Archivo del Autor: César Mendoza

Fubini sobre subconjuntos

Por César Mendoza

Introducción

Anteriormente, enunciamos el Teorema de Fubini y analizamos algunas de sus consecuencias directas. En esta entrada estudiaremos cómo el teorema de Fubini nos puede ayudar a calcular integrales sobre regiones más complicadas.

Productos de conjuntos medibles

Antes de empezar, veamos un resultado bastante intuitivo pero no trivial que será útil para justificar nuestros desarrollos más adelante.

Proposición. Sean $A\subseteq \mathbb{R}^l$ y $B\subseteq \mathbb{R}^m$. Consideremos $A\times B\subseteq \mathbb{R}^l\times \mathbb{R}^m=\mathbb{R}^n$. Si $A\in \mathcal{L}_n$ y $B\in \mathcal{L}_m$, entonces $$A\times B \in \mathcal{L}_n.$$ Y además $$\lambda(A\times B)=\lambda(A)\lambda(B).$$

Demostración. El teorema es inmediato cuando $A$ y $B$ son ambos abiertos (o ambos cerrados), pues en este caso $A\times B$ es abierto (o cerrado) y en automático medible. Más aún, por Fubini:

\begin{align*}
\lambda(A\times B) &= \int_{\mathbb{R}^n}\chi_{A\times B} (x,y) \ \mathrm{d}x \mathrm{d}y \\
&= \int_{\mathbb{R}^n}\chi_A (x) \cdot \chi_B(y) \ \mathrm{d}x \mathrm{d}y \\
&= \int_{\mathbb{R}^m}\left (\int_{\mathbb{R}^l}\chi_A (x)\cdot \chi_B(y) \ \mathrm{d}x \right) \mathrm{d}y \\
&= \int_{\mathbb{R}^m} \chi_B(y) \left (\int_{\mathbb{R}^l}\chi_A (x) \ \mathrm{d}x \right) \mathrm{d}y \\
&= \left( \int_{\mathbb{R}^l}\chi_A (x) \ \mathrm{d}x \right) \left( \int_{\mathbb{R}^m} \chi_B(y) \ \mathrm{d}x\right) \\
&= \lambda(A)\lambda(B).
\end{align*}

De hecho, este último argumento es válido siempre que $A\times B\in \mathcal{L}_n$, así que sólo necesitamos probar que $A\times B$ es medible.

Más aún, basta probar el caso en el que $A$ y $B$ son medibles y de medida finita, pues cualesquiera $A’\in \mathcal{L}_l$ y $B’\in \mathcal{L}_m$ se pueden escribir como
$$A’=\bigcup_{k=1}^{\infty} A_k; \ \ \ \ \ \ \ \ \ B’=\bigcup_{k=1}^{\infty} B_k;$$ Donde los $A_k$ y $B_k$ son conjuntos medibles de medida finita (en $\mathbb{R}^l$ y $\mathbb{R}^m$ respectivamente). Y $$A’\times B’ = \bigcup_{j,k=1}^{\infty} A_k\times B_k.$$

Supongamos entonces que $A$ y $B$ son de medida finita. Por el teorema de caracterización de conjuntos medibles, podemos encontrar subconjuntos $F_1\subseteq \mathbb{R}^l$, $F_2\subseteq \mathbb{R}^m$ cerrados y $G_1\subseteq \mathbb{R}^l$, $G_2\subseteq \mathbb{R}^m$ abiertos tales que:
$$F_1\subseteq A \subseteq G_1,$$ $$F_2\subseteq B \subseteq G_2,$$
Y: $$\lambda(G_1\setminus F_1)<\varepsilon,$$ $$\lambda(G_2\setminus F_2)<\varepsilon.$$

De manera que $F_1\times F_2$ es cerrado (en $\mathbb{R}^n$) y $G_1\times G_2$ es abierto (en $\mathbb{R}^n$), con $$F_1\times F_2 \subseteq A\times B \subseteq G_1\times G_2.$$

Ahora, notemos que

\begin{align*}
(G_1\times G_2)\setminus (F_1\times F_2) &= [(G_1\setminus F_1)\times G_2]\cup [F_1\times(G_2\setminus F_2)] \\
&\subseteq [(G_1\setminus F_1)\times G_2]\cup [G_1\times (G_2\setminus F_2)].
\end{align*}

Notemos que éste último conjunto es unión de productos de abiertos. De modo que podemoes estimar:

\begin{align*}
\lambda((G_1\times G_2)\setminus (F_1\times F_2)) &\leq \lambda([(G_1\setminus F_1)\times G_2]\cup [G_1\times (G_2\setminus F_2)]) \\
&\leq \lambda([(G_1\setminus F_1)\times G_2]) + \lambda( [G_1\times (G_2\setminus F_2)]) \\
&\leq \varepsilon \lambda(G_2)+\lambda(G_1)\varepsilon \\
&\leq \varepsilon( \lambda(B)+\varepsilon )+\varepsilon(\lambda(A)+\epsilon) \\
&= \varepsilon(\lambda(A)+\lambda(B)) +2\varepsilon ^2.
\end{align*}

En resúmen, podemos encontrar $F’=F_1\times F_2$ cerrado y $G’=G_1\times G_2$ abierto tales que $$F’\subseteq A\times B \subseteq G’$$ Y $$\lambda(G’\setminus F’)$$ Sea tan pequeño como queramos. Esto garantiza que $A\times B$ es medible (teorema de caracterización de conjuntos medibles).

$\square$

Teorema de Fubini para productos de conjuntos

Con el resultado anterior en mente, es fácil establecer una versión del teorema de Fubini para productos de conjuntos.

Teorema (Fubini para productos de conjuntos). Sean $A\in \mathcal{L}_l$ y $B\in \mathcal{L}_m$ conjuntos medibles en $\mathbb{R}^l$ y $\mathbb{R}^m$ respectivamente. Sea $f:A\times B\to [-\infty,\infty]$ una función medible que satisface cualquiera de las hipótesis del teorema de Fubini ($f\geq 0$ o $f\in L^1(A\times B)$). Entonces: $$\int_{A\times B}f(x,y) \ \mathrm{d}x\mathrm{d}y=\int_B \left( \int_A f(x,y) \ \mathrm{d}x \right) \mathrm{d}y=\int_A \left( \int_B f(x,y) \ \mathrm{d}y \right) \mathrm{d}x.$$

Demostración. Por simplicidad, probaremos solamente la primera igualdad. La segunda es completamente análoga.

Por la proposición anterior, $A\times B\in \mathcal{L}_n$ es un conjunto medible, por lo que $f\chi_{A\times B}$ es una función medible. Como $f\chi_{A\times B}\geq 0$ si $f\geq 0$ o bien $|f\chi_{A\times B}|\in L^1(\mathbb{R}^n)$ si $f\in L^1(A\times B)$, concluimos que $f\chi_{A\times B}$ satisface las hipótesis del teorema de Fubini. Luego:

\begin{align*}
\int_{A\times B}f(x,y) \ \mathrm{d}x\mathrm{d}y &= \int_{\mathbb{R}^n}f(x,y)\chi_{A\times B}(x,y) \ \mathrm{d}x \mathrm{d}y \\
&= \int_{\mathbb{R}^m} \left( \int_{\mathbb{R}^l}f(x,y)\chi_A(x)\chi_B(y) \ \mathrm{d}x \right)\mathrm{d}y \\
&=\int_{\mathbb{R}^m} \chi_B(y) \left( \int_{\mathbb{R}^l}f(x,y)\chi_A(x) \ \mathrm{d}x \right)\mathrm{d}y \\
&= \int_B \left( \int_{A}f(x,y) \ \mathrm{d}x \right)\mathrm{d}y.
\end{align*}

$\square$

Integración sobre subconjuntos

El Teorema de Fubini resulta muy útil para calcular integrales sobre regiones complejas, especialmente cuando estas pueden expresarse como productos de conjuntos o están delimitadas por funciones. Veamos algunos ejemplos sencillos.

Ejercicio. Calcular $$\int_{[0,1]\times [1,2]}x-2y \ \mathrm{d}x\mathrm{d}y.$$

Solución. Antes de aplicar el teorema de Fubini, hay que asegurarnos que la función $(x,y)\to x-2y$ es $L^1([0,1]\times [1,2])$. En este caso es sencillo:

$$|x-2y|\leq |x|+2|y|\leq (1)+2(2)\leq 5 \ \ \ \ \forall (x,y)\in [0,1]\times[1,2].$$

$$\implies \int_{[0,1]\times[1,2]}|x-2y| \ \mathrm{d}x\mathrm{d}y\leq 5\int_{[0,1]\times[1,2]}1 \ \mathrm{d}x\mathrm{d}y=5\lambda([0,1]\times[1,2])=5<\infty.$$

Así, $f\in L^1([0,1]\times [1,2])$. Entonces, aplicando el teorema de Fubini (para productos de conjuntos):

\begin{align*}
\int_{[0,1]\times [1,2]} x-2y \ \mathrm{d}x\mathrm{d}y &= \int_1^2\left( \int_0^1 x-2y \ \mathrm{d}x \right) \mathrm{d}y \\ &= \int_1^2 \left( \left[ \frac{x^2}{2}\right]_{x=0}^{x=1}-2y(1-0) \right)\mathrm{d}y \\
&= \int_1^2 \left( \frac{1}{2}-2y \right)\mathrm{d}y \\
&= \frac{1}{2}(2-1)-2\left[ \frac{y^2}{2} \right]_{y=1}^{y=2} \\
&= \frac{1}{2}-2(\frac{3}{2}) \\
&= -\frac{5}{2}.
\end{align*}

$\triangle$

Ejercicio. Sea $D=\{ (x,y)\in \mathbb{R}^2 \ | \ 0\leq y \leq x \leq 2\}$. Calcular $$\int_D \frac{y}{1+x^2} \ \mathrm{d}x\mathrm{d}y.$$

Solución. $D$ es medible al ser un conjunto compacto y $f$ es medible al ser una función continua. Por lo anterior, se sigue también que $f$ es acotada sobre $D$, digamos $\sup_D |f|\leq M$. Luego $$\int_D |f| \ \mathrm{d}\lambda\leq M\cdot \lambda(D)<\infty. $$ Concluimos que $f\in L^1(D)$. Aplicando el teorema de Fubini: $$\int_D \frac{y}{1+x^2} \ \mathrm{d}x\mathrm{d}y=\int \left( \int \frac{y}{1+x^2} \cdot \chi_D(x,y) \ \mathrm{d}y \right) \mathrm{d}x. $$

Notemos que $\chi_D(x)=\chi_{[0,2]}(x)\chi_{\{0\leq y\leq x \}}(y)$, así que lo anterior se puede escribir como $$\int \left( \int \frac{y}{1+x^2} \cdot \chi_{[0,2]}(x)\chi_{\{0\leq y\leq x \}}(y) \ \mathrm{d}y \right) \mathrm{d}x=\int \chi_{[0,2]}(x) \left( \int \frac{y}{1+x^2} \cdot\chi_{\{0\leq y\leq x \}}(y) \ \mathrm{d}y \right) \mathrm{d}x$$ $$=\int_0^2\left(\int_0^x \frac{y}{1+x^2} \ \mathrm{d}y \right) \mathrm{d}x.$$

La integral interior es: $$\int_0^x \frac{y}{1+x^2} \ \mathrm{d}y=\frac{1}{1+x^2}\int_0^x y \ \mathrm{d}y=\frac{1}{1+x^2}\left[\frac{y^2}{2} \right]_{y=0}^{y=x}=\frac{x^2}{2(1+x^2)}.$$

Por lo que la integral exterior resulta: $$\int_0^2 \frac{x^2}{2(1+x^2)} \ \mathrm{d}x=\frac{1}{2}\int_0^2\left( 1-\frac{1}{1+x^2} \right) \ \mathrm{d}x=\frac{1}{2}\left[ x-\arctan (x) \right]_{x=0}^{x=2}=\frac{1}{2}(2-\arctan(2)).$$

$\triangle$

Más adelante…

Hemos enunciado el Teorema de Fubini junto con algunas de sus consecuencias.

