccccc} a_{11}^{\prime} &&& \cdots &&& a_{1n}^{\prime}\\ \vdots &&& \cdots &&& \vdots\\a_{t1}^{\prime} &&& \cdots &&& a_{tn}^{\prime}\\ \vdots &&& \cdots &&& \vdots\\ a_{s1}^{\prime} &&& \cdots &&& a_{sn}^{\prime}\\ \vdots &&& \cdots &&& \vdots\\ a_{n1}^{\prime} &&& \cdots &&& a_{nn}^{\prime} \end{array}\right) \end{equation*}=det A’$

Demostración de la propiedad 6

Si el renglón $t$ de $A$ es un renglón de ceros, al multiplicar el renglón $t$ por cero obtenemos $A$, así por la propiedad $2$:

$det\,A=0det\,A=0.$

Observación

Sea $\sigma\in S_n,\,\,sgn\,\sigma=sgn\,\sigma^{-1}$ ya que si $\sigma=\tau_m\circ\cdots\circ\tau_1$ es un producto de transposiciones entonces tenemos que $\sigma^{-1}=\tau_1\circ\cdots\circ\tau_m.$

Demostración de la propiedad 7

Sea $A^t=(b_{ij})$, entonces de la definición de determinante

$\det\,A^t=\displaystyle\sum_{\sigma\in S_n}sgn\,\sigma\,b_{1\sigma(1)}\cdots b_{n\sigma(n)}.$

Por la definición de transpuesta tenemos que $b_{i\sigma(i)}=a_{\sigma(i)i}$ para toda $i$, entonces:

$\det\,A^t=\displaystyle\sum_{\sigma\in S_n}sgn\,\sigma\,a_{\sigma(1)1}\cdots a_{\sigma(n)n}.$

Por la observación tenemos que:

$\det\,A^t=\displaystyle\sum_{\sigma\in S_n}sgn\,\sigma^{-1} \,a_{\sigma(1)\sigma^{-1}(\sigma(1))}\cdots a_{\sigma(n)\sigma^{-1}(\sigma(n))}.$

Observemos que cada factor $a_{\sigma(i)\sigma^{-1}(\sigma(i))}$, es de la forma $a_{j\sigma^{-1}(j)}$ con $j\in\{1,2,\dots ,n\}$, entonces reacomodando dichos factores en orden creciente de acuerdo al valor de $j$ tenemos:

$\det\,A^t=\displaystyle\sum_{\sigma\in S_n}sgn\,\sigma^{-1}\,a_{1\sigma^{-1}(1)}\cdots a_{n\sigma^{-1}(n)}.$

Si denotamos $\gamma=\sigma^{-1}$, al reescribir en términos de $\gamma$ tenemos que:

$\det\,A^t=\displaystyle\sum_{\gamma\in S_n}sgn\,\gamma\,a_{1\gamma(1)}\cdots a_{n\gamma(n)}=\det\,A.$

$\square$

Gracias a la propiedad 7 tenemos que:

Corolario

Todas las propiedades antes mencionadas de renglones se cumplen también para las columnas.

Tarea Moral

$1.$ Resuelve los siguientes incisos:

$i)$ Sean $A=\begin{equation*} \left(\begin{array}{cc} a & b \\ c & d \\ \end{array}\right) \end{equation*}$, $B=\begin{equation*} \left(\begin{array}{cc} e & f \\ c & d \\ \end{array}\right) \end{equation*}$, $C=\begin{equation*} \left(\begin{array}{cc} a+e & b+f \\ c & d \\ \end{array}\right) \end{equation*}.$

Si $det\,A=7$ y $det\,B=\pi$. ¿Cuánto es el determinante de $C$?

$ii)$ Sean $B_1=\begin{equation*} \left(\begin{array}{cc} a_{11} & 0 \\ a_{21} & a_{22} \\ \end{array}\right) \end{equation*}$, $B_2=\begin{equation*} \left(\begin{array}{cc} 0 & a_{12} \\ a_{21} & a_{22} \\ \end{array}\right) \end{equation*}$ y $A=\begin{equation*} \left(\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \\ \end{array}\right) \end{equation*}$. Calcula el determinante de $A$ en términos de los determinantes de $B_1$ y $B_2$.

$iii)$ ¿Cómo podrías generalizar el resultado del inciso anterior a matrices de $n\times n$?

