En esta sección estudiaremos los conjuntos convexos del espacio $\mathbb{R}^n$. Intuitivamente decimos que un conjunto convexo es aquel que dados dos puntos del conjunto, el segmento de linea que los une también pertenece a ese conjunto.
Definición. Dados $\overline{x},~\overline{y}~\in\mathbb{R}^{n}$, al segmento rectilineo que une dichos puntos lo denotamos $$[\overline{x},\overline{y}]=\{t\overline{y}+(1-t)\overline{x}~|~t\in[0,1]\}$$
Definición. Sea $k\subset \mathbb{R}^{n}$. Se dice que $k$ es convexo si dados dos puntos de k, el segmento que los une está contenido en $k$ es decir $$[\overline{x},\overline{y}]\subset k~~~~\forall~\overline{x},~\overline{y}\in k$$
Ejemplo. Una bola abierta es un conjunto convexo Demostración. Sea $\overline{x}_{0}\in \mathbb{R}^{n}$ y consideremos $\overline{x},~\overline{y}~\in~B(\overline{x}_{0},\epsilon)$ vamos a ver que $[\overline{x},\overline{y}]\in~B(\overline{x}_{0}\epsilon)$ tenemos que
$$\overline{x} \in B(\overline{x}_{0},\epsilon)~\Rightarrow~|\overline{x}-\overline{x}_{0}|<\epsilon$$ y $$\overline{y}\in B(\overline{x}_{0},\epsilon) ~\Rightarrow~|\overline{y}- \overline{x}_{0} | <\epsilon$$ por lo tanto
$$|[\overline{x},\overline{y}]-\overline{x}_{0}|=|t\overline{y}+(1-t)\overline{x}-\overline{x}_{0}|=|t(\overline{y}-\overline{x}_{0})+(1-t)(\overline{x}-\overline{x}_{0})|\leq t|\overline{y}-\overline{x}_{0}|+(1-t)|\overline{x}-\overline{x}_{0}|<$$ $$t\epsilon+(1-t)\epsilon=\epsilon\therefore|[\overline{x},\overline{y}]-\overline{x}_{0}|<\epsilon$$ y de esta manera $$[\overline{x},\overline{y}]\in~B(\overline{x}_{0},\epsilon)$$
Ejemplo. El cuadrado $A=[-1,1]\times [-1,1]$ es un conjunto convexo Demostración. Sean $\overline{x}=(x_{1},x_{2})$, $\overline{y}=(y_{1},y_{2})$ $\in A$ y $t\in [0,1]$ vamos a ver que $t\overline{y}+(1-t)\overline{x}\in A$, tenemos que $$t\overline{y}+(1-t)\overline{x}=(ty_{1},ty_{2})+((1-t)x_{1},(1-t)x_{2})=(ty_{1}+(1-t)x_{1},ty_{2}+(1-t)x_{2})$$ como $x_{1},~x_{2},~y_{1},~y_{2}$ son tal que $$-1\leq x_{1}\leq 1$$
$$-1\leq x_{2}\leq 1 $$
$$ -1\leq y_{1}\leq 1 $$
$$ -1\leq y_{2}\leq 1$$ entonces
$$-1\leq t(-1)+(1-t)(-1)\leq ty_{1}+(1-t)x_{1}\leq t(1)+(1-t)(1)\leq 1$$ $$1\leq t(-1)+(1-t)(-1)\leq ty_{2}+(1-t)x_{2}\leq t(1)+(1-t)(1)\leq 1$$ por lo que $$(ty_{1}+(1-t)x_{1},ty_{2}+(1-t)x_{2})\in [-1,1]\times [-1,1]$$ por lo tanto $$t\overline{y}+(1-t)\overline{x}\in A$$
Teorema. Si $\overline{x_{1}},\overline{x}{2},…,\overline{x}{n}\in \mathbb{R}^{n}$ son conjuntos convexos tales que $\displaystyle{\bigcap \overline{x_{i}}}\neq\emptyset~~\forall i=1,..,n$ entonces $\displaystyle{\bigcap \overline{x_{i}}}$ es un conjunto convexo.
Demostración. Sean $\overline{x},~\overline{y}\in \displaystyle{\bigcap \overline{x_{i}}}$ entonces para todo i se tiene que $$\overline{x},~\overline{y}\in \overline{x}{i}$$ como $\overline{x}{i}$ es convexo entonces $[\overline{x},\overline{y}]\in \overline{x}{i}$ para todo i, por lo tanto $$[\overline{x},\overline{y}]\subset\displaystyle{\bigcap \overline{x{i}}}$$ por lo tanto $\displaystyle{\bigcap \overline{x_{i}}}$ es convexo.
Teorema. Un conjunto convexo es conexo
Demostración. Dado un conjnuto X convexo, si X no fuera conexo entonces existirian A,B conjnutos abiertos separados tales que $X=A\bigcup B$ y $A\bigcap B=\emptyset$ y si consideramos $\overline{x},~\overline{y}\in X$ entonces el segmento $[\overline{x},\overline{y}]$ se puede parametrizar como $$f(t)=t\overline{y}+(1-t)\overline{x}~t\in [0,1]$$ y podríamos construir los abiertos $$\{t \in[0,1]~|~f(t)\in A \}$$ y $$\{t\in[0,1]~|~f(t)\in B \}$$ estos abiertos proporcionarían una disconexion para el segmento rectilineo $\underset{\circ}{\bigtriangledown}$ pues ya hemos probado que un segmento rectilineo es conexo, por lo tanto X es conexo.