En la siguiente entrada veremos un par de ejercicios resueltos para ver algunas aplicaciones del teorema de Fubini.

Tarea moral

  • Sean $f:\mathbb{R}^l \to [-\infty,\infty]$ y $g:\mathbb{R}^m\to [-\infty,\infty]$ funciones medibles. Prueba que la función $h:\mathbb{R}^l\times \mathbb{R}^m\to [-\infty,\infty]$ dada por $h(x,y)=f(x)g(y)$ es una función medible. [SUGERENCIA: Basta probar por separado que $h_1(x,y)=f(x)$ y $h_2(x,y)= g(y)$ son funciones medibles. ¿Quién es $h_1^{-1}([-\infty,t])$ y $h_2^{-1}([-\infty,t])$?].
  • Sea $E\in \mathcal{L}_n$ y $f: E \to [0,\infty]$ una función medible y no negativa sobre $E$. Considera la región bajo la gráfica de $f$: $G_f=\{(x,s)\in \mathbb{R}^{n+1} \ | \ 0\leq s \leq f(x) \}$.
    • Demuestra que $G_f$ es un conjunto medible y $$\lambda(G_f)=\int_{E}f(x) \ \mathrm{d}x.$$ [SUGERENCIA: Prueba primero el caso en el que $f=\chi_A$ es una función característica. Deduce el resultado para funciones simples y finalmente para funciones no negativas en general].
  • Sea $G_f$ como en el ejercicio anterior. Si $g:G_f \to [-\infty, \infty]$ es $\geq 0$ ó $L^1$, demuestra que $$\int_{G_f} g \ \mathrm{d}\lambda = \int_E \left( \int_0^{f(x)}g(x,s) \ \mathrm{d}s \right) \mathrm{d}x.$$
  • Sea $A= \{(x,y)\in [0,1]\times [0,1] \ | \ x\leq y^2 \}$. Calcula $\lambda(A)$.
  • Sea $A$ como en el ejercicio anterior. Calcula $$\int_A (x^2+y) \ \mathrm{d}x\mathrm{d}y.$$
  • Sea $f(x,y)=\frac{x^2-y^2}{(x^2+y^2)^2}$ sobre $(0,1)\times (0,1)$. Verifica que $$\int_0^1\left( \int_0^1 f(x,y) \ \mathrm{d}x \right) \mathrm{d}y\neq \int_0^1\left( \int_0^1 f(x,y) \ \mathrm{d}y \right) \mathrm{d}x .$$ ¿Porqué esto no contradice el teorema de Fubini?

El Teorema de Fubini

Por César Mendoza

Introducción

El Teorema de Fubini es una herramienta fundamental en la teoría de integración, ya que permite descomponer integrales múltiples en integrales iteradas más simples. Este resultado no solo facilita los cálculos, sino que también tiene implicaciones teóricas de gran relevancia. En esta sección, estudiaremos su enunciado y algunas consecuencias, proporcionando una base sólida para resolver problemas más avanzados.

Notación

Antes de comenzar, conviene establecer algo de notación para simplificar los desarrollos más adelante.

En ésta y en las próximas entradas, $l,m,n\in \mathbb{N}$ denotarán enteros con $n=l+m$. Podemos expresar el producto cartesiano $$\mathbb{R}^n=\mathbb{R}^l\times \mathbb{R}^m.$$

Denotaremos a los puntos en $\mathbb{R}^n$ como $$z=(x,y)\in \mathbb{R}^l\times\mathbb{R}^m=\mathbb{R}^n,$$ donde $x\in \mathbb{R}^l$ y $y\in \mathbb{R}^m$.

Si $f$ es una función sobre $\mathbb{R}^n=\mathbb{R}^l\times\mathbb{R}^m$ y $y\in \mathbb{R}^m$, definimos la $y$-sección de $f$ sobre $\mathbb{R}^l$, $f_y:\mathbb{R}^l\to [-\infty,\infty]$ como: $$f_y(x)=f(x,y) \ \ \ \forall x\in \mathbb{R}^l.$$

Dado $A\subseteq \mathbb{R}^n$, y $y\in \mathbb{R}^m$, definimos la $y$-sección de $A$ como $$A_y=\{ x\in \mathbb{R}^l \ | \ (x,y)\in A \}\subseteq \mathbb{R}^l.$$

Para el caso de una función característica $\chi_A$, con $A\subseteq \mathbb{R}^n$, notemos que

\begin{equation*}
(\chi_A)_y(x)=
\begin{cases}
1 & \text{si } (x,y) \in A\\
0 & \text{si } (x,y) \in A^c
\end{cases}
\end{equation*}

O equivalentemente, $$(\chi_A)_y=\chi_{A_y}.$$

Dado $x\in \mathbb{R}^l$, definimos análogamente las $x$ secciones $f_x$ y $A_x$.

Motivación

Consideremos una función integrable $f:\mathbb{R}^n\to [-\infty,\infty]$. Como $f$ es medible, es natural pensar que $f_y:\mathbb{R}^l\to [-\infty,\infty]$ «herede cierta regularidad». Supongamos momentáneamente que $f_y$ es integrable para cada $y$ y definamos $$F(y)=\int_{\mathbb{R}^l} f_y(x) \ \mathrm{d}x.$$ Por la misma razón, es esperable pensar que $F$ sea una función integrable.

Intuitivamente, $F(y)$ representa la «masa acumulada» de $f$ en la sección $\mathbb{R}^l\times{ y }$, de modo que la «masa total» de $f$ (i.e. $\int_{\mathbb{R}^n}f(z) \ \mathrm{d}z$) debería ser la «suma» de las contribuciones sobre cada sección. Interpretando a la integral como una «versión continua de la suma», es esperable que:

$$\int_{\mathbb{R}^n}f(z) \ \mathrm{d}z=\int_{\mathbb{R}^m}F(y) \ \mathrm{d}y=\int_{\mathbb{R}^m}\int_{\mathbb{R}^l} f_y(x) \ \mathrm{d}x \ \mathrm{d}y .$$

Esto es precisamente lo que establece el teorema de Fubini.

Por desgracia, es fácil construir ejemplos de funciones medibles $f$, en los que $f_y$ no sea medible para todo $y$.

Ejemplo. Sea $E\subseteq \mathbb{R}^l$ cualquier conjunto no medible y $y_0\in \mathbb{R}^m$ un punto arbitrario. Consideremos $A=E\times{ y_0}\subseteq \mathbb{R}^{l+m}$ y su respectiva función característica $\chi_A$.

Al estar contenido en algún hiperplano, $A$ es un conjunto de medida cero y en automático es medible. En particular $\chi_A$ es una función medible. A pesar de esto, $$f_{y_0}=\chi_{A_{y_0}}=\chi_E.$$ NO es medible sobre $\mathbb{\mathbb{R}}^l$.

$\triangle$

El ejemplo anterior muestra que hay que tener cuidado con la regularidad de las secciones. Afortunadamente, el concepto de casi donde sea nos da una alternativa para resolver este problema como veremos a continuación.

El Teorema de Fubini

Notación. Para enfatizar el hecho de que las integrales debajo son «iteradas», a la integral de una función $f:\mathbb{R}^n=\mathbb{R}^l\times\mathbb{R}^m\to [-\infty,\infty]$, la denotaremos también por $$\int_{\mathbb{R}^n}f(x,y) \ \mathrm{d}x\mathrm{d}y:=\int_{\mathbb{R}^n}f(z) \ \mathrm{d}z.$$ Es decir, solamente reemplazamos $z$ por $(x,y)$ y $\mathrm{d}z$ por $\mathrm{d}x \mathrm{d}y$.

Teorema (Fubini-Tonelli para funciones no negativas). Sea $f:\mathbb{R}^n\to[0,\infty]$ una función medible no negativa. Entonces para c.t.p. $y\in \mathbb{R}^m$, la función $$f_y:\mathbb{R}^l\to [0,\infty]$$ Es medible sobre $\mathbb{R}^l$. Más aún, la función definida en c.t.p. $$F(y)=\int_{\mathbb{R}^l}f_y(x) \ \mathrm{d}x$$ Es medible sobre $\mathbb{R}^m$ y $$\int_{\mathbb{R}^n}f(x,y) \ \mathrm{d}x \mathrm{d}y=\int_{\mathbb{R}^m}F(y) \ \mathrm{d}y=\int_{\mathbb{R}^m}\left( \int_{\mathbb{R}^l}f(x,y) \ \mathrm{d}x\right) \ \mathrm{d}y.$$

La demostración requiere varios pasos, así que la posponemos para futuras entradas. De momento, daremos por hecho el resultado.

Veamos primero un ejemplo sencillo para ver como el teorema de Fubini simplifica en gran medida el cálculo de integrales.

Ejercicio. Calcular la integral $$\int_{(0,\infty)\times(0,\infty)} e^{-(x+y)} \ \mathrm{d}x\mathrm{d}y.$$

Solución. Por definición, queremos calcular, $$\int_{\mathbb{R}^2} e^{-(x+y)}\cdot \chi_{(0,\infty)^2}(x,y) \ \mathrm{d}x\mathrm{d}y.$$
Notemos que podemos escribir $e^{-(x+y)}\cdot \chi_{(0,\infty)^2}(x,y)=e^{-x}\chi_{(0,\infty)}(x)\cdot e^{-y}\chi_{(0,\infty)}(y)$. Ésta es una función medible y no negativa, así que podemos aplicar el teorema de Fubini:

$$\int_{(0,\infty)^2}e^{-(x+y)} \ \mathrm{d}x\mathrm{d}y=\int_{\mathbb{R}}\left( \int_{\mathbb{R}} e^{-x}\chi_{(0,\infty)}(x)\cdot e^{-y}\chi_{(0,\infty)}(y) \ \mathrm{d}x \right) \mathrm{d}y$$

Ahora, en la integral de en medio, el factor $$e^{-y}\chi_{(0,\infty)}(y)$$ NO depende del integrando $x$, así que lo podemos tomar como una constante y «sacarlo de la integral» por linealidad:

$$=\int_{\mathbb{R}} e^{-y}\chi_{(0,\infty)}(y) \left( \int_{\mathbb{R}} e^{-x}\chi_{(0,\infty)}(x) \ \mathrm{d}x \right) \mathrm{d}y$$

$$=\int_{\mathbb{R}} e^{-y}\chi_{(0,\infty)}(y) \left( \int_0^{\infty} e^{-x} \ \mathrm{d}x \right) \mathrm{d}y$$
Ahora el factor $\left( \int_0^{\infty} e^{-x} \ \mathrm{d}x \right)$ NO depende de $y$, por lo que podemos «sacarlo» de la integral por linealidad:

$$=\left( \int_0^{\infty} e^{-x} \ \mathrm{d}x \right)\left( \int_{\mathbb{R}} e^{-y}\chi_{(0,\infty)}(y) \ \mathrm{d}y \right)$$
$$=\left( \int_0^{\infty} e^{-x} \ \mathrm{d}x \right)\left( \int_0^{\infty} e^{-y} \ \mathrm{d}y \right)$$ $$=\left( \int_0^{\infty} e^{-x} \ \mathrm{d}x \right)^2$$

Abreviando el argumento que ya hemos hecho con el teorema fundamental del cálculo y el teorema de la convergencia monótona : $ \int_0^{\infty} e^{-x} \ \mathrm{d}x =\int_0^{\infty} (-e^{-x})’ \ \mathrm{d}x=[-e^{-x}]_{x=0}^{x=\infty}=1$, por lo que: $$\int_{(0,\infty)^2}e^{-(x+y)} \ \mathrm{d}x\mathrm{d}y=1^2=1.$$

$\triangle$

Teorema de Fubini para funciones $L^1$

El teorema de Fubini se puede generalizar fácilmente para funciones en $L^1$.