$2.$ Sean $A\in \mathscr M_{n\times n}(\mathbb R)$ y $\lambda \in \mathbb R$. ¿Cómo es el determinante de $\lambda A$ en términos del determinante de $A$?

$3.$ Sean $A=\begin{equation*} \left(\begin{array}{rrr} a & b & c \\ d & e & f \\ g & h & i \end{array}\right) \end{equation*}$ y $B=\begin{equation*} \left(\begin{array}{rrr} g & h & i \\ a & b & c \\ d & e & f \end{array}\right) \end{equation*}.$

¿Cómo es el determinante de $B$ comparado con el determinante de $A$?

$4.$ Sea $A\in \mathscr M_{n\times n}(\mathbb R)$. Si un renglón de $A$ es múltiplo de otro. ¿Qué ocurre con el determinante de $A$?

Más adelante

En la siguiente nota deduciremos una fórmula para el calculo del determinante.

Enlaces relacionados

Página principal del curso.

Enlace a la nota anterior. Nota 40. Determinantes.

Enlace a la nota siguiente. Nota 42. Formula para obtener el determinante.

Nota 40. Determinantes.

Por Julio César Soria Ramírez

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

El determinante de una matriz es un valor numérico que se puede calcular a partir de los elementos de la matriz y que tiene muchas aplicaciones en álgebra lineal y otras áreas de las matemáticas y la física. Una forma de calcular el determinante es mediante la definición en términos de permutaciones.

En esta definición, se considera una matriz cuadrada y se toman todas las posibles permutaciones de las filas o columnas de la matriz. Para cada permutación, se calcula un producto de elementos de la matriz, donde cada elemento proviene de una fila o columna diferente, y se suman todos estos productos. El resultado de esta suma es el determinante de la matriz.

Esta definición puede parecer complicada al principio, pero es muy poderosa y se puede utilizar para calcular determinantes de matrices de cualquier tamaño. Además, tiene muchas propiedades útiles, como la linealidad en las filas o columnas de la matriz, que permiten simplificar muchos cálculos.

En el siguiente video de 3Blue1Brown se da una aproximación geométrica e intuitiva de lo que es el determinante.

Ve el siguiente video de la clase.

Antes de llegar a la definición de lo que es un determinante analicemos lo que es una permutación.

Definición

Las permutaciones de $n$ elementos son:

$S_n=\set{\sigma:\set{1,\dotsc,n}\to\set{1,\dotsc,n}\mid \sigma\,\,es\,\,biyectiva }$

Una permutación $\sigma \in S_n$ se llama una transposición si intercambia dos números y deja fijos a los demás.

Nota

Toda permutación es composición de transposiciones. Puede que haya varias composiciones que den la misma permutación, pero todos son la composición de un número par de transposiciones o todas son la composición de un número impar de transposiciones.

Definición

Sea $\sigma \in S_n$. Decimos que $\sigma$ es par si es la composición de un número par de transposiciones, e impar en caso contrario.

El signo de $\sigma$ es $+1$ en el primer caso y $-1$ en el segundo caso y se denota por $sgn\,\sigma.$

Ejemplo

Considera el conjunto

$S_3=\set{\sigma:\set{1,2,3}\to\set{1,2,3}\mid \sigma\,\,es\,\,biyectiva }.$

Podemos dar todos elementos del conjunto, es decir todas las funciones biyectivas :

$\sigma_1=\begin{equation*} \left(\begin{array}{rrr} 1 & 2 & 3\\ 1 & 2 & 3 \end{array}\right) \end{equation*}$, $\sigma_2=\begin{equation*} \left(\begin{array}{rrr} 1 & 2 & 3\\ 2 & 1 & 3 \end{array}\right) \end{equation*}$, $\sigma_3=\begin{equation*} \left(\begin{array}{rrr} 1 & 2 & 3\\ 1 & 3 & 2 \end{array}\right) \end{equation*}$, $\sigma_4=\begin{equation*} \left(\begin{array}{rrr} 1 & 2 & 3\\ 3 & 2 & 1 \end{array}\right) \end{equation*}$, $\sigma_5=\begin{equation*} \left(\begin{array}{rrr} 1 & 2 & 3\\ 2 & 3 & 1 \end{array}\right) \end{equation*}$, $\sigma_6=\begin{equation*} \left(\begin{array}{rrr} 1 & 2 & 3\\ 3 & 1 & 2 \end{array}\right) \end{equation*}.$

¿Cuál es el signo de $\sigma_2$?