Ejemplo. Un conjunto Conexo no es convexo, considere el conjunto $$A=\mathbb{R}^{2}- \{(x,y)\in\mathbb{R}^{2}~|~x\leq 0,~y=0\}$$ Vamos a mostrar que A es conexo pero no convexo\ Dado $(x,y)\in~A$ tomamos tres casos\ Caso (1) y=0 y $x>0$\ Consideremos el segmento $$[x,x_{0}]=[(x,x_{0}),(1,0)]$$ que esta dado por $${(x+t(1-x),0)=((1-t)x+t,0)\in\mathbb{R}^{2}~|~t\in[0,1]}$$ y como $(1-t)x+t>0$ para todo $t\in[0,1]$. Se tiene que esta contenido en A.\ Caso (2) $y>0$ y $x\in\mathbb{R}$. En este caso el segmento $$[x,x_{0}]=[(x,x_{0}),(1,0)]$$ que esta dado por $${(x+t(1-x),y-ty)=((1-t)x+t,(1-t)y)\in\mathbb{R}^{2}~|~t\in[0,1]}$$ se tiene que $$(1-t)y>0\forall~t\in[0,1)$$ para $t=1$ se tiene el punto $(1,0)=x_{0}$, entonces en este caso también dicho segmento esta contenido en A.\ Caso (3) $y<0$ y $x\in\mathbb{R}$. En este caso el segmento $$[x,x_{0}]=[(x,x_{0}),(1,0)]$$ que esta dado por $${(x+t(1-x),y-ty)=((1-t)x+t,(1-t)y)\in\mathbb{R}^{2}~|~t\in[0,1]}$$ se tiene que $$(1-t)y<0\forall~t\in[0,1)$$ para $t=1$ se tiene el punto $(1,0)=x_{0}$, entonces en este caso también dicho segmento esta contenido en A. Solo falta ver que el conjnuto A no es convexo
Si consideramos el punto $x=(-1,1)$ y el punto $y=(-1,-1)$ se tiene que $x,y\in A$ y sin embargo el punto $$(-1,0)=x+\left(\frac{1}{2}\right)(y-x)\in [x,y]$$ pero no pertenece a A, es decir $[x,y] \cancel{\subset}A$
Proposición:Si A y B son subconjuntos abiertos de $\mathbb{R}^{n}$, entonces $A\bigcup B$ es un conjunto abierto de $\mathbb{R}^{n}$. Demostración. Sea $\overline{x}\in A\cup B$. Se tiene entonces que $\overline{x}\in A$ ó $\overline{x}\in B$. Si $\overline{x}\in A$, entonces, puesto que A es abierto existe $r>0$ tal que $B_{r}(\overline{x})\subset A$, luego $B_{r}(\overline{x})\subset A\cup B$ Si $\overline{x}\in B$, entonces, puesto que B es abierto existe $r>0$ tal que $B_{r}(\overline{x})\subset B$, luego $B_{r}(\overline{x})\subset A\cup B$. En cualquiera de los casos, existe una bola abierta $B_{r}$ contenida en $A\cup B$. $\therefore$ $A\cup B$ es abierto.$~~\blacksquare$
Proposición. Si A y B son subconjuntos abiertos de $\mathbb{R}^{n}$, entonces $A\bigcap B$ es un conjunto abierto de $\mathbb{R}^{n}$. Demostración. Sea $\overline{x}\in A\cup B$. Se tiene entonces que $\overline{x}\in A$ y $\overline{x}\in B$. Puesto que A es abierto $\exists~r_{1}>0$ tal que $B(\overline{x},r_{1})\subset A$. Puesto que b es abierto $\exists~r_{2}>0$ tal que $B(\overline{x},r_{2})\subset B$.\Sea $r=\min{r_{1},r_{2}}$, entonces se tiene que \begin{align*} B(\overline{x},r) & \subset B(\overline{x},r_{1}) \\ B(\overline{x},r) & \subset B(\overline{x},r_{2}) \end{align*} Por lo tanto $B(\overline{x},r)\subset A$ y $B(\overline{x},r)\subset B$, o sea $B(\overline{x},r)\subset A\cap B$.$~~\blacksquare$
Proposición. Si A y B son subconjuntos cerrados de $\mathbb{R}^{n}$, entonces $A\bigcup B$ es un conjunto cerrado de $\mathbb{R}^{n}$. Demostración. Para mostrar que $A\bigcup B$ es un conjunto cerrado, tenemos que mostrar que $(A\bigcup B)^{c}$ es un conjunto abierto, al ser A, B conjuntos cerrados entonces $A^{c},~B^{c}$ son conjuntos abiertos y por leyes de D’morgan $$(A\bigcup B)^{c}=A^{c}\bigcap B^{c}$$ ahora bien por el resultado anterior se tiene que la intersección de conjuntos abiertos es un conjunto abierto, esto prueba que $(A\bigcup B)^{c}$ es un conjunto abierto, por lo tanto $A\bigcup B$ es un conjunto cerrado.$~~\blacksquare$
Proposición. Si A y B son subconjuntos cerrados de $\mathbb{R}^{n}$, entonces $A\bigcap B$ es un conjunto cerrado de $\mathbb{R}^{n}$. Demostración. Para mostrar que $A\bigcap B$ es un conjunto cerrado, tenemos que mostrar que $(A\bigcap B)^{c}$ es un conjunto abierto, al ser A, B conjuntos cerrados entonces $A^{c},~B^{c}$ son conjuntos abiertos y por leyes de D’morgan $$(A\bigcap B)^{c}=A^{c}\bigcup B^{c}$$ ahora bien por el resultado anterior se tiene que la unión de conjuntos abiertos es un conjunto abierto, esto prueba que $(A\bigcap B)^{c}$ es un conjunto abierto, por lo tanto $A\bigcap B$ es un conjunto cerrado.$~~\blacksquare$
Generalizaciones de la proposiciones anteriores de la familias de conjuntos.
Proposición. La unión arbitraria de conjuntos abiertos en $\mathbb{R}^{n}$ es un conjunto abierto en $\mathbb{R}^{n}$. Demostración. Sea ${A_{\alpha}}$ una colección de subconjuntos de $\mathbb{R}^{n}$ tal que $A_{\alpha}$ es un conjunto abierto en $\mathbb{R}^{n}$. Sea $\displaystyle{A=\bigcup A_{\alpha}}$. Sea $\overline{x}_{0}\in A$. Entonces existe $\alpha$ tal que $\overline{x}_{0}\in A_{\alpha}$ y como $A_{\alpha}$ es un conjunto abierto, existe $r>0$ tal que $$B(\overline{x}_{0},r)\subset A{\alpha}\subset \bigcup A_{\alpha}=A$$ Por lo tanto A es abierto.$~~\blacksquare$
Propposición. La intersección finita de conjuntos abiertos en $\mathbb{R}^{n}$ es un conjunto abierto en $\mathbb{R}^{n}$. Demostración. Sean $A_{1},A_{2},…,A_{k}$ subconjutos abiertos de $\mathbb{R}^{n}$. Sea $\displaystyle{B=\bigcap_{i=1}^{k}A_{i}=A_{1}\cap A_{2}\cap …\cap A_{k}}$. Sea $\overline{x}_{0}\in B$. Entonces $\overline{x}_{0}\in A_{i}$ para toda $1\leq i\leq k$. Cada $A_{i}$ es un conjunto abierto. Por lo tanto existe $r_{i}>0$ tal que $B(\overline{x}_{0},r{i})\subset A_{i}$ para toda $1\leq i\leq k$. Sea $r=\min{r_{1},r_{2},…,r_{n}}>0$. Entonces $$B(\overline{x}_{0},r)\subset B(\overline{x}_{0},r_{i})\subset A_{i}~~\forall~i=1,…,n$$ Por lo tanto $$B(\overline{x}_{0},r)\subset \bigcap_{i=1}^{k}A_{i}=B$$ y por lo tanto B es un conjunto abierto.$~~\blacksquare$
Proposición. La unión finita de conjuntos cerrados en $\mathbb{R}^{n}$ es un conjunto cerrado en $\mathbb{R}^{n}$. Demostración. Sean $A_{1},…,A_{k}\subset \mathbb{R}^{n}$ conjuntos cerrados y sea $\displaystyle{B=\bigcup_{i=1}^{n}A_{i}}$. Entonces $$B^{c}=\left(\bigcup_{i=1}^{n}A_{i}\right)^{c}=\bigcap_{i=1}^{n}A^{c}_{i}$$ el cual es un conjunto abierto de $\mathbb{R}^{n}$. Por lo tanto B es un conjunto cerrado de $\mathbb{R}^{n}$.$~~\blacksquare$
Proposición. La intersección finita de conjuntos cerrados en $\mathbb{R}^{n}$ es un conjunto cerrado en $\mathbb{R}^{n}$. Demostración. Sea ${A_{\alpha}}$ una colección de subconjuntos de $\mathbb{R}^{n}$ tales que cada $A_{\alpha}$ es cerrado en $\mathbb{R}^{n}$. Por lo tanto para cada $\alpha$, $A^{c}{\alpha}$ es un conjunto abierto en $\mathbb{R}^{n}$. Sea $\displaystyle{A=\bigcap{\alpha}A_{\alpha}}$ tal que $$A^{c}=\left(\bigcap_{\alpha}A_{\alpha}\right)^{c}=\bigcup_{\alpha}A^{c}_{\alpha}$$ es un conjunto abierto en $\mathbb{R}^{n}$. Por lo tanto A es un conjunto cerrado en $\mathbb{R}^{n}$.$~~\blacksquare$
Definición. Un elemento $\bar{x}\in A$ se dice que es un $\textbf{punto interior}$ de $A$, si existe una bola abierta con centro en $\bar{x}$ contenida en $A$ es decir si $\exists$ $r>0$ tal que $B(\bar{a},r)\subset A$. Denotamos por $int(A)$ al conjunto formado por todos estos puntos, es decir $$int(A)=\{\overline{x}\in\mathbb{R}^{n}~|~\overline{x}~es~punto~interior~de~A\}$$ y diremos que este conjunto es el interior de A.