Teorema (Fubini para funciones $L^1(\mathbb{R}^n)$). Sea $f\in L^1(\mathbb{R}^n)$, Entonces

  1. $f_y\in L^1(\mathbb{R}^l)$ para c.t.p. $y\in \mathbb{R}^l$. En particular $$F(y)=\int_{\mathbb{R}^l}f_y(x) \ \mathrm{d}x$$ Existe para casi todo $y\in \mathbb{R}^m$.
  2. $F\in L^1(\mathbb{R}^m)$ y $$\int_{\mathbb{R}^m}F(y) \ \mathrm{d}y=\int_{\mathbb{R}^n}f(x,y) \ \mathrm{d}x\mathrm{d}y.$$

Demostración. Escribamos $f=f_+-f_-$.

Por Fubini-Tonelli se sigue que $f_{\pm,y}$ son funciones medibles en $\mathbb{R}^l$ para casi todo $y\in \mathbb{R}^m$.

$$\implies H(y):=\int_{\mathbb{R}^l}f_{+,y}(x) \ \mathrm{d}x; \ \ \ \ \ \ \ \ \ \ \ G(y):=\int_{\mathbb{R}^l}f_{-,y}(x) \ \mathrm{d}x$$ Existen en c.t.p. $y\in \mathbb{R}^m$. Además de que $$\int_{\mathbb{R}^m}H(y) \ \mathrm{d}y=\int_{\mathbb{R}^n}f_{+}(x,y) \ \mathrm{d}x\mathrm{d}y<\infty$$
Y $$\int_{\mathbb{R}^l}G(y) \ \mathrm{d}y=\int_{\mathbb{R}^n}f_{-}(x,y) \ \mathrm{d}x\mathrm{d}y<\infty.$$

Como las integrales son finitas, se sigue que $H$ y $G$ son finitas para casi todo $y\in \mathbb{R}^m$ (resultado previo). Es decir

$$\int_{\mathbb{R}^l}f_{+,y}(x) \ \mathrm{d}x<\infty;$$ $$\int_{\mathbb{R}^l}f_{-,y}(x) \ \mathrm{d}x<\infty.$$ En c.t.p. $y\in \mathbb{R}^m$. O equivalentemente, que $f_y=f_{+,y}-f_{-,y}\in L^1(\mathbb{R}^l)$ en c.t.p. $y\in \mathbb{R}^m$. Ahora, para tales $y$ tenemos:

\begin{align*}
F(y) &= \int_{\mathbb{R}^l}f_{y}(x) \ \mathrm{d}x \\
&= \int_{\mathbb{R}^l}f_{+,y}(x) \ \mathrm{d}x-\int_{\mathbb{R}^l}f_{-,y}(x) \ \mathrm{d}x \\
&= H(y)-G(x)
\end{align*}

$$\therefore F\in L^1(\mathbb{R}^m)$$ Pues $F$ es igual en c.t.p. a la función $H-G\in L^1(\mathbb{R}^m)$. Además

\begin{align*}
\int_{\mathbb{R}^m}F(y) \ \mathrm{d}y &= \int_{\mathbb{R}^m}H(y) \ \mathrm{d}y-\int_{\mathbb{R}^m}G(y) \ \mathrm{d}y \\
&= \int_{\mathbb{R}^n}f_+(x,y) \ \mathrm{d}x\mathrm{d}y- \int_{\mathbb{R}^n}f_-(x,y) \ \mathrm{d}x\mathrm{d}y \\
&= \int_{\mathbb{R}^n}f(x,y) \ \mathrm{d}x\mathrm{d}y.
\end{align*}

Que es precisamente lo que queríamos probar.

$\square$

Corolario. Supongamos que $f:\mathbb{R}^n\to[-\infty,\infty]$ satisface las hipótesis del Teorema de Fubini (ya sea $f\geq 0$ ó $f\in L^1$). Entonces $$\int_{\mathbb{R}^n}f(x,y) \ \mathrm{d}x\mathrm{d}y=\int_{\mathbb{R}^m}\left( \int_{\mathbb{R}^l}f(x,y) \ \mathrm{d}x \right) \mathrm{d}y=\int_{\mathbb{R}^l}\left( \int_{\mathbb{R}^m}f(x,y) \ \mathrm{d}y \right) \mathrm{d}x.$$

Demostración. La primera igualdad es por supuesto el teorema de Fubini. La segunda igualdad no es más que el resultado de combinar el teorema de Fubini con el cambio de variable
$$(x_1,x_2,\dots,x_l,x_{l+1},\dots,x_n)\to(x_{l+1},\dots,x_n,x_1,x_2,\dots,x_l).$$

$\square$

Integrales iteradas

Mediante varias iteraciones del teorema de Fubini, una integral puede ser descompuesta en integrales iteradas de muchas formas. Por ejemplo, podemos descomponer

\begin{align*}
\int_{\mathbb{R}^n}f(z) \ \mathrm{d}z &= \int_{\mathbb{R}^{n-1}}\left(\int_{\mathbb{R}}f(x,y) \ \mathrm{d}x_1 \right)\mathrm{d}y \\
&= \int_{\mathbb{R}^{n-2}}\left( \int_{\mathbb{R}}\left(\int_{\mathbb{R}}f(x_1,x_2,y’) \ \mathrm{d}x_1 \right) \mathrm{d}x_2 \right) \mathrm{d}y’ \\
&= \dots \\
&= \int_{\mathbb{R}}\left( \int_{\mathbb{R}}\left( \dots \int_{\mathbb{R}} f(x_1,\dots,x_{n-1},x_n)
\ \mathrm{d}x_1 \right)\dots \mathrm{d}x_{n-1} \right) \mathrm{d}x_n
\end{align*}

De igual manera

\begin{align*}
\int_{\mathbb{R}^n}f(z) \ \mathrm{d}z &= \int_{\mathbb{R}}\left(\int_{\mathbb{R}^{n-1}}f(x_1,y) \ \mathrm{d}y \right)\mathrm{d}x_1 \\
&= \int_{\mathbb{R}^m}\left( \int_{\mathbb{R}^l}f(x,y) \ \mathrm{d}x \right) \mathrm{d}y \\
&= \int_{\mathbb{R}}\left( \dots \left( \int_{\mathbb{R}} f(x_1,\dots,x_n)
\ \mathrm{d}x_{\sigma(1)} \right)\dots \right) \mathrm{d}x_{\sigma(n)}
\end{align*}

Son todas descomposiciones válidas. (En este caso $\sigma$ representa una permutación cualquiera de coordenadas).

En general tenemos mucha libertad para descomponer una integral. A la hora de resolver algún problema, es conveniente buscar la descomposición que «nos brinde mayor información» o «mejor se adapte al contexto del problema».

Hasta ahora hemos estado haciendo un gran uso de los paréntesis dentro de las integrales, principalmente para enfatizar el hecho de que las integrales son iteradas. Esto no es del todo necesario y a partir de ahora trataremos de omitirlos para aligerar la notación.

Fubini ayuda a checar integrabilidad

Algo que ocurre con frecuencia es que nos interesa calcular la integral de alguna función $f$ que sólo sabemos que es medible, pero no es $\geq 0$ y no sabemos si pertenece a $L^1$. Es decir, a priori no podemos aplicar el teorema de Fubini.

La manera usual de proceder en estos casos es aplicar el teorema de Fubini a la función $|f|$ (que es no negativa). Con suerte seremos capaces de calcular o estimar: $$\int_{\mathbb{R}
^n}|f(z)| \ \mathrm{d}z=\int_{\mathbb{R}
^m}\int_{\mathbb{R}
^l} |f(x,y)| \ \mathrm{d}x\mathrm{d}y.$$
Para así asegurarnos de que $f\in L^1$ y poder usar Fubini sobre $f$.

Más adelante…

Veremos como el teorema de Fubini se especializa a productos de conjuntos, junto con algunas consecuencias.

Tarea moral

  • Calcula $$\int_{\mathbb{R}^2}\frac{1}{(x^2+1)(y^2+1)} \ \mathrm{d}x\mathrm{d}y.$$
  • Calcula $$\int_{[0,1]\times [0,\infty)}x e^{-x^2y} \ \mathrm{d}x\mathrm{d}y.$$
  • Calcula $$\int_{\mathbb{R}^n} e^{-(x_1+x_2+\dots+x_n)}\mathrm{d}x_1\mathrm{d}x_2\dots \mathrm{d}x_n.$$
  • Sean $f:\mathbb{R}^l\to [0,\infty]$ y $g: \mathbb{R}^m\to [0,\infty]$. Supón que la función $h:\mathbb{R}^n\to [0,\infty]$ dada por $h(x,y)=f(x)g(y)$ es medible (de hecho, esto siempre es cierto y es un ejercicio de la siguiente entrada). Demuestra que $$\int_{\mathbb{R}^n}h(x,y) \ \mathrm{d}x\mathrm{d}y=\left( \int_{\mathbb{R}^l} f(x) \ \mathrm{d}x \right) \left( \int_{\mathbb{R}^m} g(y) \ \mathrm{d}y \right).$$ Prueba que lo anterior también es válido si $f\in L^1(\mathbb{R}^l)$ y $g\in L^1(\mathbb{R}^m)$. [SUGERENCIA: Para la segunda parte, aplica primero el teorema de Fubini-Tonelli sobre $|f|$ y $|g|$ para asegurarte de que $h \in L^1(\mathbb{R}^n)$ y poder usar el teorema de Fubini sobre $h$].
  • Sea $f:\mathbb{R}^n\to [0,\infty)$ una función no negativa. Supón que la región bajo la gráfica de $f$, $G_f=\{(x,s)\in \mathbb{R}^n\times \mathbb{R} \ | \ 0\leq s \leq f(x)\}$, es un subconjunto medible de $\mathbb{R}^{n+1}$. Sea $g:\mathbb{R}^{n+1}\to [-\infty,\infty]$ una función medible que satisface las hipótesis del teorema de Fubini ($g\geq 0$ ó $g\in L^1(\mathbb{R}^{n+1})$). Demuestra que es posible escribir: $$\int_{G_{f}} g \ \mathrm{d}\lambda=\int_{\mathbb{R}^n}\int_0^{f(x)}g(x,s) \ \mathrm{d}s \mathrm{d}x.$$

Cambios de variable

Por César Mendoza

Introducción

En esta entrada enunciaremos y probaremos el teorema de cambio de variable lineal para integrales de Lebesgue. Éste es un análogo al cambio de variable para integrales de Riemann que nos permite transformar integrales a versiones más simples o manejables.