$\sigma_2=\begin{equation*} \left(\begin{array}{rrr} 1 & 2 & 3\\ 2 & 1 & 3 \end{array}\right) \end{equation*}$ es un transposición ya que intercambia el $1$ con el $2$ y deja fijo al $3$, entonces $\sigma_2$ es impar y $sgn\,\sigma_2=-1$.

Observa que $\sigma_3=\begin{equation*} \left(\begin{array}{rrr} 1 & 2 & 3\\ 1 & 3 & 2 \end{array}\right) \end{equation*}$ y $\sigma_4=\begin{equation*} \left(\begin{array}{rrr} 1 & 2 & 3\\ 3 & 2 & 1 \end{array}\right) \end{equation*}$ también son transposiciones y por lo tanto también su signo es $-1$.

¿Cuál es el signo de $\sigma_1$?

Observa que la composición de $\sigma_2\circ \sigma_2=\sigma_1$.

Como $\sigma_2\circ \sigma_2=\begin{equation*} \left(\begin{array}{rrr} 1 & 2 & 3\\ 1 & 2 & 3 \end{array}\right) \end{equation*}$ $=\sigma_1$, siendo $\sigma_2$ una transposición, entonces $\sigma_1$ es par pues la composición de $\sigma_2$ con si misma. Su signo por lo tanto es $1$, $sgn\,\sigma_1=+1$.

¿Cuál es el signo de $\sigma_5$?

Observa que la composición de $\sigma_2=\begin{equation*} \left(\begin{array}{rrr} 1 & 2 & 3\\ 2 & 1 & 3 \end{array}\right) \end{equation*}$ con $\sigma_4=\begin{equation*} \left(\begin{array}{rrr} 1 & 2 & 3\\ 3 & 2 & 1 \end{array}\right) \end{equation*}$ nos da $\sigma_5=\begin{equation*} \left(\begin{array}{rrr} 1 & 2 & 3\\ 2 & 3 & 1 \end{array}\right) \end{equation*}.$

Así, $\sigma_4\circ \sigma_2=\sigma_5$, con $\sigma_4$ y $\sigma_2$ transposiciones.

Concluimos que $\sigma_5$ es par y por tanto $sgn\,\sigma_5$=+1.$

¿Cuál es el signo de $\sigma_6$?

La composición de $\sigma_4=\begin{equation*} \left(\begin{array}{rrr} 1 & 2 & 3\\ 3 & 2 & 1 \end{array}\right) \end{equation*}$ con $\sigma_2=\begin{equation*} \left(\begin{array}{rrr} 1 & 2 & 3\\ 2 & 1 & 3 \end{array}\right) \end{equation*}$ nos da $\sigma_6=\begin{equation*} \left(\begin{array}{rrr} 1 & 2 & 3\\ 3 & 1 & 2 \end{array}\right) \end{equation*}.$

Así, $\sigma_2\circ \sigma_4=\sigma_6$, con $\sigma_2$ y $\sigma_4$ transposiciones.

Concluimos que $\sigma_6$ es par y por tanto su signo es $+1$.

Observemos que $\sigma_6=\begin{equation*} \left(\begin{array}{rrr} 1 & 2 & 3\\ 3 & 1 & 2 \end{array}\right) \end{equation*}$ es la inversa de $\sigma_5=\begin{equation*} \left(\begin{array}{rrr} 1 & 2 & 3\\ 2 & 3 & 1 \end{array}\right) \end{equation*}$, por eso es la composición de las mismas transposiciones que $\sigma_5$ pero en orden inverso.

Los que acabamos de ver es que:

$\sigma_1,\sigma_5,\sigma_6$ son pares y $\sigma_2,\sigma_3,\sigma_4$ son impares.

Con estos elementos vamos a dar la definición de lo que es el determinante de una matriz.