Ejemplo. Determinar el $int(A),~~Fr(A),~~ext(A)$ con \[ A=\left[0,1\right]\times\left[0,1\right]\cap\left(\mathbb{Q}\times\mathbb{Q}\right)=\left\{ (x,y)\in\mathbb{R}^{2}~\big{|}~(x,y)\in\mathbb{Q}~~y~~0\leq x\leq1~~0\leq y\leq1\right\} . \]
Solución. Primero analicemos la figura, ¿qué pasa si tomamos un $(x,y)$ en $A$ y un $r>0$?, ¿qué podemos observar?. Si recordamos la densidad de los irracionales sabemos que podemos encontrar un $x’$ irracional entre $x$ y $x+r$, entonces si tomamos el punto $(x’,y)$ podemos ver que esta dentro de $B_{r}(x,y)$, pero $(x’,y)$ no es un punto de $A$. Esto pasa para toda $r>0$ y todo $(x,y)$ en $A$. Entonces, podemos afirmar que el $int(A)=\emptyset$. Ademas, podemos decir que para todo $(x,y)$ en $A$ y todo $r>0$ se tiene que $B_{r}(x,y)\cap A^{c}\neq\emptyset$. Usando el mismo argumento, pero ahora para los racionales, podemos decir que para cualquier $(x,y)$ y $r>0$ se tiene que $B_{r}(x,y)\cap A\neq\emptyset$. Todo esto dentro del cuadrado $\left[0,1\right]\times\left[0,1\right]$. Entonces, podemos afirmar que $Fr(A)=\left[0,1\right]\times\left[0,1\right]$.
¿Que podemos decir del exterior? De lo anterior podemos deducir que $ext(A)=\mathbb{R}{{}^2}-\left[0,1\right]\times\left[0,1\right]$. Entonces, demostremos la siguiente afirmación:
Afirmación: $int(A)=\emptyset$ Demostración. Sean $(x,y)\in A$ y $r>0$. Mostraremos que $B_{r}(x,y)\cap A^{c}\neq\emptyset$, es decir, que para cualquier punto $(x,y)$ de $A$ y cualquier radio $r>0$, la bola $B_{r}(x,y)$ siempre contiene puntos de $A^{c}$, es decir, que $A$ no tiene puntos interiores. Como $(x,y)\in A$, entonces $x\in\mathbb{Q}$ y por la densidad de los irracionales sabemos que siempre existe un $x’\notin\mathbb{Q}$ tal que $x<x'<x+r$……$\bigstar$ Tomemos el punto $(x’,y)$ y calculemos su distancia con $(x,y)$: \[ \| (x,y)-(x’,y)\|=\| (x-x’,0)\|=\sqrt{(x-x’)^{2}}=\underset{**}{\underbrace{\left|x-x’\right|<r}}\text{ esta ultima desigualdad se cumple por }\bigstar \] Veamos por que se cumple $**$. De $\bigstar$ tenemos que $x<x'<x+r$, restando $x$ tenemos $x-x<x’-x<x+r-x$ $\Longrightarrow0<x’-x<r$ como esto es positivo, le podemos sacar el valor absouto y se mantiene la desigualdad $0<|x’-x|<r$ y sabemos que $|a-b|=|b-a|$. Por lo tanto, $|x-x’|<r$. Entonces, como $\left\Vert (x,y)-(x’,y)\right\Vert <r$, tenemos que $(x’,y)\in B_{r}(x,y)$, pero como $x’\notin\mathbb{Q}$ esto implica que $(x’,y)\notin\mathbb{Q}\times\mathbb{Q}$. Por lo tanto, $B_{r}(x,y)\cap\left(\mathbb{R}^{2}-\mathbb{Q}\times\mathbb{Q}\right)\neq\emptyset$. Podemos observar que $A\subset\mathbb{Q}\times\mathbb{Q}$ $\Longrightarrow$ $B_{r}(x,y)\cap\left(\mathbb{R}^{2}-A\right)=B_{r}(x,y)\cap A^{c}\neq\emptyset$, es decir, que para todo $r>0$ se tiene que $B_{r}(x,y)$ siempre interseca a $A^{c}$. Por lo tanto, $int(A)=\emptyset$.$~~\blacksquare$
Afirmación: $Fr(A)=\left[0,1\right]\times\left[0,1\right]$ Demostración. Primero mostraremos que $\left[0,1\right]\times\left[0,1\right]\subset Fr(A)$. Sea $(x,y)\in\left[0,1\right]\times\left[0,1\right]$ y $r>0$. Ya probamos que $B_{r}(x’,y’)\cap A^{c}\neq\emptyset$, falta probar que $B_{r}(x,y)\cap A\neq\emptyset$. (Para que se cumpla la definición de frontera). Tenemos varios casos para $x$ y $y$: $(1)$ Supongamos que $0\leq x<1$ y $0\leq y<1$. Por la densidad de los números racionales, sabemos que existen $x’,y’\in\mathbb{Q}$ tal que: \[ x<x'<min\left\{1,x+\frac{r}{\sqrt{2}}\right\},\text{y }y<y'<min\left\{1,y+\frac{r}{\sqrt{2}}\right\}…………………\clubsuit \] Entonces, $\underset{\spadesuit}{\underbrace{(x’,y’)\in A}}$ y además $\displaystyle{|x-x’|<\frac{r}{\sqrt{2}}}$ y $\displaystyle{|y-y’|<\frac{r}{\sqrt{2}}}$. Así podemos ver lo siguiente: \[ ||(x,y)-(x’,y’)||=\sqrt{(x-x’)+(y-y’)}<\sqrt{\left(\frac{r}{\sqrt{2}}\right)^{2}+\left(\frac{r}{\sqrt{2}}\right)^{2}}=r, \] lo que nos dice que el punto $(x’,y’)\in B_{r}(x,y)$, y por $\spadesuit$ tenemos que $B_{r}(x,y)\cap A\neq\emptyset$. $(2)$ En este caso juntaremos los casos que faltan. Escogiendo a $x’,y’$ como en $\clubsuit$, tenemos lo siguiente: (a) Si $x=1$ y $y<1$ nos fijamos en la pareja $(1,y’)$, (b) Si $x<1$ y $y=1$ nos fijamos en la pareja $(x’,1)$, y (c) Si $x=1$ y $y=1$nos fijamos en la pareja $(1,1)$. Podemos observar que estos puntos están en $A$, pues sus entradas pertenecen a los racionales. Por lo tanto, $B_{r}(x,y)\cap A\neq\emptyset$. Por lo tanto, $\left[0,1\right]\times\left[0,1\right]\subset Fr(A)$.