Cambio de variable lineal y afín

Teorema (Cambio de variable lineal). Sea $T\in M_{n\times n}(\mathbb{R})$ una matriz invertible de $n\times n$ . Para cada función $f:\mathbb{R}^n\to [-\infty,\infty]$. Consideremos $$f\circ T (x)=f(Tx).$$ Entonces:

  1. Si $f$ es medible $\implies$ $f\circ T$ es medible.
  2. Si $f\geq 0$ y $f$ es medible, entonces: $$\int f \ \mathrm{d}\lambda=|\det T|\int f\circ T \ \mathrm{d}\lambda.$$
  3. Si $f\in L^1(\mathbb{R}^n)$, entonces $f\circ T\in L^1(\mathbb{R}^n)$ y $$\int f \ \mathrm{d}\lambda=|\det T|\int f\circ T \ \mathrm{d}\lambda.$$

Demostración. Sea $A$ un conjunto medible. Notemos que $\chi_A\circ T=\chi_{T^{-1}A}$, pues $\chi_A\circ T(x)=1$ $\iff$ $T(x)\in A$ $\iff$ $x\in T^{-1}A$. Por el Teorema de invarianza de la medida de Lebesgue, se sigue que $T^{-1}A$ es un conjunto medible (en particular $\chi_A\circ T$ es medible) y además:

\begin{align*}
\int \chi_A\circ T \ \mathrm{d}\lambda &= \int \chi_{T^{-1}A} \ \mathrm{d}\lambda \\
&= \lambda(T^{-1}A) \\
&= |\det T^{-1}|\lambda(A) \\
&= \frac{1}{|\det T|} \int \chi_{A} \ \mathrm{d}\lambda.
\end{align*}

Es decir, $$\int \chi_A \ \mathrm{d}\lambda=|\det T|\int \chi_A\circ T \ \mathrm{d}\lambda.$$

Ahora, por linealidad, podemos concluir que para cualquier función simple y no negativa $s=\sum_{k=1}^{m}\alpha_k \chi_{A_k}\in S$, tenemos que $s\circ T$ es medible con $$\int s \ \mathrm{d}\lambda=|\det T|\int s\circ T \ \mathrm{d}\lambda.$$ Pues $$\int \sum_{k=1}^{m}\alpha_k \chi_{A_k} \ \mathrm{d}\lambda=|\det T|\int \sum_{k=1}^{m}\alpha_k (\chi_{A_k}\circ T) \ \mathrm{d}\lambda.$$

Para el caso general, consideremos $f\geq 0$ una función medible no negativa y $\{ s_k \}_{k=1}^{\infty}\subseteq S$ una sucesión de funciones simples tales que $s_k\uparrow f$. Es inmediato verificar que $s_k\circ T\uparrow f\circ T$, por lo que $f\circ T$ es medible al ser el límite de funciones medibles. Además, por el teorema de la convergencia monótona y el caso anterior:

\begin{align*}
\int f \ \mathrm{d}\lambda &= \lim_{k\to \infty} \int s_k \ \mathrm{d}\lambda \\
&= \lim_{k\to \infty} |\det T|\int s_k\circ T \ \mathrm{d}\lambda \\
&= |\det T| \int f\circ T \ \mathrm{d}\lambda.
\end{align*}

Finalmente, veamos el caso $f\in L^1(\mathbb{R}^n)$. Podemos escribir $f=f_+-f_-$ con $\int f_{\pm} \ \mathrm{d}\lambda<\infty$. Similarmente $f\circ T=f_+\circ T-f_-\circ T$. Por el caso anterior, tenemos: $$\int f_{\pm} \ \mathrm{d}\lambda=|\det T| \int f_{\pm}\circ T \ \mathrm{d}\lambda.$$

De donde $\int f_{\pm}\circ T \ \mathrm{d}\lambda<\infty$, es decir, $f\circ T \in L^1(\mathbb{R}^n)$. Más aún:

\begin{align*}
\int f \ \mathrm{d}\lambda &= \int f_+ \ \mathrm{d}\lambda-\int f_- \ \mathrm{d}\lambda \\
&= |\det T|
\int f_+\circ T \ \mathrm{d}\lambda-|\det T|\int f_-\circ T \ \mathrm{d}\lambda \\
&= |\det T|\left( \int f_+\circ T \ \mathrm{d}\lambda-\int f_-\circ T \ \mathrm{d}\lambda \right) \\
&= |\det T| \int f\circ T \ \mathrm{d}\lambda.
\end{align*}

$\square$

Tenemos un resultado similar para las transformaciones afínes. La demostración es casi idéntica a la del teorema anterior. Dejamos los detalles como tarea moral.

Teorema (Cambio de variable afín). Sea $G(x)=Tx+c$ una transformación afín, donde $T\in M_{n\times n}(\mathbb{R})$ es una matriz invertible de $n\times n$ y $c\in \mathbb{R}^n$ es un vector. Sea $f:\mathbb{R}^n\to [-\infty,\infty]$. Consideremos $$f\circ G (x)=f(Tx+c).$$ Entonces:

  1. Si $f$ es medible $\implies$ $f\circ G$ es medible.
  2. Si $f\geq 0$ y $f$ es medible, entonces: $$\int f \ \mathrm{d}\lambda=|\det T|\int f\circ G \ \mathrm{d}\lambda.$$
  3. Si $f\in L^1(\mathbb{R}^n)$, entonces $f\circ G\in L^1(\mathbb{R}^n)$ y $$\int f \ \mathrm{d}\lambda=|\det T|\int f\circ G \ \mathrm{d}\lambda.$$

$\square$

Podemos especializar el resultado anterior a integrales sobre subconjuntos:

Corolario (Cambio de variable afín sobre subconjuntos). Sea $G(x)=Tx+c$ una transformación afín, donde $T\in M_{n\times n}(\mathbb{R})$ es una matriz invertible de $n\times n$ y $c\in \mathbb{R}^n$ es un vector. Sea $f:E\to [-\infty,\infty]$ una función sobre un conjunto medible $E$. Consideremos $$f\circ G (x)=f(Tx+c).$$ La cual está definida en $G^{-1}(E)$. Entonces:

  1. Si $f$ es medible sobre $E$ $\implies$ $f\circ G$ es medible sobre $G^{-1}(E)$.
  2. Si $f\geq 0$ y $f$ es medible, entonces: $$\int_E f \ \mathrm{d}\lambda=|\det T|\int_{G^{-1}(E)} f\circ G \ \mathrm{d}\lambda.$$
  3. Si $f\in L^1(E)$, entonces $f\circ G\in L^1(G^{-1}(E))$ y $$\int_E f \ \mathrm{d}\lambda=|\det T|\int_{G^{-1}(E)} f\circ G \ \mathrm{d}\lambda.$$

Demostración. Por el teorema anterior, notemos que si $f$ es medible sobre $E$ $\implies$ $f\chi_E$ es medible $\implies$ $(f\chi_E)\circ G=f\circ G \cdot \chi_E\circ G=f\circ G \cdot \chi_{G^{-1}(E)}$ es medible $\implies$ $f\circ G$ es medible sobre $G^{-1}(E)$.

Si $f\geq 0$ sobre $E$, claramente $f\circ G\geq 0$ sobre $G^{-1}(E)$. Si $f\in L^1(E)$ $\implies$ $f\cdot \chi_E\in L^1(\mathbb{R}^n)$ $\implies$ $(f\cdot \chi_E)\circ G=f\circ G \cdot \chi_{G^{-1}(E)}\in L^1(\mathbb{R}^n)$ $\implies$ $f\circ G \in L^1(G^{-1}(E))$. En ambos casos:

\begin{align*}
\int_E f \ \mathrm{d}\lambda &= \int f\cdot \chi_E \ \mathrm{d}\lambda \\
&= |\det T| \int (f\cdot \chi_E)\circ G \ \mathrm{d}\lambda \\
&= |\det T| \int (f\circ G)\cdot (\chi_E\circ G) \ \mathrm{d}\lambda \\
&= |\det T| \int (f\circ G)\cdot \chi_{G^{-1}(E)} \ \mathrm{d}\lambda \\
&= |\det T| \int_{G^{-1}(E)} f\circ G \ \mathrm{d}\lambda.
\end{align*}

$\square$

El Teorema de Cambio de variable

Existe una versión más general de los resultados anteriores. La demostración es extensa así que sólo daremos la idea general. Puedes consultar la demostración completa que esbozamos aquí en (Folland, 1999). No usaremos esta versión en lo que resta del curso.

Definición. Sean $U,V\subseteq \mathbb{R}^n$ conjuntos abiertos. Decimos que $G=(g_1,\dots,g_n):U\to V$ es un difeomorfismo de clase $C^1$, si $G$ es biyectiva y $G$; $G^{-1}$ son de clase $C^1$ (es decir, funciones diferenciables con derivadas parciales continuas). Definimos el Jacobiano $J:U\to \mathbb{R}$ como la norma del determinante de la matriz jacobiana: $$J(x)=\left|\det \left[ \frac{\partial g_i}{\partial x_j} \right]\right|.$$

Teorema (Cambio de variable). Sean $U,V\subseteq \mathbb{R}^n$ abiertos y $G:U\to V$ un difeomorfismo de clase $C^1$.

  1. Si $f$ es medible sobre $V$ $\implies$ $f\circ G$ es medible sobre $V$.
  2. Si $f\geq 0$ y $f$ es medible, entonces: $$\int_V f(y) \ \mathrm{d}y=\int_{U} f\circ G(x) J(x) \ \mathrm{d}x.$$
  3. Si $f\in L^1(V)$, entonces $f\circ G \cdot J \in L^1(U)$ y $$\int_V f(y) \ \mathrm{d}y=\int_{U} f\circ G(x) J(x) \ \mathrm{d}x.$$

Idea de la demostración. La observación fundamental es que, localmente, $G$ es aproximadamente una transformación lineal (dada por su matriz jacobiana): $G(x)\approx \left[ \frac{\partial g_i}{\partial x_j} \right] x$.

Es posible probar directamente que si $N\subseteq U$ es nulo, entonces $G(N)\subseteq V$ es nulo. Esto nos permite modificar a $f$ en un conjunto de medida cero y asumir sin pérdida de generalidad que es Borel medible.

Una posible forma de proceder es probar primero que para cualquier cubo $Q$:

$$ \lambda(G(Q))\leq \int_Q J(x) \ \mathrm{d}x.$$ Esto se puede hacer diviediendo a $Q$ en cubos muy pequeños de tal manera que $G(x)\approx \left[ \frac{\partial g_i}{\partial x_j} \right] x$ en cada uno de ellos (en cierto sentido, con un error pequeño que puede ser estimado con el teorema de Taylor).