Ve el siguiente video

Definición

Sea $A\in \mathscr M_{n\times n}(\mathbb R)$. El determinante de $A$ es:

$\det\,A=\displaystyle\sum_{\sigma\in S_n}sgn\,\sigma\,a_{1\sigma(1)}a_{2\sigma(2)}\cdots a_{n\sigma(n)}$

Observación Sea $A=\begin{equation*} \left(\begin{array}{rr} a_{11} & a_{12} \\ a_{21} & a_{22} \\ \end{array}\right) \end{equation*}$, entonces

$\det\,A=a_{11}a_{22}-a_{12}a_{21}.$

Esto se debe a que las únicas permutaciones de $\{1,2\}$ son $\sigma_1=\begin{equation*} \left(\begin{array}{rr} 1 & 2 \\ 1 & 2 \end{array}\right) \end{equation*}$, que es la identidad y tiene signo $+1$, y la transposición $\sigma_2=\begin{equation*} \left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right) \end{equation*}$ que tiene signo $-1.$ Así,

$\det\,A=sgn\,\sigma_1\,a_{1\sigma_1(1)}a_{2\sigma_1(2)}+sgn\,\sigma_2\,a_{1\sigma_2(1)}a_{2\sigma_2(2)}=(+1)\,a_{11}a_{22}+(-1)\,a_{12}a_{21}=a_{11}a_{22}-a_{12}a_{21}.$

Ejemplos.

En estos ejemplos veremos lo que sucede con el determinante, cuando aplicamos las distintas operaciones elementales a una matriz.

$1.$ Considera las matrices $A=\begin{equation*} \left(\begin{array}{rr} 1 & 2 \\ 3 & 4 \\ \end{array}\right) \end{equation*}$, $A’=\begin{equation*} \left(\begin{array}{rr} 1 & 2 \\ -1 &5 \\ \end{array}\right) \end{equation*}$, $A^{\prime\prime}=\begin{equation*} \left(\begin{array}{rr} 1 & 2 \\ 2 & 9 \\ \end{array}\right) \end{equation*}.$

Si obtenemos sus determinantes tenemos que:

$det\,A’=4-6=-2,\,\,det\,A^{\prime\prime}=5-(-2)=7\,\,,det\,A=9-4=5$

Observa que en este ejemplo, el segundo renglón de $A^{\prime\prime}$ se obtiene de la suma de los segundos renglones de $A$ y $A^{\prime\prime}$, y su primer renglón coincide con los de $A$ y $A^{\prime}$,

Y lo que estamos observando es que:

$det\,A^{\prime\prime}=det\,A+det\,A^{\prime}$.

$2.$ Sean $A’=\begin{equation*} \left(\begin{array}{rr} 1 & 2 \\ 3 & 4 \\ \end{array}\right) \end{equation*}$ y $A=\begin{equation*} \left(\begin{array}{rr} 3 & 6 \\ 3 & 4 \\ \end{array}\right) \end{equation*}.$

El primer renglón de $A$ se obtiene multiplicando por $3$ el primer renglón de $A’$

Los determinantes de estas matrices son:

$det\,A’=4-6=-2,\,\,det\,A=12-18=-6$

y lo que estamos observando es que:

$det\,A=3det\,A’.$

$3.$ Veamos qué sucede con el determinante cuando intercambiamos renglones en una matriz. Considera las matrices:

$A’=\begin{equation*} \left(\begin{array}{rr} 1 & 2 \\ 3 & 4 \\ \end{array}\right) \end{equation*}$ y $A=\begin{equation*} \left(\begin{array}{rr} 3 & 4 \\ 1 & 2 \\ \end{array}\right) \end{equation*},$

$det\,A’=4-6=-2,\,\,det\,A=6-4=2.$

En este caso tenemos que:

$det\,A=-det\,A’.$

$4.$ Veamos qué pasa cuando en una matriz hay dos renglones iguales.

Sea $A=\begin{equation*} \left(\begin{array}{rr} 1 & 2 \\ 1 & 2 \\ \end{array}\right) \end{equation*},$ entonces

$det\,A=2-2=0$, es decir el determinante vale cero.

$5.$ Veamos qué pasa cuando le sumamos a un renglón un múltiplo de otro.

Sea $A’=\begin{equation*} \left(\begin{array}{rr} 1 & 2 \\ 3 & 4 \\ \end{array}\right) \end{equation*}$ y considera su matriz equivalente $A=\begin{equation*} \left(\begin{array}{rr} 1 & 2 \\ 1 & 0 \\ \end{array}\right) \end{equation*}$, que se obtiene de $A’$, sumando al renglón dos de $A’$ menos dos veces el primero.