Afirmación: $ext(A)=\mathbb{R}^{2}-\left[0,1\right]\times\left[0,1\right]$ Demostración. Primero mostremos que $\mathbb{R}^{2}-\{\left[0,1\right]\times\left[0,1\right]\}\subset ext(A)$. Sea $(x,y)\in\mathbb{R}^{2}-\{\left[0,1\right]\times\left[0,1\right]\}$ y supongamos que $x<0$ ó $1<x$, (la otra posibilidad es que $y<0$ ó $y>1$, pero se hace de manera análoga). (1) Si $x<0$, entonces tomamos $r=|x|>0$. Vamos a mostrar que $B_{r}(x,y)\subset\mathbb{R}^{2}-\{\left[0,1\right]\times\left[0,1\right]\}$. Observemos que $\mathbb{R}^{2}\{\left[0,1\right]\times\left[0,1\right]\}\subset A^{c}…………..\spadesuit$. Sea $(x’,y’)\in B_{r}(x,y)$, sabemos que \[ |x-x|\leq\left\Vert (x,y)-(x’,y’)\right\Vert <r \] pero $|x|=r$, entonces \[ |x-x’|<|x|=-x\text{ pues }x<0 \] entonces \[ x<x-x'<-x\Longrightarrow-x+x<-x+x-x'<-x-x\Longrightarrow0<-x'<-2x \] multiplicando por $(-1)$, tenemos que $x'<0$, lo cual implica que $(x’,y’)\notin\left[0,1\right]\times\left[0,1\right]$. Así tenemos que $(x’,y’)\in\mathbb{R}^{n}-\left[0,1\right]\times\left[0,1\right]$. Entonces, $B_{r}(x,y)\subset\mathbb{R}^{n}-\left[0,1\right]\times\left[0,1\right]$. Por lo tanto, por $\spadesuit$, $B_{r}(x,y)\subset A^{c}$, lo cual implica que $(x,y)\in ext(A)$. (2) Si $x>1$, entonces tomamos $r=x-1>0$. Vamos a mostrar que $B_{r}(x,y)\subset\mathbb{R}^{2}-\{\left[0,1\right]\times\left[0,1\right]\}$. Observemos que $\mathbb{R}^{2}\{\left[0,1\right]\times\left[0,1\right]\}\subset A^{c}…………..\spadesuit$. Sea $(x’,y’)\in B_{r}(x,y)$, sabemos que
Vamos a mostrar que $B_{r}(x,y)\subset\mathbb{R}{{}^2}-\left[0,1\right]\times\left[0,1\right]$. Observemos que $\mathbb{R}{{}^2}\left[0,1\right]\times\left[0,1\right]\subset A^{c}…………..\spadesuit$.\ Sea $(x’,y’)\in B_{r}(x,y)$, sabemos que \[ |x-x’|\leq\left\Vert (x,y)-(x’,y’)\right\Vert <r=x-1 \]
entonces tenemos que $x’>1$, lo cual nos dice que $(x’,y’)\notin\left[0,1\right]\times\left[0,1\right]$. Así tenemos que $(x’,y’)\in\mathbb{R}^{n}-\{\left[0,1\right]\times\left[0,1\right]\}$. Entonces, $B_{r}(x,y)\subset\mathbb{R}^{n}-\{\left[0,1\right]\times\left[0,1\right]\}$. Por lo tanto, por $\spadesuit$, $B_{r}(x,y)\subset A^{c}$, lo cual implica que $(x,y)\in ext(A)$. Por lo tanto, $\mathbb{R}^{2}-\{\left[0,1\right]\times\left[0,1\right]\}\subset ext(A)$. De la proposición tenemos que $\mathbb{R}^{n}=int(A)\cup ext(A)\cup Fr(A)$, en nuestro caso obtuvimos que $int(A)=\emptyset$. Entonces,
\[ \mathbb{R}{{}^2}=ext(A)\cup Fr(A) \] y de esto obtenemos las siguientes igualdades \[ \mathbb{R}{{}^2}-ext(A)=Fr(A)………\clubsuit\text{ y }\mathbb{R}{{}^2}-Fr(A)=ext(A)………\clubsuit\clubsuit. \] De $\clubsuit$ tenemos $Fr(A)\subset\mathbb{R}{{}^2}-ext(A)$ y de $(2)$ tenemos $\left[0,1\right]\times\left[0,1\right]\subset Fr(A)$, entonces $\left[0,1\right]\times\left[0,1\right]\subset Fr(A)\subset\mathbb{R}{{}^2}-ext(A)………….\maltese$ De $(3)$ tenemos $\mathbb{R}^{2}-\left[0,1\right]\times\left[0,1\right]\subset ext(A)$, entonces
entonces \[ \mathbb{R}^{2}\subset ext(A)\cup\left[0,1\right]\times\left[0,1\right]\Longrightarrow\mathbb{R}^{2}-ext(A)\subset\left(ext(A)\cup\left[0,1\right]\times\left[0,1\right]\right)-ext(A) \]
así tenemos \[ \mathbb{R}^{2}-ext(A)\subset\left[0,1\right]\times\left[0,1\right]…………..\maltese\maltese \]
Entonces, por $\maltese$ y $\maltese\maltese$ tenemos que $Fr(A)=\left[0,1\right]\times\left[0,1\right]$. Y de esta igualdad y de $\clubsuit\clubsuit$ tenemos que $ext(A)=\mathbb{R}^{2}-\left[0,1\right]\times\left[0,1\right]$.$~~\blacksquare$
Proposición: Si $A\subset\mathbb{R}^{n}$, entonces: (1) $int(A)\subset A$ (2) $ext(A)\subset A^{c}$ (3) (a) $int(A)\cap ext(A)=\emptyset$, (b) $int(A)\cap Fr(A)=\emptyset$ y (c) $Fr(A)\cap ext(A)=\emptyset$ (4) $\mathbb{R}^{n}=int(A)\cup ext(A)\cup Fr(A)$ (5) $int(A^{c})=ext(A)$ y $Fr(A)=Fr(A^{c})$.
Demostración. (1) Por demostrar que $int(A)\subset A$. Sea $\hat{x}\in int(A)$ $\Longrightarrow$ por definición que existe $r>0$ tal que $B_{r}(\hat{x})\subset A$. Como $\hat{x}\in B_{r}(\hat{x})$ (por definición de bola), entonces $\hat{x}\in A$. Por lo tanto, $int(A)\subset A$.