Como la desigualdad anterior es válida para cubos, entonces también se cumple para conjuntos abiertos (podemos dividir un conjunto abierto en una cantidad numerable de cubos que sólo se intersecten en las fronteras). Aproximando mediante abiertos, se sigue que la desigualdad es válida para cualquier conjunto de Borel $E$.

Mediante el argumento estandar de proposición para función característica $\implies$ proposición para función simple (linealidad) $\implies$ proposición para función $\geq 0$ (convergencia monótona), se sigue que $$ \int_V f(y) \ \mathrm{d}y\leq \int_U f\circ G (x) J(x) \ \mathrm{}dx.$$
Replicando el razonamiento anterior con $G$ reemplazado por $G^{-1}$ y por $f$ reemplazado por $f\circ G\cdot J$ y recordando que la matriz jacobiana de $G^{-1}$ es la inversa de la matriz jacobiana de $G$, se sigue: $$\int_U f\circ G (x) J(x) \ \mathrm{d}x\leq \int_V f\circ G\circ G^{-1}(y) J(G^{-1}(y))J^{-1}(G^{-1}(y)) \ \mathrm{d}y =\int_V f(y) \ \mathrm{d}y.$$

Lo que prueba la igualdad para $f\geq 0$. El caso $f\in L^1$ se sigue de escribir $f=f_+-f_-$ y aplicar el caso anterior a $f+$ y $f_-$.

$\square$

Algunos comentarios y ejemplos

Comentario. Los resultados anteriores son generalizaciones de los cambios de variable para integrales de Riemann. Las reglas mnemotécnicas para efectuar los cambios de variable en integrales de Riemann generalmente también aplican para integrales de Lebesgue y a menudo son útiles para facilitar los cálculos.
Por ejemplo, supongamos que $G(x)=Tx+c$ es afín y queremos simplificar la integral

$$\int_Ff(G(x)) \ \mathrm{d}x.$$ Mediante el cambio de variable $u=G(x)$. Para recordar la fórmula del cambio de variable, podemos escribir simbólicamente

\begin{align*}
u &= G(x)=Tx+c \\
\implies \mathrm{d}u &= |\det T| \ \mathrm{d}x \\
\implies \frac{1}{|\det T|} \ \mathrm{d}u &= \mathrm{d}x.
\end{align*}

Esto de hecho tiene una interpretación intuitiva: Por el teorema de invarianza, al aplicar $G$ a subconjuntos pequeños (que podemos pensar como «elementos infinitesimales de volúmen» $\mathrm{d}x$), sufren una deformación que modifica su volúmen por una razón de $|\det T|$ (es decir $\mathrm{d}u = |\det T| \ \mathrm{d}x$).

Para el cambio de dominio de integración, podemos pensar que «integrar sobre $x\in F$ equivale a integrar sobre $u=G(x)\in G(F)$». Sustituyendo simbólicamente las expresiones para $G(x)$ y $\mathrm{d}x$ en la integral y cambiando el dominio: $$\int_Ff(G(x)) \ \mathrm{d}x=\int_{G(F)}f(u) \ \frac{ \mathrm{d}u}{|\det T|}=\frac{1}{|\det T|}\int_{G(F)}f(u) \ \mathrm{d}u.$$
Que es precisamente la fórmula del corolario anterior con $F=G^{-1}E$.

Comentario. La idea detrás de los cambios de variable en integrales de Lebesgue es, en general, la misma que en las integrales de Riemann: simplificar el integrando para obtener una expresión más manejable o transformar el dominio de integración en una región más sencilla (aunque la segunda idea suele aplicarse en combinación con el teorema de Fubini, como veremos más adelante).

Veamos algunos ejemplos concretos.

Ejercicio. Calcular la integral: $$\int_0^\infty \frac{1}{4x^2+6x+9} \ \mathrm{d}x.$$

Solución. Hagamos el cambio de variable $u=2x+3=G(x)$. Notemos que $G[0,\infty)=[3,\infty)$ y el determinante de la transformación lineal asociada a $G$ (i.e. $x\to 2x$) es 2. Simbólicamente: $\mathrm{d}u=2 \ \mathrm{d}x$. Luego la integral se reduce a:

\begin{align*}
\int_0^\infty \frac{1}{4x^2+6x+9} \ \mathrm{d}x
&= \int_0^\infty \frac{1}{(G(x))^2} \ \mathrm{d}x \\
&= \frac{1}{2} \int_3^\infty \frac{1}{u^2} \ \mathrm{d}u \\
&=\frac{1}{2} \lim_{N\to \infty} \int_3^N \left(-\frac{1}{u}\right)’ \ \mathrm{d}u \\
&= \frac{1}{2}\lim_{N\to \infty}\left[ -\frac{1}{u}\right]_{u=3}^{u=N} \\ &= \frac{1}{2}\lim_{N\to \infty} \left[ \frac{1}{3}-\frac{1}{N}\right] \\
&=\frac{1}{6}.
\end{align*}

$\triangle$

Los cambios de variable a menudo son muy útiles para simplificar las regiones de integración y calcular integrales, aunque posponemos un ejemplo concreto hasta no haber estudiado el Teorema de Fubini a detalle.

Otro caso en el que puede ser útil el cambio de variable es cuando tenemos integrales con dominio variable. Para analizarlas, puede ser útil reescribirlas como integrales sobre dominios «fijos».

Ejemplo. Definamos

$$P(r)=\int_{B_{r}(x_0)}f(y) \ \mathrm{d}y. $$

Donde $B_r(x_0)$ denota la bola con centro $x_0$ y radio $r$. Para cada $r$ fijo, podemos hacer el cambio de variable $$y=rz+x_0.$$ para cambiar el dominio de integración a la bola unitaria. Observa que el determinate de la tranformación $z\to rz$ es $r^n$. Luego podemos reescribir $P(r)$ como:
$$P(r)=\int_{B_{r}(x_0)}f(y) \ \mathrm{d}y=r^n\int_{B_{1}(0)}f(rz+x_0) \ \mathrm{d}z.$$

$\triangle$

Más adelante…

Introduciremos el Teorema de Fubini: Un teorema fundamental en la teoría de integración que nos permite descomponer integrales sobre $\mathbb{R}^n$ en integrales iteradas más sencillas.

Tarea moral

  • Prueba el teorema de cambio de variable afín. [SUGERENCIA: Es suficiente probar el caso en el que $G(x)=x+c$ es una traslación. Para ello, imita la demostración del teorema de cambio de variable lineal, usando la invarianza de la medida de Lebesgue bajo traslaciones].
  • Calcula $$\int_1^3 \frac{2}{2x+2} \ \mathrm{d}x.$$
  • Calcula $$\int_0^\infty e^{-x^2+6x-9} \ \mathrm{d}x.$$
  • Supón que $f:\mathbb{R}\to [-\infty,\infty]$ satisface las hipótesis del teorema de cambio de variable ($f\geq 0$ o $f\in L^1$).
    • Decimos que $f$ es par si $f(-x)=f(x)$ para todo $x\in \mathbb{R}$. Prueba que si $f$ es par, entonces $$\int_{\mathbb{R}}f \ \mathrm{d}\lambda=2\int_0^{\infty}f \ \mathrm{d}\lambda.$$
    • Decimos que $f$ es impar si $f(-x)=-f(x)$ para todo $x\in \mathbb{R}$. Prueba que si $f$ es impar, entonces $$\int_{\mathbb{R}}f \ \mathrm{d}\lambda=0.$$
      [SUGERENCIA: Considera el cambio de variable $x\to -x$].
  • Sea $f:\mathbb{R}^n\to \mathbb{R}$ una función suave (i.e. con derivadas de todos los órdenes) y de soporte compacto (el soporte de una función se define como la cerradura de $\{x \ | \ f(x)\neq 0 \}$). Prueba que $$P(r)=\int_{B_{r}(x_0)}f(y) \ \mathrm{d}y. $$ Es diferenciable y expresa la derivada como una integral. [SUGERENCIA: Cambia de variables para llevar la integral a un dominio fijo. Las hipótesis sobre $f$ garantizan que puedes intercambiar derivadas con integrales].

Referencias

Folland, Gerald B. Real analysis: modern techniques and their applications. John Wiley & Sons, 1999.

Las integrales de Riemann y Lebesgue

Por César Mendoza

Introducción

En las entradas pasadas desarrollamos una gran cantidad de resultados asociados a la integral de Lebesgue que demuestran que ésta tiene propiedades analíticas muy interesantes. Sin embargo, quedan dos preguntas importantes por responder: ¿Cuál es la relación que existe entre la noción «clásica» de integración (i.e. la integral de Riemann) y la integral de Lebesgue? ¿Cómo podemos evaluar integrales de funciones «sencillas»? (por ejemplo polinomios, funciones trigonométricas y exponenciales).

En esta entrada responderemos esa pregunta. Veremos que una función Riemann integrable es automáticamente $L^1$ y que las dos nociones de integral coinciden. Esto tiene una consecuencia importante: Si la función es Riemann integrable, podemos reducir el cálculo de la integral de Lebesgue a una integral de Riemann y usar todas las herramientas que ya conocemos de estas para calcular integrales (por ejemplo el teorema fundamental del cálculo, cambios de variable, etc.).

Breve repaso de la integral de Riemann

Una partición $P$ de un intervalo cerrado $[a,b]$ es una secuencia de puntos $a=t_0<t_1<\dots< t_k=b$. Una partición de un rectángulo cerrado $A=[a_1,b_1]\times\dots\times [a_n,b_n]$ es una colección $P=(P_1,\dots,P_n)$ donde cada $P_i$ es una partición del intervalo $[a_i,b_i]$. Si $P_i$ divide a $[a_i,b_i]$ en $l_i$ intervalos consecutivos, entonces $P=(P_1,\dots,P_n)$ divide a $A$ en $l_1\cdot l_2\cdot \dots \cdot l_n$ subrectángulos (formados por productos de subintervalos inducidos por la partición). Denotaremos a la colección de dichos subrectángulos como $R_P$.

Definimos el diámetro de una partición $P=(P_1,\dots,P_n)$ como el supremo de los diámetros de los rectángulos inducidos: $$diam(P)=\sup_{S\in R_P} \{ diam(S) \}. $$

Sea $f:A\to \mathbb{R}$ una función acotada sobre un rectángulo $A$ y $P$ una partición de $A$. Para cada subrectángulo $S\in \mathcal{R}_P$ definimos

\begin{align*}
m_S &= \inf \{ f(x) \ | \ x\in S \} \\
M_S &= \sup \{f(x) \ | \ x\in S \}.
\end{align*}

Definimos las sumas inferiores y superiores de $f$ asociadas a la partición $P$ como:
$$L(f,P)=\sum_{S\in R_P}m_s|S|; \ \ \ U(f,P)=\sum_{S\in R_P}M_s|S|.$$
Donde $|S|=\lambda(S)$ es el volúmen (o equivalentemente medida) del rectángulo $S$.

Decimos que una partición $P’=(P_1′,\dots, P_n’)$ refina a $P=(P_1,\dots, P_n)$ si $P_k\subseteq P_k’$ para cada $k=1,2,\dots,n$. (Esto es, cada subrectángulo de $P’$ está contenido en un subrectángulo de $P$).

El siguiente Lema es estándar. Omitimos la demostración, ésta puede ser consultada en la mayoría de textos.