Entonces $det\,A’=4-6=-2,\,\,det\,A=0-2=-2.$ En este caso

$det\,A=det\,A’.$

es decir el determinante coincide.

$6.$ Consideremos una matriz con un renglón de ceros, por ejemplo

$A=\begin{equation*} \left(\begin{array}{rr} 1 & 2 \\ 0 & 0 \\ \end{array}\right) \end{equation*}.$ Notamos que su determinante es $det\,A=0-0=0$.

$7.$ Por último veamos qué pasa con el determinante al transponer una matriz.

Sean $A=\begin{equation*} \left(\begin{array}{rr} 1 & 2 \\ 3 & 4 \\ \end{array}\right) \end{equation*}$ y considera su transpuesta $A^t=\begin{equation*} \left(\begin{array}{rr} 1 & 3 \\ 2 & 4 \\ \end{array}\right) \end{equation*}$

Si calculamos sus determinantes tenemos que:

$det\,A=4-6=-2,\,\,det\,A=4-6=-2.$

En este caso:

$det\,A=det\,A^t.$

Tarea Moral

$1.$ Encuentra todas las permutaciones de $\set{1,2,3,4}$ y su signo. ¿Cuántas hay en total?, ¿Cuántas son pares?

$2.$ Sea $A=\begin{equation*} \left(\begin{array}{rr} -3& 1 \\ 7 & 9 \\ \end{array}\right) \end{equation*}$ y calcula:

$i)$ Su determinante.

$ii)$ El $det\,B$, donde $B$ se obtiene de $A$ multiplicando su segundo renglón por $4.$

$iii)$ El $det\,C$, donde $C$ se obtiene de $A$ intercambiando sus renglones entre sí.

$iv)$ El $det\,D$, donde $D$ se obtiene de $A$ sumando al segundo renglón dos veces el primero.

Más adelante

En la siguiente nota veremos que las propiedades observadas en los ejemplos se cumplen en general, para ello usaremos la definición que dimos de determinante.

Enlaces relacionados

Página principal del curso.

Enlace a la nota anterior. Nota 39. Ejemplos de sistemas de ecuaciones.

Enlace a la nota siguiente. Nota 41. Propiedades de los determinantes.

Nota 39. Ejemplos de sistemas de ecuaciones

Por Julio César Soria Ramírez

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

En la nota anterior desarrollamos la teoría para la resolución de sistemas de ecuaciones, ahora veremos cómo encontrar dichas soluciones.

La resolución de sistemas de ecuaciones lineales es un problema fundamental en matemáticas y en diversas áreas de la ingeniería y ciencias aplicadas. Una técnica comúnmente utilizada para resolver estos sistemas es la eliminación de Gauss-Jordan, que consiste en aplicar operaciones elementales a las ecuaciones del sistema, que como vimos en la nota anterior no modifica las soluciones del sistema, para obtener una matriz equivalente que sea escalonada reducida por renglones. Esta matriz tiene la ventaja de que la solución del sistema asociado es fácilmente obtenible. En esta nota se explicará paso a paso cómo realizar este proceso, a partir de ejemplos concretos.

Ejemplos

$1.$

ExpresiónExplicación
$\begin{array}{rl} 4x-8y &=12\\ 3x-6y &=9\\-2x+4y &=-6 \end{array}$Inicia con un sistema de ecuaciones lineales.
$\begin{equation*} \left(\begin{array}{rr|r} 4 & -8 & 12 \\ 3 & -6 & 9 \\ -2 & 4 & -6 \end{array}\right) \end{equation*}\sim$Considera la matriz aumentada asociada al sistema
y efectúa las operaciones elementales:
$\frac{1}{4}R_1,\,\frac{1}{3}R_2,\,\frac{1}{2}R_3$
$\begin{equation*} \left(\begin{array}{rr|r} 1 & -2 & 3 \\ 1 & -2 & 3 \\ -1 & 2 & -3 \end{array}\right) \end{equation*}\sim$Efectúa las operaciones elementales:
$R_2\to R_2-R_1$
$R_3\to R_3+R_1$
$\begin{equation*} \left(\begin{array}{rr|r} 1 & -2 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right) \end{equation*}$

El sistema se reduce a $x-2y=3$ y dos ecuaciones iguales a $0x+0y=0$, pero esto último se cumple para todas $x,y\in\mathbb{R}$, así que debemos analizar sólo qué valores $x$ y $y$ cumplen que $x-2y=3$.