(2) Por demostrar que $ext(A)\subset A^{c}$. Sea $\hat{x}\in ext(A)$ $\Longrightarrow$ por definición que existe $r>0$ tal que $B_{r}(\hat{x})\subset A^{c}$. Como $\hat{x}\in B_{r}(\hat{x})$ (por definición de bola), entonces $\hat{x}\in A^{c}$. Por lo tanto, $ext(A)\subset A$.
3_aPor demostrar que $int(A)\cap ext(A)=\emptyset$. Supongamos por contadicción que $int(A)\cap ext(A)\neq\emptyset$, esto implica que existe $\hat{x}\in int(A)\cap ext(A)$ $\Longrightarrow$ $\hat{x}\in int(A)$ y $\hat{x}\in ext(A)$, esto implica por (1) y (2) que $\hat{x}\in A$ y $\hat{x}\in A^{c}$, lo cual es una contradicción. Por lo tanto, $int(A)\cap ext(A)=\emptyset$.
3_b Por demostrar que $int(A)\cap Fr(A)=\emptyset$. Supongamos por contadicción que $int(A)\cap Fr(A)\neq\emptyset$, esto implica que existe $\hat{x}\in int(A)\cap Fr(A)$ $\Longrightarrow$ $\hat{x}\in int(A)$ y $\hat{x}\in Fr(A)$. Así, tenemos lo siguiente: $(a).$ Existe $r>0$ tal que $B_{r}(\hat{x})\subset A$, y $(b).$ Para todo $r’>0$ se tiene que $B_{r’}(\hat{x})\cap A\neq\emptyset$ y $B_{r’}(\hat{x})\cap A^{c}\neq\emptyset$. En particular, por $(a)$, para $r>0$ tenemos que $B_{r}(\hat{x})\cap A^{c}=\emptyset$, lo cual contradice la hipótesis $(b)$. Por lo tanto, $int(A)\cap Fr(A)=\emptyset$.
3_c Por demostrar que $Fr(A)\cap ext(A)=\emptyset$. Supongamos por contradicción que $Fr(A)\cap ext(A)\neq\emptyset$, esto implica que existe $\hat{x}\in Fr(A)\cap ext(A)$ $\Longrightarrow$ $\hat{x}\in Fr(A)$ y $\hat{x}\in ext(A)$. Así, tenemos lo siguiente: $(a).$ Para todo $r>0$ se tiene que $B_{r’}(\hat{x})\cap A\neq\emptyset$ y $B_{r’}(\hat{x})\cap A^{c}\neq\emptyset$, y $(b).$ Existe $r’>0$ tal que $B_{r’}(\hat{x})\subset A^{c}$. Así, por $(b)$tenemos que existe $r’>0$ tal que $B_{r’}(\hat{x})\cap A=\emptyset$, lo cual contradice la hipótesis $(a)$. Por lo tanto, $Fr(A)\cap ext(A)=\emptyset$.
(4) Por demostrar que $\mathbb{R}^{n}=int(A)\cup Fr(A)\cup ext(A)$. Como $A\subset\mathbb{R}^{n}$, se tiene que $int(A)\cup Fr(A)\cup ext(A)\subset\mathbb{R}^{n}$. Falta ver que $\mathbb{R}^{n}\subset int(A)\cup Fr(A)\cup ext(A)$. Sea $\hat{x}\in\mathbb{R}^{n}$, como $A\subset\mathbb{R}^{n}$entonces tenemos tres casos:
$(a)$ Existe $r>0$ tal que $B_{r}(\hat{x})\subset A$, entonces por definición tenemos que $\hat{x}\in int(A)$,
$(b)$ existe $r>0$ tal que $B_{r}(\hat{x})\subset A^{c}$, entonces por defición tenemos que $\hat{x}\in ext(A)$, o $(c)$ para todo $r>0$ se tiene que $B_{r}(\hat{x})\cap A^{c}\neq\emptyset$ y $B_{r}(\hat{x})\cap A\neq\emptyset$, entonces por definición $\hat{x}\in Fr(A)$. Así tenemos que, $\mathbb{R}^{n}\subset int(A)\cup Fr(A)\cup ext(A)$. Por lo tanto, $\mathbb{R}^{n}=int(A)\cup Fr(A)\cup ext(A)$.
$(5)$ (a) Por demostrar que $int(A^{c})=ext(A)$. $\subset\rfloor$ $int(A^{c})\subset ext(A)$ Sea $\hat{x}\in int(A^{c})$, por definición se tiene que existe $r>0$ tal que $B_{r}(\hat{x})\subset A^{c}$, pero esta es la definición de un punto exterior de $A$. Por lo tanto, $\hat{x}\in ext(A)$. $\supset\rfloor$ $ext(A)\subset int(A^{c})$. Sea $\hat{x}\in ext(A)$, por definición se tiene que existe $r>0$ tal que $B_{r}(\hat{x})\subset A^{c}$, pero esta es la definición de un punto interior de $A^{c}$. Por lo tanto, $\hat{x}\in int(A^{c})$. Por lo tanto, $int(A^{c})=ext(A)$.$~~\blacksquare$
Definición. Sea $A\subset \mathbb{R}^{n}$. Definimos la cerradura de A, que denotamos por $\overline{A}$, como $$\overline{A}=int(A)\cup Fr(A)$$
Proposición. Sea $A\subset \mathbb{R}^{n}$. Las siguientes afirmaciones son ciertas: (1) $Int(A)$ es un conjunto abierto (2) $Ext(A)$ es un conjunto abierto (3) $Fr(A)$ es un conjunto cerrado (4) $\overline{A}$ es un conjunto cerrado. Demostración. (1) Sea $\overline{x}\in Int(A)$, entonces existe $r>0$ tal que $B(\overline{x},r)\subset A$. Sea $\overline{y}\in B(\overline{x},r)$, existe $r’>0$ tal que $B(\overline{y},r’)\subset B(\overline{x},r)\subset A$ por lo que $\overline{y}\in Int(A)$ y por tanto $B(\overline{x},r)\subset Int(A)$. (2) Como $Ext(A)=Int(A^{c})$ y de acuerdo al inciso anterior este conjunto es abierto. (3) Tenemos que $$(Fr(A))^{c}=\mathbb{R}^{n}-Fr(A)=int(A)\cup Ext(A)$$ ambos conjuntos son conjuntos abiertos y la unión de conjuntos abiertos es abierta, entonces este conjunto es abierto y por tanto $Fr(A)$ es cerrado. (4) Se tiene que $$(\overline{A}^{c})=\mathbb{R}^{n}-(int(A)\cup Fr(A))=ext(A)$$ el cual es conjunto abierto, por lo tanto $\overline{A}$ es un conjunto cerrado.$~~\blacksquare$
Punto de Acumulación
Definición. Sea $A\subset\mathbb{R}^{n}$ y $\overline{x}\in\mathbb{R}^{n}$. Se dice que (1) $\overline{x}$ es un punto de acumulación de A, si toda bola abierta con centro en $\overline{x}$ contiene un punto de A distinto de $\overline{x}$ es decir $$\forall r>0, \quad \left(B(\overline{x},r)-{\overline{x}}\right)\cap A\neq \emptyset$$ Al conjunto de puntos de acumulación de A se le denomina el $\textbf{conjunto derivado}$ de A y se le denota $A’$. (2) $\overline{x}\in A$ es un punto aislado de A si $\overline{x}$ no es un punto de acumulación de A, es decir, si existe $r>0$ tal que $$(B(\overline{x},r)-{\overline{x}})\cap A=\emptyset.$$
Ejemplo. Sea $$A=\{(x,y)\in\mathbb{R}^{2}~|~x^{2}+y^{2}<1\}$$ Muestre que $\displaystyle{\overline{x}_{0}=\left(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right)}$ es un punto de acumulación de A. Solución. Vamos a considerar el punto $\displaystyle{\overline{x}=\left(\frac{1}{\sqrt{2}(r+1)},\frac{1}{\sqrt{2}(r+1)}\right)}$, para $r>0$. Tenemos entonces que
Tenemos entonces que $\displaystyle{\overline{x}\in B\left(\left(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right),r\right)}$. Por lo tanto $$\left[B\left(\left(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right),r\right)-\left\{\left(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right)\right\}\right]\bigcap A\neq \emptyset$$ Por lo tanto $\displaystyle{\overline{x}_{0}=\left(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right)}$ es un punto de acumulación de A.$~~\blacksquare$
Más adelante
En la siguiente sección continuaremos estudiando topológicamente los conjuntos importantes obtenidos a partir de la caracterización de puntos de $\mathbb{R}^n$
Tarea Moral
1.- Si $A\subset \mathbb{R^n}$ es un conjunto arbitrario demuestra que $int(A) \subset A´ \subset int(A) \cup Fr(A)$
2.- Sea $A \in \mathbb{R}^n$ prueba que: $A$ no puede ser cerrado y abierto a la vez.