Lema. Si $P’$ refina a $P$, entonces $$L(f,P)\leq L(f,P’)\leq U(f,P’)\leq U(f,P).$$

Decimos que una función acotada $f:A\to \mathbb{R}$ es Riemann integrable si $$\sup_P \{ L(f,P) \}=\inf_P\{ U(f,P) \}.$$

El valor común $\sup_P \{ L(f,P) \}=\inf_P\{ U(f,P) \}$ es llamado la integral de Riemann de $f$ sobre $A$ y lo denotaremos provisionalmente como $$ \int_{\mathcal{R},A} f(x) \ \mathrm{d}x.$$

Una clase importante de funciones Riemann integrables son las funciones continuas:

Proposición. Si $f$ es una función continua sobre un rectángulo $A$ entonces $f$ es Riemann integrable.

Omitimos la demostración.

Las integrales de Riemann y Lebesgue

Teorema. Sea $f$ una función acotada sobre un rectángulo $A$.

  1. Si $f$ es Riemann integrable, entonces $f\in L^1(A)$. Además $$\int_{\mathcal{R},A} f(x) \ \mathrm{d}x=\int_A f \ \mathrm{d}\lambda .$$
  2. $f$ es Riemann integrable sobre $A$ si y sólo si $D=\{ x\ | \ f \ \text{es discontinua en } x\} $ tiene medida de Lebesgue cero.

Demostración. Supongamos que $f$ es Riemann integrable. Para cada partición $P$ definamos:

$$g_P=\sum_{S\in R_P}m_S \chi_{S}; \ \ \ G_P=\sum_{S\in R_P}M_S \chi_{S}.$$

Si bien los rectángulos $S\in R_P$ no son ajenos, sólo se intersectan en conjuntos de medida cero (sus fronteras). Usando que $\lambda(S)=|S|$, concluimos facilmente:

\begin{equation} \int_A g_P \ \mathrm{d}\lambda=L(f,P); \ \ \ \int_A G_P \ \mathrm{d}\lambda= U(f,P). \end{equation}

Como $\sup_P \{ L(f,P) \}=\inf_P\{ U(f,P) \}=\int_{\mathcal{R},A} f(x) \ \mathrm{d}x$, podemos encontrar una sucesión de particiones $P_1,P_2,\dots$ tales que $L(f,P_k),U(f,P_k)\longrightarrow \int_{\mathcal{R},A} f(x) \ \mathrm{d}x$ cuando $k\longrightarrow \infty$. Por el Lema podemos suponer sin pérdida de generalidad que para cada $k=1,2,\dots$, $P_{k+1}$ refina a $P_k$ y el diámetro de $P_k$ es menor a $\frac{1}{k}$.

Consideremos $$N_k=\bigcup_{S\in R_{P_k}}\partial S, $$ (Donde $\partial A$ denota la frontera del conjunto $A$ ).

Definamos $$N=\bigcup_{k\in \mathbb{N}}N_k.$$ Es decir, $N$ es el conjunto de puntos que está en la frontera de alguno de los rectángulos inducidos por $P_k$ para algún $k$. Cada $N_k$ es un conjunto nulo (pues está contenido en una cantidad finita de hiperplanos) $\implies$ $N$ es un conjunto nulo. $(2)$

Observemos que cualquier punto $x\notin N$ está estrictamente en el interior de cada rectángulo $S\in R_{P_k}$ al que pertenece. Esto nos garantiza que $g_{P_1}(x)\leq g_{P_2}(x)\leq \dots f$ y $G_{P_1}(x)\geq G_{P_2}(x)\geq \dots f$. Pues si $x\in T\subseteq S$ con $S\in R_{P_k}; T\in R_{P_{k+1}}$, entonces $g_{P_k}(x)=m_S\leq m_T=g_{P_{k+1}}(x)\leq f(x)$ y $G_{P_k}(x)=M_S\geq M_T=G_{P_{k+1}}(x)\geq f(x)$. Además $|g_{P_k}(x)|,|G_{P_k}(x)|\leq \sup_{ A} |f|$. $(3)$

Por lo anterior, deducimos que $g_{P_k}$ es una sucesión crecieciente y acotada en c.t.p. mientras que $G_{P_k}$ es una sucesión decreciente y acotada en c.t.p. Esto garantiza que $g_{P_k}$ y $G_{P_k}$ convergen a ciertas funciones $g$ y $G$ con $g\leq f \leq G$ en c.t.p. Además, ambas sucesiones están acotadas en norma por $\sup_{A} |f|$. Se sigue del teorema de la convergencia dominada y (1) que:

$$\int_{\mathcal{R},A} f(x) \ \mathrm{d}x=\lim_{k\to \infty}L(f,P_k)=\lim_{k\to \infty} \int_A g_{P_k} \ \mathrm{d}\lambda=\int_A g \ \mathrm{d}\lambda.$$ $$\int_{\mathcal{R},A} f(x) \ \mathrm{d}x=\lim_{k\to \infty}U(f,P_k)=\lim_{k\to \infty} \int_A G_{P_k} \ \mathrm{d}\lambda=\int_A G \ \mathrm{d}\lambda.$$

Como $G-g\geq 0$ (en c.t.p.) y $\int (G-g) \ \mathrm{d}\lambda=0$, se sigue que $G=g$ en c.t.p. $\implies$ $G=f=g$ en c.t.p. $\implies$ $f$ es medible. Más aún, $f\in L^1(A)$ pues es una función medible y acotada (en c.t.p.) de $A$. Por monotonía la única posibilidad es:

\begin{equation*}
\int f \ \mathrm{d}\lambda=\int g \ \mathrm{d}\lambda=\int G \ \mathrm{d}\lambda=\int_{\mathcal{R},A} f(x) \ \mathrm{d}x.
\end{equation*}

Se sigue 1.

Veamos la dirección ($\implies$) en 2. Supongamos que $f$ es Riemann integrable. Consideremos las funciones: $$h(x)=\lim_{\delta\to 0} \inf_{|y-x|\leq \delta}f(y); \ \ \ H(x)=\lim_{\delta\to 0} \sup_{|y-x|\leq \delta}f(y).$$

$h$ y $H$ están bien definidas pues $f$ es acotada. Desentrañando las definiciones es fácil ver que $H(x)=h(x)$ si y sólo si $f$ es continua en $x$.

Usando la notación del inciso anterior, definamos $N’=N\cup \{ x \ | \ g(x)\neq G(x) \}$. Anteriormente probamos que los dos uniendos son nulos, de modo que $N’$ es nulo.

Probaremos que si $x\notin N’$ $\implies$ $H(x)=h(x)$. Esto en particular prueba que $f$ es continua en c.t.p. Sea entonces $x\in A\setminus N’$.

Sea $\varepsilon>0$. Como $\lim_{k\to \infty} g_k(x)=g(x)=G(x)=\lim_{k\to \infty} G_k(x)$, podemos encontrar una $M\in \mathbb{N}$ suficientemente grande tal que $$G_M(x)-g_M(x)<\frac{\varepsilon}{2}.$$

Sea $S$ el rectángulo inducido por $P_M$ tal que $x\in S$. Como observamos anteriormente, $x$ está en el interior de $S$, de modo que podemos encontrar $\eta>0$ suficientemente pequeño tal que $$\{y \ | \ |x-y|<\eta \}\subseteq S.$$ Luego, $\forall \delta$ con $0<\delta\leq \eta$:
$$G_M(x)= \sup_{y\in S} f(y)\geq \sup_{|y-x|\leq \delta} f(y)\geq \inf_{|y-x|\leq \delta}f(y) \geq \inf_{y\in S} f(y) = g_M(x)$$ $$\implies \sup_{|y-x|\leq \delta} f(y)- \inf_{|y-x|\leq \delta}f(y)\leq G_M(x)-g_M(x)<\varepsilon.$$ Como esto se satisface para cualquier $\varepsilon>0$, necesariamente $$h(x)=\lim_{\delta\to 0} \inf_{|y-x|\leq \delta}f(y)=\lim_{\delta\to 0} \sup_{|y-x|\leq \delta}f(y)=H(x).$$ Esto prueba la implicación ($\implies$) de 2.

La implicación ($\impliedby$) es esencialmente revertir los pasos anteriores: Tomemos una sucesión de particiones $P_1\subseteq P_2\subseteq\dots$ cuyo diámetro se haga arbitrariamente pequeño y definamos $g_k,G_k,g,G,N,h,H$ como antes (notemos que las observaciones (2) y (3) siguen siendo ciertas). En este caso como $f$ es continua en c.t.p. $\implies$ $h=H$ en c.t.p.

Afirmamos que si $H(x)=h(x)$ con $x\notin N$ $\implies$ $g(x)=G(x)$: $\ \ \ (4)$

Dado $\varepsilon>0$, por la definición de $h,H$, podemos encontrar $\delta>0$ suficientemente pequeño tal que $\sup_{|y-x|\leq \delta} f(y)-\inf_{|y-x|\leq \delta} f(y)<\varepsilon$. Como el diámetro de las particiones se vuelve arbitrariamente pequeño, podemos encontrar $P_N$ con $N$ suficientemente grande tal que $x\in S \in R_{P_N}$ y $S\subseteq \{ y \ | \ |y-x|\leq \delta \}$.

Como $x\notin N$, sabemos que $g_{P_N}(x)=m_S$, $G_{P_N}(x)=M_S$. Luego, para $k\geq N$: \begin{align*}
G_{P_k}(x)-g_{P_k}(x) &\leq G_{P_N}(x)-g_{P_N}(x) \\
&= M_S-m_S \\
&= \sup_{S} f-\inf_{S} f\\
&\leq \sup_{|y-x|\leq \delta} f(y)-\inf_{|y-x|\leq \delta} f(y) \\
&< \varepsilon.
\end{align*} Como $x\notin N$, tenemos que $g_{P_k}(x)\uparrow g(x)$; $G_{P_k}(x)\downarrow G(x)$ (ver (3) ). Esto y la desigualdad anterior implican que $g(x)=G(x)$.

Como $h=H$ en c.t.p. y $N$ es nulo, se sigue de (4) que $g=G$ en c.t.p.

Finalmente, aplicando el teorema de la convergencia dominada y (1): \begin{align*}
\lim_{k\to \infty}L(f,P_k) &= \lim_{k\to \infty} \int_A g_{P_k} \ \mathrm{d}\lambda \\
&= \int_A g \ \mathrm{d}\lambda \\
&= \int_A G \ \mathrm{d}\lambda \\
&= \lim_{k\to \infty} \int_A G_{P_k} \ \mathrm{d}\lambda \\
&= \lim_{k\to \infty}U(f,P_k)
\end{align*}(Podemos aplicar el teorema de la convergencia dominada pues todas las funciones en cuestión están dominadas por $\sup |f|$).

Por lo anterior, concluimos que $f$ es Riemann integrable.

$\square$

Cálculo de integrales

El teorema de la sección anterior nos permite reducir el cálculo de integrales de Lebesgue al cálculo de integrales de Riemann mientras las funciones sean Riemann integrables. Esto puede simplificar en gran medida los cálculos pues nos posibilita usar las herramientas conocidas para la integral de Riemann, como el teorema fundamental del cálculo, la integración por partes, los cambios de variable, entre otros.

Esto se aprecia mejor con un ejemplo.