Observemos que $x-2y=3$ si y sólo si $x=3+2y$. En este caso podemos dar a $y$ cualquier valor real $\lambda$, y entonces $x$ queda determinado por el valor que dimos a $y$. A $y$ se le llama parámetro.

Las soluciones son:

$x=3+2\lambda,\,y=\lambda$ con $\lambda\in \mathbb R .$

El conjunto de soluciones es :

$\begin{array}{l}\set{(x,y)\in \mathbb R^2\mid x=3+2\lambda,y=\lambda,\,\lambda\in\mathbb R} \\ = \set{(3+2\lambda,\lambda) \mid \lambda\in\mathbb R)} \\ =\set{(2\lambda,\lambda)+(3,0) \mid \lambda\in\mathbb R)} \\ = \set{\lambda(2,1)+(3,0) \mid \lambda\in\mathbb R)} \end{array}$

$2.$

ExpresiónExplicación
$\begin{array}{rlr}5x+2y-19z+0w-32t &=&-24\\ 6x+30y-21z+30w-21t &=&-21 \\x+5y-4z+0w-7t &=&5 \\ 3x+15y-11z+w-14t &=&-12 \end{array}$Inicia con un sistema de ecuaciones lineales.
$\begin{equation*} \left(\begin{array}{ccccc|r} 5 & 25 & -19 & 0 & -32 & -24\\ 6 & 30 & -21 & 3 & -21 & -21 \\ 1 & 5 & -4 & 0 & -7 & -5 \\ 3 & 15 & -11 & 1 & -14 &-12 \end{array}\right) \end{equation*}\sim$Considera la matriz aumentada asociada al sistema
y efectúa las operaciones elementales:
$R_1\leftrightarrow R_3$
$\frac{1}{3}R_2$
$\begin{equation*} \left(\begin{array}{ccccc|r} 1 & 5 & -4 & 0 & -7 & -5\\ 2 & 10 & -7 & 1 & -7 & -7 \\ 5 & 25 & -19 & 0 & -32 & -24 \\ 3 & 15 & -11 & 1 & -14 &-12 \end{array}\right) \end{equation*}\sim$Efectúa las operaciones elementales:
$R_2\to R_2-2R_1$
$R_3\to R_3-5R_1$
$R_4\to R_4-3R_1$
$\begin{equation*} \left(\begin{array}{ccccc|r} 1 & 5 & -4 & 0 & -7 & -5\\ 0 & 0 & 1 & 1 & 7 & 3 \\ 0 & 0 & 1 & 0 & 3 & 1 \\ 0 & 0 & 1 & 1 & 7 &3 \end{array}\right) \end{equation*}\sim$Efectúa las operaciones elementales:
$R_3\to R_3-2R_2$
$R_4\to R_4-R_2$
$\begin{equation*} \left(\begin{array}{ccccc|r} 1 & 5 & -4 & 0 & -7 & -5\\ 0 & 0 & 1 & 1 & 7 & 3 \\ 0 & 0 & 0 & -1 & -4 & -2 \\ 0 & 0 & 0 & 0 & 0 &0 \end{array}\right) \end{equation*}\sim$Efectúa la operación elemental:
$R_2\to R_2+R_3$
$\begin{equation*} \left(\begin{array}{ccccc|r} 1 & 5 & -4 & 0 & -7 & -5\\ 0 & 0 & 1 & 0 & 3 & 1 \\ 0 & 0 & 0 & -1 & -4 & -2 \\ 0 & 0 & 0 & 0 & 0 &0 \end{array}\right) \end{equation*}\sim$Efectúa las operaciones elementales:
$R_1\to R_1+4R_2$
$(-1)R_3$
$\begin{equation*} \left(\begin{array}{ccccc|r} 1 & 5 & 0 & 0 & 5 & -1\\ 0 & 0 & 1 & 0 & 3 & 1 \\ 0 & 0 & 0 & 1 & 4 & 2 \\ 0 & 0 & 0 & 0 & 0 &0 \end{array}\right) \end{equation*}$
$\begin{array}{rlr}x+5y+0z+0w+5t &=&-1\\ 0x+0y+z+0w+3t &=&1 \\0x+0y+0z+w+4t &=&2 \end{array}$Este sistema es equivalente al sistema con el que empezamos, por lo tanto sus soluciones son las mismas.
$\begin{array}{llllllr}x&+5y+&&&+5t &=&-1\\ &&+z&&+3t &=&1 \\&&&w&+4t &=&2 \end{array}$El sistema se puede simplificar omitiendo los términos con coeficiente cero.