4.-Sean $A$ y $B$ subconjuntos de $\mathbb{R}^n$. Indica y prueba si las siguientes afirmaciónes son ciertas.
a) Si $A \subset B$ entonces $A’ \subset B’$
b) $(A \cup B)’= A’ \cup B’$
c) $(A \cap B)’= A’ \cap B’$
5.- Sea $A$ un subconjunto de $\mathbb{R}^n$ Prueba que: Si $B \subset A$ y $B$ es abierto, entonces $B \subset int(A)$ (es decir, de los conjuntos abiertos que están contenidos en $A$, $int(A)$ es el más «grande»).
$\textcolor{Red}{\textbf{Extremos Restringidos (Multiplicadores de Lagrange)}}$
Supongase que se quieren hallar los valores extremos (máximo ó mínimo) de una función $f(x,y)$ sujeta a la restircción $x^2+y^2=1$; esto es, que $(x,y)$ está en el circulo unitario. Con mayor generalidad, podemos necesitar maximizar o minimizar $f(x,y)$ sujeta a la condición adicional de que $(x,y)$ también satisfaga una ecuación $g(x,y)=c$ donde $g$ es alguna función y $c$ es una constante. En el ejemplo $g(x,y)=x^2+y^2$ y $c=1$]. El conjunto de dichas $(x,y)$ es un conjunto de nivel de $g$.
En general, sean $f:u\subset \mathbb{R}^n\rightarrow \mathbb{R}$ y $g: u\subset \mathbb{R}^n\rightarrow \mathbb{R}$ funciones $C^1$ dadas, y sea $S$ el conjunto de nivel de $g$ con valor $c$. Recordar que el conjunto de nivel son los puntos $x\in \mathbb{R}^n$ con $g(x)=c$] Cuando $f$ se restringe a $S$, de nuevo tenemos el concepto de máximos locales o mínimos locales de $f$ (extremos locales), y un máximo (valor mayor) o un minimo absoluto (valor menor) debe ser un extremo local.
$\textbf{Teorema.- Método de los multiplicadores de lagrange.}$ Sean $f:u\subset \mathbb{R}^n\rightarrow \mathbb{R}$ y $g: u\subset \mathbb{R}^n\rightarrow \mathbb{R}$ funciones $C^1$ con valores reales dados. Sean $x_0 \in u$ y $g(x_0)=c$, y sea $S$ el conjunto de nivel de $g$ con valor $c$. Suponer $\nabla g(x_0)\neq 0$. Si $f|_s$ (f restringida a s) tiene un máximo o un mínimo local en $S$, en $x_0$, entonces existe un número real $\lambda$ tal que $\nabla f(x_0)=\lambda\nabla g(x_0)$.
$Demostrción$ Para $n=3$ el espacio tangente o plano tangente de $S$ en $x_0$ es el espacio ortogonal a $\nabla g(x_0)$ y para $n$ arbitraria podemos dar la misma definición de espacio tangente de $S$ en $x_0$. Esta definición se puede motivar al considerar tangentes a trayectorias $c(t)$ que estan en $s$, como sigue: si $c(t)$ es una trayectoria en $S$ y $c(0)=x_0$, entonces $c'(0)$ es un vector tangente a $S$ en $x_0$, pero $$\frac{dg(c(t))}{dt}=\frac{d}{dt}(c)=0$$ Por otro lado usando regla de la cadena $$\left.\frac{d}{dt}g(c(t))\right|_{t=0}=\nabla g(x_0)\cdot c'(0)$$ de manera que $\nabla g(x_0)\cdot c'(0)=0$, esto es, $c'(0)$ es ortogonal a $\nabla g(x_0)$.
Si $f|s$ tiene un máximo en $x_0$, entonces $f(c(t))$ tiene un máximo en $t=0$. Por cálculo de una variable, $\displaystyle\left.\frac{df(c(t))}{dt}\right|{t=0}=0$. Entonces por regla de la cadena $$0=\displaystyle\left.\frac{df(c(t))}{dt}\right|_{t=0}=\nabla f(x_0)\cdot c'(0)$$ Asi, $\nabla f(x_0)$ es perpendicular a la tangente de toda curva en $S$ y entonces tambien es perpendicular al espacio tangente completo de $S$ en $x_0$. Como el espacio perpendicular a este espacio tangente es una recta, $\nabla f(x_0)$ y $\nabla g(x_0)$ son paralelos. Como $\nabla g(x_0)\neq 0$, se deduce que $\nabla f(x_0)$ es multiplo de $\nabla g(x_0)$.
$\textbf{Corolario.}$ Si $f$ al restringirse a una superficie $S$, tiene un máximo o un mínimo local en $x_0$, entonces $\nabla f(x_0)$ es perpendicular a $S$ en $x_0$.La geometria de los valores extremos restringidos.
$\textbf{Ejemplo.}$ Sea $S\subset\mathbb{R}^2$ la recta que pasa por $(-1,0)$ inclinada a $45^{o}$, y sea $f:\mathbb{R}^2 \rightarrow \mathbb{R}$ daa asi $f(x,y)=x^2+y^2$. Hallar los extremos de $f|_s$.
$Solución.$ Aqui $S=\left\{(x,y) | y-x-1=0 \right\}$ y por lo tanto hacemos $g(x,y)=-y-x-1$ y $c=0$. Tenemos $\nabla g(x,y)=-i+j \neq 0$. Los extremos relativos de $f|_s$ deben hallarse entre los puntos en que $\nabla f$ es ortogonal a $S$, esto es, inclinada a $-45^{o}$. Pero $\nabla f (x,y)=(2x.2y)$, que tiene la pendiente deseada sólo cuando $x=-y$, o cuando $(x,y)$ está sobre la recta L, que pasa por el origen inlinada a $-45^{o}$. Esto puede suceder en el conjunto $S$ sólo para el unico punto en el que se intersecan L y S. Al referirnos a las curvas de nivel de $f$ se indica que este punto $(-\frac{1}{1},\frac{1}{2})$ es un mínimo relativo de $f|_s$ (Pero no de $f$).