Ejercicio. Calcular la integral de Lebesgue $$\int_0^{\infty} e^{-x} \ \mathrm{d}x.$$

Solución. La sucesión $g_N(x)=e^{-x}\chi_{[0,N]}$ es una sucesión creciente de funciones medibles positivas. Claramente $\lim_{N\to \infty} g_N(x)=e^{-x}\chi_{[0,\infty)}$. Luego, por el teorema de la convergencia monótona:

$$\int_0^{\infty}e^{-x} \ \mathrm{d}x=\lim_{N\to \infty}\int_{\mathbb{R}}g_N(x) \ \mathrm{d}x=\lim_{N\to \infty}\int_0^Ne^{-x} \ \mathrm{d}x.$$

Al ser continuas, las funciones del lado derecho son Riemann integrables sobre $[0,N]$. Por el teorema anterior, el cálculo de estas integrales (de Lebesgue) se reduce al cálculo de las integrales de Riemann, por lo que podemos usar el teorema fundamental del cálculo:

\begin{align*}
\int_0^{\infty}e^{-x} \ \mathrm{d}x &= \lim_{N\to \infty}\int_0^Ne^{-x} \ \mathrm{d}x \\ &= \lim_{N\to \infty}\int_0^N (-e^{-x})’ \ \mathrm{d}x \\ &= \lim_{N\to \infty} \left[-e^{-x} \right]_{x=0}^{x=N} \\ &= \lim_{N\to \infty} [-e^{-N}+e^0] \\ &=1-\lim_{N\to \infty} e^{-N} \\ &=1.
\end{align*}

$\triangle$

Observación. El argumento usado en el ejercicio anterior para calcular integrales sobre intervalos no acotados mediante T.F.C. es bastante común: Por ejemplo si $g’\geq 0$ (ó $g’\in L^1(\mathbb{R})$), entonces por el Teorema de la convergencia monótona (o dominada) tenemos $$\int_{-\infty}^{\infty} g'(x) \ \mathrm{d}x=\lim_{N\to \infty} \int_{-N}^{N}g'(x) \ \mathrm{d}x=\lim_{N\to \infty} [g(N)-g(-N)]=\lim_{x\to \infty}g(x)-\lim_{x\to -\infty}g(x).$$

Por brevedad, abreviaremos el argumento anterior diciendo simplemente que $$\int_{-\infty}^{\infty} g'(x) \ \mathrm{d}x= [g(x)]_{x=-\infty}^{x=\infty}=g(\infty)-g(-\infty). $$

Haremos consideraciones similares para los demás tipos de intervalos no acotados.

$\square$

El criterio del teorema anterior nos da otro argumento para ver que la función de Dirichlet no es Riemann integrable.

Ejemplo. La función de Dirichlet $\chi_{\mathbb{Q}}$ no es Riemann integrable en $[0,1]$, pues no es continua en ningún punto de este intervalo.

Ejercicio. Probar que la función $f(x)=\frac{x}{(x^2+x+1)\ln(1+x)^2}\in L^1([1,\infty))$.

Solución. Observemos primero que $f\geq 0$ en $[1,\infty)$. En vez de calcular directamente $\int_1^{\infty}f(x) \ \mathrm{d}x$, es suficiente encontrar alguna función $g\in L^1([1,\infty))$ tal que $0\leq f\leq g$. Consideremos entonces $$g(x)=\frac{1}{(x+1)(\ln (x+1))^2}.$$ Como $x+1\leq \frac{x^2+x+1}{x}$ para $x\in [0,\infty)$ $\implies$ $f\leq g$ en $[0,\infty)$. Por el teorema fundamental del cálculo:

\begin{align*}
\int_1^{\infty} g(x) \ \mathrm{d}x &= \int_1^{\infty} \frac{1}{(x+1)(\ln (x+1))^2} \ \mathrm{d}x \\
&= \int_1^{\infty} \left( -\frac{1}{\ln(x+1)} \right)’ \ \mathrm{d}x \\
&= \left[ -\frac{1}{\ln(x+1)} \right]_{x=1}^{x=\infty} \\ &= \frac{1}{\ln(2)} -\lim_{x\to \infty} \frac{1}{\ln(x+1)} \\
&= \frac{1}{\ln(2)}-0\\
&= \frac{1}{\ln(2)}<\infty.\\
\end{align*}

(En las igualdades anteriores abreviamos la aplicación del teorema de la convergencia monótona como en la observación). Finalmente $$\int_1^{\infty} f(x) \ \mathrm{d}x=\int_1^{\infty} g(x) \ \mathrm{d}x=\frac{1}{\ln(2)}<\infty.$$

$\triangle$

Más adelante…

Veremos el teorema de cambio de variable para integrales de Lebesgue. Análoga al de las integrales de Riemann, nos permite «cambiar coordenadas» en las integrales para reescribirlas de manera conveniente.

Tarea moral

  • Calcula $$\int_{-\infty}^{\infty}\frac{1}{1+x^2} \ \mathrm{d}x.$$
  • Calcula $$\int_{0}^{1} \frac{1}{\sqrt{x}} \ \mathrm{d}x.$$
  • Sea $f(x)=x^{\alpha}$.
    • Demuestra que $f\in L^1((0,1))$ $\iff$ $\alpha<1$.
    • Demuestra que $f\in L^1([1,\infty))$ $\iff$ $\alpha>1$.
  • ¿Si una función es continua en casi todo punto de $\mathbb{R}$, podemos asegurar que $f$ es continua en todo $\mathbb{R}$?
  • Sea $f:[a,b]\to \mathbb{R}$ una función monótona. Demuestra que $f$ es discontinua en a lo más una cantidad numerable de puntos. Deduce que $f$ es Riemann integrable. [SUGERENCIA: Si $f$ es discontinua en $x_0$, la única posibilidad es que $s(x_0)=\inf_{x>x_0}\{ f(x)\}-\sup_{x<x_0}\{ f(x) \}>0$. Si hay una cantidad no numerable de discontinuidades, entonces existe algún $N\in \mathbb{N}$ tal que $\{y \ | \ s(y)>\frac{1}{N} \}$ es infinito. ¿Porqué esto es imposible? ].

Invarianza de la medida de Lebesgue

Por César Mendoza

Introducción

En las secciones pasadas probamos muchas propiedades interesantes de los conjuntos medibles y la medida de Lebesgue. Una omisión importante es ¿Qué pasa con las transformaciones rígidas? O más generalmente ¿Cómo interactua la medida de Lebesgue con las transformaciones lineales?
En dimensiones bajas estamos acostumbrados a que la longitud, el área y el volúmen sean invariantes bajo transformaciones rígidas; o que se multipliquen por «cierto factor» bajo transformaciones lineales generales. Así que es de esperar que algo similar ocurra con la medida de Lebesgue.
En esta entrada discutiremos de manera precisa cuál es la relación entre $\lambda(A)$ y $\lambda (TA)$ cuando $T$ es una matriz arbitraria.

Nuestro objetivo es probar lo siguiente:

Teorema. Sea $T\in M_{n\times n}(\mathbb{R})$ una matriz y $A\subseteq\mathbb{R}^n$. Entonces $$\lambda^*(TA)=|\det T|\lambda^*(A).$$ Si $A$ es medible entonces $TA$ es medible y $$\lambda(TA)=|\det T|\lambda(A).$$

Demostración.

Veremos primero el caso en el que $T$ es invertible.

Podemos hacer una serie de reducciones para simplificar la demostración. Considera lo siguiente.

Observación 1. Si el teorema es válido para dos matrices $T_1$ y $T_2$, entonces es válido para el producto $T_1T_2$ pues $$|\det T_1T_2|=|\det T_1||\det T_2|.$$ De donde $$\lambda^*(T_1T_2A)=|\det T_1|\lambda^*(T_2A)=|\det T_1||\det T_2|\lambda^*(A)=|\det T_1T_2|\lambda^*(A).$$ Y si $A$ es medible $\implies$ $T_2A$ es medible $\implies$ $T_1T_2A$ es medible.

Hecho 1. De tus cursos anteriores seguramente recordarás que toda matriz invertible se puede descomponer como producto de las llamadas «matrices elementales». Puedes consultarlo aquí [ENLACE]. Como un breve recordatorio, existen dos tipos de matrices elementales. En lo que sigue $k$ y $l$ denotan enteros fijos entre $1$ y $n$.

Matrices de multiplicación. Dado $c\in \mathbb{R}$, son matrices de la forma $M=[m_{ij}]$ con:

\begin{equation*} m_{ij}= \begin{cases} 1 & \text{si } i= j\neq k \\ c & \text{si } i= j= k \\ 0 & \text{si } i\neq j \end{cases} \end{equation*}

Por ejemplo cuando $k=1$:

\begin{equation*} \begin{pmatrix} c & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix} \end{equation*}

Observa que $|\det M|=c$, además que $ M^{-1}$ es también una matriz de multiplicación con $c$ reemplazado por $c^{-1}$. Dada una matriz $T$, $MT$ es la matriz que se obtiene de $T$ al multiplicar su $k$-ésima fila por $c$. Algo similar ocurre con $TM$ reemplazando «filas» por «columnas». Como transformación lineal, $M$ actúa multiplicando la $k$-ésima componente de un vector por $c$.

Matrices de suma. Dado $c\in \mathbb{R}$, son matrices $A=[a_{ij}]$ de la forma:

\begin{equation*} a_{ij}= \begin{cases} 1 & \text{si } i= j\neq k \\ c & \text{si } i=k, j=l \\ 0 & \text{si } i\neq j \end{cases} \end{equation*}

Por ejemplo, cuando $k=1,l=2$:

\begin{equation*} \begin{pmatrix} 1 & c & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix} \end{equation*}

Observa que $|\det A|=1$ y que $ A^{-1}$ es también una matriz de multiplicación con $c$ reemplazado por $-c$. Dada una matriz $T$, $AT$ es la matriz que se obtiene de $T$ al sumar $c$ veces la fila $l$ a la fila $k$. Algo similar ocurre con $TA$ reemplazando «filas» por «columnas». Como transformación lineal ésta actúa sobre un vector sumando $c$ veces la $l$-ésima entrada a su $k$-ésima entrada.

Por las observaciones anteriores, resulta que es suficiente probar el teorema para las matrices elementales, que denotaremos por $E_{n\times n}$.

Veamos ahora el siguiente Lema.

Lema. Sea $T\in M_{n\times n}(\mathbb{R})$ una matriz invertible. Sea $J$ el rectángulo semiabierto:
$$J=[0,1)\times \dots \times[0,1).$$
Sea $\rho$ el cociente: $$\rho=\frac{\lambda(TJ)}{\lambda(J)}.$$
Dado $A\subseteq \mathbb{R}^n$, entonces $$\lambda^*(TA)=\rho\lambda^*(A).$$ Si $A$ es medible, entonces $TA$ es medible y $$\lambda(TA)=\rho\lambda(A).$$

Demostración. La transformación lineal $x\to Tx$ es continua con inversa continua, por tanto un homeomorfismo. En particular transforma conjuntos abiertos en conjuntos abiertos y conjuntos compactos en conjuntos compactos.