Observemos que en el sistema anterior, debido a la forma que tiene, es muy sencillo despejar a $x$, a $z$ y a $w$, y al hacerlo quedan en términos de $y$ y de $t$ (las indeterminadas que no tienen como coeficiente al primer elemento no nulo de algún renglón en la matriz escalonada reducida por renglones). Éstas nos servirán entonces como parámetros, ya que eligiendo $y$ y $t$ como cualesquiera números reales, $x$, $z$ y $w$ quedan determinados por ellos.

Sean entonces $\alpha,\beta\in \mathbb R$, si $t=\alpha$ y $y=\beta$, tenemos que:

$x=-5\beta-5\alpha-1$

$z=1-3\alpha$

$w=-4\alpha +2.$

Así, el conjunto solución es:

$\begin{align*}\phantom{=}&\set{(-5\beta-5\alpha-1,\beta,-3\alpha+1,-4\alpha+2,\alpha)\mid \alpha,\beta \in\mathbb R} \\ =& \set{\beta(-5,1,0,0,0)+\alpha(-5,0,-3,-4,1)+(-1,0,1,2,0)\mid \alpha,\beta \in\mathbb R } .\end{align*}$

$3.$

ExpresiónExplicación
$\begin{array}{rlr} x+y+z &=-3\\ 2x-3y+4z &=1 \\3x+2y+5z &=8 \end{array}$Inicia con un sistema de ecuaciones lineales.
$\begin{equation*} \left(\begin{array}{ccc|c} 1 & 1 & 1 & 3\\ 2 & -3 & 4 & 1 \\ 3 & 2 & 5 & 8 \end{array}\right) \end{equation*}\sim$Considera la matriz aumentada asociada al sistema
y efectúa las operaciones elementales:
$R_2\to R_2-2R_1$
$R_3\to R_3-3R_1$
$\begin{equation*} \left(\begin{array}{ccc|c} 1 & 1 & 1 & 3\\ 0 & -5 & 2 & -5 \\ 0 & -1 & 2 & -1 \end{array}\right) \end{equation*}\sim$Efectúa la operación elemental:
$R_2\leftrightarrow R_3$
$\begin{equation*} \left(\begin{array}{ccc|c} 1 & 1 & 1 & 3\\ 0 & -1 & 2 & -1\\ 0 & -5 & 2 & -5 \end{array}\right) \end{equation*}\sim$Efectúa las operaciones elementales:
$R_1\to R_1+R_2$
$R_3\to R_3-5R_2$
$\begin{equation*} \left(\begin{array}{ccc|c} 1 & 0 & 3 & 2\\ 0 & -1 & 2 & -1\\ 0 & 0 & -8 & 0 \end{array}\right) \end{equation*}\sim$Efectúa las operaciones elementales:
$\frac{1}{8} R_3$
$(-1) R_2$
$\begin{equation*} \left(\begin{array}{ccc|c} 1 & 0 & 3 & 2\\ 0 & 1 & -2 & 1\\ 0 & 0 & 1 & 0 \end{array}\right) \end{equation*}\sim$Efectúa las operaciones elementales:
$R_1\to R_1-3R_3$
$R_2\to R_2+2 R_3$
$\begin{equation*} \left(\begin{array}{ccc|c} 1 & 0 & 0 & 2\\ 0 & 1 & 0 & 1\\ 0 & 0 & 1 & 0 \end{array}\right) \end{equation*}$
$\begin{array}{rrrr} x& &&=2\\&y &&=1 \\&&z &=0 \end{array}$Este sistema es equivalente al inicial, por tanto su solución es la misma. Hay una única solución:
$\set{(2,1,0)}.$