$\textbf{Ejemplo.}$ Sea $f:\mathbb{R}^2\rightarrow \mathbb{R}$ dada asi $f(x,y)=x^2-y^2$ y sea $S$ el círculo de radio 1 alrededor del origen. Hallar los extremos de $f|_s$.
$Solución.$ El conjunto $S$ es la curva de nivel para $g$ con valor $t$. Donde $g:\mathbb{R}^2\rightarrow \mathbb{R}$, $(x,y) \rightarrow x^2+y^2$. La condición de que $\nabla f=\lambda \nabla g$ en $x_0$, es decir que $\nabla f$ y $\nabla g$ son pararlelos en $x_0$, es la misma que las curvas de nivel sean tangentes en $x_0$. Asi los puntos extremos de $f |_s$ son $(0,\pm 1)$ y $(\pm1,0)$. Evaluando $f$ hallamos que $(0,\pm 1)$ son mínimos y $(\pm1,0)$ son máximos. Usando Multiplicadores de lagrange $\nabla f(x,y)=(2x,2y)$ y $\nabla g(x,y)=(2x,2y)$\ $\therefore$ \quad $(2x,-2y)=\lambda(2x,2y)$ cuya solución es $(0,\pm 1)$, $(\pm1,0)$.
$\textbf{Ejemplo.}$ Maximizar la función $f(x,y,z)=x+z$ sujeta a la restricción $x^2+y^2+z^2=1$
$Solución.$ Buscamos $\lambda$ y $(x,y,z)$ tales que $1=2x\lambda$, $0=2y\lambda$ y $1=2z\lambda$ $x^2+y^2+z^2=1$ la solución es $(\frac{1}{\sqrt{2}},0,\frac{1} {\sqrt{2}})$, $(-\frac{1}{\sqrt{2}},0,-\frac{1}{\sqrt{2}})$ comprobando los valores de $f$ en estos puntos podemos ver que el primer punto produce el máximo de $f$ y el segundo el mínimo.
$\textbf{Ejemplo.}$ Hallar los puntos extremos de $f(x,y,z)=x+y+z$ sujeto a las dos condiciones $x^2+y^2=2$ y $x+z=1$
$Solución.$ Aquí hay dos restricciones $g_1=(x,y,z)=x^2+y^2-2=0$ $g_2(x,y,z)=x+z-1=0$ asi, debemos encontrar $x,y,z,\lambda_1$ y $\lambda_2$ tales que $$\nabla f(x,y,z)=\lambda_1 \nabla g (x,y,z)+ \lambda_2 \nabla g_2(x,y,z)$$ $$g_1(x,y,z)=0 \quad y \quad g_2(x,y,z)=0$$ Calculando gradientes e igualando componentes, obtenemos
Para el caso de funciones $f:\mathbb{R}^{3}\rightarrow\mathbb{R}$ tenemos que recordando un poco de la expresión de taylor $$f(x,y)=f(x_{0},y_{0})+\left(\frac{\partial f}{\partial x}\right){p}(x-x_{0})+\left(\frac{\partial f}{\partial y}\right){p}(y-y_{0})+\left(\frac{\partial f}{\partial z}\right){p}(z-z_{0})+$$
Haciendo $x-x_{0}=h_{1},y-y_{0}=h_{2},z-z_{0}=h_{3}$ podemos escribir el término rojo de la siguiente manera $$\frac{1}{2!}\left(\frac{\partial^{2}f}{\partial x^{2}}h_{1}^{2}+2\frac{\partial^{2}f}{\partial x\partial y}h_{1}h_{2}+\frac{\partial^{2}f}{\partial y^{2}}h_{2}^{2}+2\frac{\partial^{2}f}{\partial x\partial z}h_{3}h_{1}+2\frac{\partial^{2}f}{\partial y\partial z}h_{3}h_{2}+\frac{\partial^{2}f}{\partial z^{2}}h_{3}^{2}\right)$$
y también se puede ver como producto de matrices $$\frac{1}{2!}(h_{1}~h_{2}~h_{3})\left(\begin{matrix}\frac{\partial^{2}f}{\partial x^{2}}&\frac{\partial^{2}f}{\partial y\partial x}&\frac{\partial^{2}f}{\partial z\partial x}\\\frac{\partial^{2}f}{\partial x\partial y}&\frac{\partial^{2}f}{\partial y^{2}}&\frac{\partial^{2}f}{\partial z\partial y}\\\frac{\partial^{2}f}{\partial x\partial z}&\frac{\partial^{2}f}{\partial y\partial z}&\frac{\partial^{2}f}{\partial z^{2}}\end{matrix}\right){p}\left(\begin{matrix}h{1}\\h_{2}\\h_{3}\end{matrix}\right)$$
Si $(x_{0},y_{0},z_{0})$ es un punto critico de la función entonces en la expresión de Taylor $$f(x,y)=f(x_{0},y_{0})+\left(\frac{\partial f}{\partial x}\right){p}(x-x_{0})+\left(\frac{\partial f}{\partial y}\right){p}(y-y_{0})+\left(\frac{\partial f}{\partial z}\right){p}(z-z_{0})$$ $$\textcolor{Red}{\frac{1}{2!}\left(\frac{\partial^{2}f}{\partial x^{2}}{p}(x-x_{0})^{2}+2\frac{\partial^{2}f}{\partial x \partial y}{p}(x-x_{0})(y-y_{0})+\frac{\partial^{2}f}{\partial y^{2}}{p}(y-y{0})^{2}+2\frac{\partial^{2}f}{\partial x\partial z}{p}(z-z{0})(x-x_{0})+2\frac{\partial^{2}f}{\partial y\partial z}{p}(z-z_{0})(y-y_{0})\right)}$$ $$\textcolor{Red}{+\frac{\partial^{2}f}{\partial z^{2}}{p}(z-z_{0})(x-x_{0})}$$
El término $$\frac{\partial f}{\partial x}{p}(x-x_{0})+\frac{\partial f}{\partial y}{p}(y-y_{0})+\frac{\partial f}{\partial z}{p}(z-z_{0})=0$$ y por lo tanto $$f(x,y)-f(x_{0},y_{0})=\frac{1}{2!}(h_{1}~h_{2}~h_{3})\left(\begin{matrix}\frac{\partial^{2}f}{\partial x^{2}}&\frac{\partial^{2}f}{\partial y\partial x}&\frac{\partial^{2}f}{\partial z\partial x}\\\frac{\partial^{2}f}{\partial x\partial y}&\frac{\partial^{2}f}{\partial y^{2}}&\frac{\partial^{2}f}{\partial z\partial y}\\\frac{\partial^{2}f}{\partial x\partial z}&\frac{\partial^{2}f}{\partial y\partial z}&\frac{\partial^{2}f}{\partial z^{2}}\end{matrix}\right){p}\left(\begin{matrix}h{1}\\h_{2}\\h_{3}\end{matrix}\right)$$ vamos a determinar el signo de la forma $$Q(h)=\frac{1}{2!}(h_{1}~h_{2}~h_{3})\left(\begin{matrix}\frac{\partial^{2}f}{\partial x^{2}}&\frac{\partial^{2}f}{\partial y\partial x}&\frac{\partial^{2}f}{\partial z\partial x}\\\frac{\partial^{2}f}{\partial x\partial y}&\frac{\partial^{2}f}{\partial y^{2}}&\frac{\partial^{2}f}{\partial z\partial y}\\\frac{\partial^{2}f}{\partial x\partial z}&\frac{\partial^{2}f}{\partial y\partial z}&\frac{\partial^{2}f}{\partial z^{2}}\end{matrix}\right){p}\left(\begin{matrix}h{1}\\h_{2}\\h_{3}\end{matrix}\right)$$