Podemos expresar a $J$ como unión creciente de rectángulos, a saber: $$J=\bigcup_{k=1}^{\infty} [0,1-k^{-1}]\times[0,1-k^{-1}]\times \dots \times [0,1-k^{-1}].$$ Por la monotonía de la medida de Lebesgue es fácil ver que $\lambda(J)=1>0$. Aplicando $T$ (y usando que en general $f(\bigcup_{i\in I }C_i)=\bigcup_{i\in I} f(C_i)$) se sigue que: $$TJ=\bigcup_{k=1}^{\infty} T([0,1-k^{-1}]\times[0,1-k^{-1}]\times \dots \times [0,1-k^{-1}]).$$ Como $T$ es un homeomorfismo, cada $T([0,1-k^{-1}]\times[0,1-k^{-1}]\times \dots \times [0,1-k^{-1}])$ es un conjunto compacto. Entonces $TJ$ es unión numerable de conjuntos compactos por lo que en particular es medible.

Como $J$ es acotado, $TJ$ también es acotado así que su medida es finita. En todo caso, el cociente $\rho$ tiene sentido y está bien definido.

Veamos primero que el Lema se satisface para conjuntos abiertos. Considera $G$ un conjunto abierto arbitrario.

La idea es cubrir a $G$ con una cantidad numerable de «copias reescaladas» y ajenas de $J$. El procediemiento es estándar:

Primero cubrimos $\mathbb{R}^n$ con rectángulos de la forma $$[\alpha_1,\alpha_1+1)\times [\alpha_2,\alpha_2+1)\times \dots \times [\alpha_n,\alpha_n+1).$$ Donde cada $\alpha_k\in \mathbb{Z}$ es un número entero. Seleccionamos los rectángulos que están contenidos en $G$. Luego, partimos cada rectángulo no seleccionado en los $2^n$ subrectángulos que se obtienen al bisecar sus lados. Estos son de la forma $$\left[\frac{\alpha_1}{2},\frac{\alpha_1+1}{2}\right)\times \left[\frac{\alpha_2}{2},\frac{\alpha_2+1}{2}\right)\times \dots \times \left[\frac{\alpha_n}{2},\frac{\alpha_n+1}{2}\right).$$ Con $\alpha_k \in \mathbb{Z}$ enteros. De nuevo seleccionamos los rectángulos que están contenidos en $G$. Continuando con este proceso, al final nos quedamos con una colección numerable de copias reescaladas ajenas de $J$: $J_1,J_2,\dots$.

Como $G$ es abierto, para cualquier punto $x\in G$, podemos encontrar un rectángulo $R=[\frac{\alpha_1}{2^m},\frac{\alpha_1+1}{2^m})\times \dots \times [\frac{\alpha_n}{2^m},\frac{\alpha_n+1}{2^m})$ con $\alpha_1, \dots, \alpha_n \in \mathbb{Z}$ tal que $x\in R \subseteq G$. Esto garantiza que cualquier $x\in G$ es eventualmente cubierto por algún $J_k$. Además, claramente cada rectángulo $J_k$ se queda contenido en $G$. Esto nos garantiza que $$G=\bigcup_{k=1}^{\infty} J_k.$$ Es la descomposición deseada. Al aplicar $T$, se sigue también que $$TG=\bigcup_{k=1}^{\infty} TJ_k$$ Es la únión ajena de las imágenes $TJ_k$ (que son medibles).

Cada $J_k$ es una copia reescalada y trasladada de $J$, es decir, es de la forma: $$J_k=z_k+t_kJ$$ Con $z_k\in \mathbb{R}^n$, $t_k>0$. Así que podemos calcular su medida de Lebesgue: $$\lambda(J_k)=t_k^n\lambda(J)$$ $$\implies t_k^n=\frac{\lambda(J_k)}{\lambda(J)}.$$

Ahora, por linealidad se verifica fácilmente que: $$TJ_k=Tz_k+t_kTJ$$ $$\implies \lambda(TJ_k)=t_k^n\lambda(TJ).$$ Sustituyendo $t_k^n$: $$\implies \lambda(TJ_k)=\left( \frac{\lambda(J_k)}{\lambda(J)} \right)\lambda(TJ)=\rho\lambda(J_k).$$

Finalmente, por la aditividad contable:

\begin{align*}
\lambda(TG) =& \lambda\left(\bigcup_{k=1}^{\infty} TJ_k\right) \\
&= \sum_{k=1}^{\infty} \lambda (TJ_k) \\
&= \rho \sum_{k=1}^{\infty} \lambda (J_k) \\
&= \rho \lambda\left( \bigcup_{k=1}^{\infty} J_k \right) \\
&= \rho \lambda(G).
\end{align*}

Esto establece el Lema para el caso de conjuntos abiertos. Si $A\subseteq \mathbb{R}^n$ es un subconunto arbitrario, por la aproximación con abiertos de la medida exterior tenemos:

\begin{align*}
\lambda^*(TA) &= \inf_{TA\subseteq U \text{ abto.}}\{ \lambda(U) \}\\
&= \inf_{A\subseteq U \text{ abto.}}\{ \lambda(TU) \} \\
&= \inf_{A\subseteq U \text{ abto.}}\{ \rho \lambda(U) \} \\
&= \rho \inf_{A\subseteq U \text{ abto.}}\{ \lambda(U) \} \\
&= \rho \lambda^*(A).
\end{align*}

En la segunda igualdad usamos que $T$ es un homeomorfismo.

Finalmente, si $A$ es medible, para cualquier $\varepsilon>0$ podemos encontrar un abierto $U$ tal que $A\subseteq U$ y $$\lambda^*(U\setminus A)<\frac{\varepsilon}{\rho}$$ Entonces $TU$ es un abierto con

$$\lambda^*(TU\setminus TA)=\lambda^*(T(U\setminus A))=\rho \lambda^*(U\setminus A)<\varepsilon.$$
Se sigue que $TA$ es medible y $\lambda(TA)=\lambda^*(TA)=\rho \lambda^*(A)=\rho \lambda(A)$.

$\square$

El Lema anterior nos dice en particular que cuando $T$ es una matriz elemental, existe alguna constante $\rho$ tal que $$\lambda^*(TA)=\rho \lambda^*(A).$$ para cualquier $A\subseteq \mathbb{R}^n$. Queremos probar que $\rho=|\det T|$, para ello es suficiente exhibir algún conjunto particular $A$ (medible, de medida finita y no nula) para el cual podamos calcular $\rho=\frac{\lambda(TA)}{\lambda(A)}$. Tratamos los dos tipos de matrices elementales por separado.

  1. $T$ es matriz de multiplicación. Asumamos sin pérdida de generalidad que $T=[t_{ij}]$ con $t_{11}=c$, $t_{ii}=1$ para $i\neq 1$. En este caso $\det T=c$ (los demás casos son análogos). Escojamos $$A=[0,1]\times[0,1]\times \dots \times [0,1] \ \implies \ \lambda(A)=1$$ Si $c>0$ entonces $$TA=[0,c]\times[0,1]\times \dots \times [0,1]\ \implies \ \lambda(TA)=c$$ Y si $c<0$ entonces $$TA=[c,0]\times[0,1]\times \dots \times [0,1]\ \implies \ \lambda(TA)=-c$$ En todo caso
    $$\rho=\frac{\lambda(TA)}{\lambda(A)}=|c|=|\det T|.$$
  2. $T$ es matriz de adición. Nuevamente, por simplicidad asumiremos que $T$ es de la forma
    \begin{equation*} T=\begin{pmatrix} 1 & c & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix} \end{equation*}
    Y que $c>0$. Los demás casos son completamente análogos. Ahora, escojamos $$A=\{x\in \mathbb{R}^n \ : \ -cx_2\leq x_1\leq 0, 0\leq x_2 \leq 1, \dots, 0\leq x_n \leq 1\}.$$ Es fácil ver que $$TA=\{x\in \mathbb{R}^n \ : \ 0\leq x_1\leq cx_2, 0\leq x_2 \leq 1, \dots, 0\leq x_n \leq 1\}.$$ Si $M$ es la matriz de multiplicación
    \begin{equation*} M=\begin{pmatrix} -1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix} \end{equation*}
    Para este $A$ en particular tenemos que $$TA=MA.$$ Así que por el caso anterior tenemos $$\lambda(TA)=\lambda(MA)=|\det M|\lambda(A)=\lambda(A).$$ De donde $$\rho=\frac{\lambda(TA)}{\lambda(A)}=1=|\det T|.$$

Esto concluye la prueba para matrices elementales y por tanto, para todas las matrices invertibles. Veamos ahora el caso degenerado en el que $\det T=0$. En este caso es suficiente probar que directamente $\lambda(T\mathbb{R}^n)=0$.

Si $\det T =0$, los vectores columna de la matriz $T$ son linealmente dependientes, por lo que generan el subespacio $T\mathbb{R}^n$ de dimensión $m<n$. Por Gram-Schmidt, podemos escojer una base ortonormal $B=\{b_1,b_2,\dots,b_n \}$ de $\mathbb{R}^n$ tal que $\{ b_1,b_2,\dots, b_m \}$ sean base de $S$.

Sea entonces $M$ la matriz cuyos vectores columna son $b_1,b_2,\dots b_n$ en ese órden (ésta es ortogonal, y por tanto $|\det M|=1$). $M$ transforma la base usual de $\mathbb{R}^n$ en la base $B$, i.e. $Me_i=b_i$ (donde $e_i$ es el vector con $i$-ésima entrada 1 y las demás 0). Se sigue que: $$M(\mathbb{R}^m\times\{ 0\}^{n-m})=T\mathbb{R}^n.$$ Entonces, usando el caso no degenerado tenemos:

\begin{align*}
\lambda(T\mathbb{R}^n) &= \lambda(M(\mathbb{R}^m\times\{ 0\}^{n-m})) \\
&= |\det M|\lambda(\mathbb{R}^m\times\{ 0\}^{n-m}) \\
&\leq \lambda(\mathbb{R}^{n-1}\times\{ 0\}) \\
&= 0.
\end{align*}

Pues ya sabemos que el hiperplano $\mathbb{R}^{n-1}\times\{ 0\}$ tiene medida cero.

$\square$

Más adelante…

Definiremos el concepto de sigma-álgebra y funciones medibles, las estructuras abstractas sobre las que podemos definir la integral de Lebesgue y otros conceptos de integración más generales.

Tarea moral

  • Sea $T:\mathbb{R}^n\to \mathbb{R}^n$ una transformación lineal y $x\in \mathbb{R}^n$. ¿Que relación existe entre $\lambda^*(A)$ y $\lambda^*(TA+x)$?
  • Demuestra que la medida de Lebesgue es invariante bajo rotaciones.
  • Calcula la medida de Lebesgue del paralelogramo $P$ con vértices $(0,0),(2,1),(3,4)$ y $(1,3)$. [SUGERENCIA: La transformación con matriz $T= \begin{pmatrix} 2 & 1 \\ 1 & 3 \end{pmatrix}$ transforma el rectángulo $[0,1]\times [0,1]$ en $P$].
  • Sean $a_1,a_2,\dots, a_n \in \mathbb{R}^n$. Escribamos $a_j=(a_{1j},a_{2j},\dots, a_{nj})$ para $j=1,\dots, n$. Sea $R$ el paralelepípedo $$R= \{ t_1a_1+t_2a_2+\dots+t_na_n \ | \ 0\leq t_k \leq 1 \ \ \ \forall k \}.$$ Demuestra que $\lambda(R)=|\det A|$, donde $A=[a_{ij}]$.