$4.$

ExpresiónExplicación
$\begin{array}{rlr}6x+12y-6z &=24\\ 3x+9y-2z &=14 \\5x+4y-7z &=21 \end{array}$Inicia con un sistema de ecuaciones lineales.
$\begin{equation*} \left(\begin{array}{ccc|c} 6 & 12 & -6 & 24\\ 3 & 9 & -2 & 14 \\ 5 & 4 & -7 & 21 \end{array}\right) \end{equation*}\sim$Considera la matriz aumentada asociada al sistema
y efectúa la operación elemental:
$\frac{1}{6}R_1$
$\begin{equation*} \left(\begin{array}{ccc|c} 1 & 2 & -1 & 4\\ 3 & 9 & -2 & 14 \\ 5 & 4 & -7 & 21 \end{array}\right) \end{equation*}\sim$Efectúa la operaciones elementales:
$R_2\to R_2-3R_1$
$R_3\to R_3-5R_1$
$\begin{equation*} \left(\begin{array}{ccc|c} 1 & 2 & -1 & 4\\ 0 & 3 & 1 & 2\\ 0 & -6 & -2 & 1 \end{array}\right) \end{equation*}\sim$Efectúa la operación elemental:
$R_3\to R_3+2 R_2$
$\begin{equation*} \left(\begin{array}{ccc|c} 1 & 2 & -1 & 4\\ 0 & 3 & 1 & 2\\ 0 & 0 & 0 & 5 \end{array}\right) \end{equation*}\sim$La última ecuación es:
$0x+0y+0z=5$ que no tiene solución. Por lo tanto el sistema no tiene solución.

Definición

Decimos que un sistema es incompatible si no tiene solución. Decimos que un sistema es compatible si tiene solución; en este caso decimos que es compatible determinado si tiene una única solución, si hay más de una solución decimos que es compatible indeterminado.

Nota

Sea $A\in \mathscr M_{m\times n}(\mathbb R), \,\,A^1,\dotsc,A^n$ sus columnas entonces $rk\, A=dim\langle A^1,\dotsc,A^n \rangle = rk\,A^t.$

Teorema

Un sistema de ecuaciones lineales tiene solución si y sólo si el rango de la matriz de coeficientes coincide con el rango de la matriz aumentada.

Demostración

Sea $A\in \mathscr M_{m\times n}(\mathbb R),\, B\in \mathscr M_{m\times 1}(\mathbb R)$

$AX=B$ tiene solución $\Longleftrightarrow $ $\exists S\in \mathbb R^n$ tal que $AS=B$

$\Longleftrightarrow $ $B\in \langle A^1,\dotsc,A^n \rangle$

$\Longleftrightarrow $ $\langle B,A^1,\dotsc,A^n \rangle=\langle A^1,\dotsc,A^n \rangle$

$\Longleftrightarrow $ $dim\langle B,A^1,\dotsc,A^n \rangle=dim\langle A^1,\dotsc,A^n \rangle$

$\Longleftrightarrow $ El rango de la matriz aumentada es igual al rango de la matriz de coeficientes.

Tarea Moral

$1.$ En cada inciso encuentra el conjunto solución del sistema

$i)$

$\begin{align*} 5x+2y-3z &=-25\\ 3x+y+4z &=7 \\2x+3y+2z &=16 \end{align*}$

$ii)$

$\begin{align*} 3x+2y+4z &=-1\\ 2x-y+5z &=8 \\5x+y+9z &=11 \end{align*}$

$iii)$

$\begin{align*} 2x_1+x_2+x_3+x_4 &=0\\x_1+2x_2+x_3+x_4&=0 \\x_1+x_2+2x_3+x_4 &=16\\ x_1+x_2+x_3+2x_4&=0 \end{align*}$

$iv)$

$\begin{align*} x+2y-z+3w &=7\\ 3x+6y-14z+11w &=20 \end{align*}$

$2.$ En una tienda se venden $23$ baterías eléctricas por un total de $\$79.2$. Si el tipo $A$ cuesta $\$5$ el tipo $B$ $\$2.80$ y el tipo $C$ $\$1.60$ por pieza. ¿Cuántas baterías de cada tipo se vendieron?

Más adelante

En la siguiente nota definiremos lo que es el determinante de una matriz.

Enlaces relacionados

Página principal del curso.

Enlace a la nota anterior. Nota 38. Sistemas de ecuaciones.

Enlace a la nota siguiente. Nota 40. Determinantes.