vamos a trabajar sin el término $\displaystyle{\frac{1}{2!}}$ que no afectara al signo de la expresión, tenemos entonces
$$=b_{1}\left(h_{1}’^{2}+2\frac{\frac{\partial^{2}f}{\partial x\partial z}}{b_{1}}h_{1}’h_{3}+\left(\frac{\frac{\partial^{2}f}{\partial x\partial z}h_{3}}{b_{1}}\right)^{2}\right)+b_{2}\left(h_{2}’^{2}+2\frac{b_{23}}{b_{2}}h_{2}’h_{3}+\left(\frac{b_{23}}{b_{2}}h_{3}\right)^{2}\right)+b_{3}h_{3}^{2}$$ $$=b_{1}\left(h_{1}’+\frac{\frac{\partial^{2}f}{\partial x\partial z}}{b_{1}}h_{3}\right)^{2}+b_{2}\left(h_{2}’+\frac{b_{23}}{b_{2}}h_{3}\right)^{2}+b_{3}h_{3}^{2}$$ esta última expresión será positiva si y solo si $b_{1}>0~~b_{2}>0$ y $b_{3}>0$ en clases pasadas vimos los dos primeros, veamos ahora que $$b_{3}=\frac{\partial^{2}f}{\partial z^{2}}-\frac{\left(\frac{\partial^{2}f}{\partial x\partial z}\right)^{2}}{b_{1}}-\frac{b_{23}^{2}}{b_{2}}>0$$ tenemos entonces que
por lo tanto $$b_{3}>0~\Leftrightarrow~\left|\begin{matrix}\frac{\partial^{2}f}{\partial x^{2}}&\frac{\partial^{2}f}{\partial y\partial x}&\frac{\partial^{2}f}{\partial z\partial x}\\\frac{\partial^{2}f}{\partial x\partial y}&\frac{\partial^{2}f}{\partial y^{2}}&\frac{\partial^{2}f}{\partial z\partial y}\\\frac{\partial^{2}f}{\partial x\partial z}&\frac{\partial^{2}f}{\partial y\partial z}&\frac{\partial^{2}f}{\partial z^{2}}\end{matrix}\right|>0$$
Definición 1. La forma $Q(x)=xAx^{t}$, que tiene asociada la matriz A (respecto a la base canónica de $\mathbb{R}^{n}$) se dice: $\textcolor{Red}{\textbf{Definida positiva}}$, si $Q(x)>0~\forall x \in~\mathbb{R}^{n}$ La forma $Q(x)=xAx^{t}$, que tiene asociada la matriz A (respecto a la base canónica de $\mathbb{R}^{n}$) se dice: $\textcolor{Red}{\textbf{Definida negativa}}$, si $Q(x)<0~ \forall x \in~\mathbb{R}^{n}$
Definición 2. Si la forma $Q(x)=xAx^{t}$ es definida positiva, entonces f tiene un mínimo local en en x. Si la forma $Q(x)=xAx^{t}$ es definida negativa, entonces f tiene un máximo local en en x.
Hay criterios similares para una matriz simetrica $A$ de $n\times n$ y consideramos las $n$ submatrices cuadradas a lo largo de la diagonal, $A$ es definida positiva si y solo si los determinantes de estas submatrices diagonales son todos mayores que cero. Para $A$ definida negativa los signos deberan alternarse $<0$ y $>0$. En casi de que los determinantes de las submatrices diagonales sean todos diferentes de cero pero que la matrix no sea definida positiva o negativa, el punto crítico es tipo silla. Y por lo tanto el punto no es máximo ni mínimo. Asi tenemos el siguiente resultado.
Definición 3. Dada una matriz cuadrada $A=a_{ij}j=1,…,ni=1,…,n$ se consideran las submatrices angulares $A_{k}k=1,…,n$ definidas como $$A_{1} (a_{11})~A_{2}=\left(\begin{matrix}a_{11}&a_{12}\\a_{21}&a_{22}\end{matrix}\right)~~A_{3}=\left(\begin{matrix}a_{11}&a_{12}&a_{13}\\a_{21}&a_{22}&a_{23}\\a_{31}&a_{32}&a_{33}\end{matrix}\right),\cdots,A_{n}=A$$ se define $\det A_{k}=\triangle_{k}$
Definición 4. Se tiene entonces que que la forma $Q(x)=xAX^{t}$ es definida positiva si y solo si todos los dterminantes $\triangle_{k}~~k=1,…,n$ son números positivos.
Definición 5. La forma $Q(x)=xAX^{t}$ es definida negativa si y solo si los dterminantes $\triangle_{k}k=1,…,n$ tienen signos alternados comenzando por $\triangle_{1}<0,\triangle_{2}>0,…$ respectivamente.
Ejemplo. Consideremos la función $f:\mathbb{R}^3\rightarrow \mathbb{R}$ $f(x,y,z)=\sin x +\sin y + \sin z -\sin(x+y+z)$, el punto $P=\left(\frac{\pi}{2},\frac{\pi}{2},\frac{\pi}{2}\right)$ es un punto crítico de $f$ y en ese punto la matriz hessiana de
$f$ es $$H(p)=\left[ \begin{array}{ccc} -2 & -1 & -1 \\ -1 & -2 & -1 \\ -1 & -1 & -2 \ \end{array} \right] $$ los determinantes de las submatrices angulares son $$\Delta_1=det(-2)\qquad \quad $$ $$\Delta_2=det \left[ \begin{array}{cc} -2 & -1 \\ -1 & -2 \ \end{array} \right]$$
$$\Delta_3=det H(p)=-4$$ puesto que son signos alternantes con $\Delta t< 0$ concluimos que la funcion $f$ tiene en $\left(\frac{\pi}{2},\frac{\pi}{2},\frac{\pi}{2}\right)$ un máximo local. Este máximo local vale $f\left(\frac{\pi}{2},\frac{\pi}{2},\frac{\pi}{2}\right)=4$
Entre las caracteristicas geometricas básicas de la gráficas de una función estan sus puntos extremos, en los cuales la función alcanza sus valores mayor y menor.
Definición 1. Si $f:u\subset \mathbb{R}^n \rightarrow \mathbb{R}$ es una función escalar, dado un punto $x_0 \in u$ se llama mínimo local de $f$ si existe una vecindad $v$ de $x_0$ tal que $\forall x \in v$, $f(x)> f(x_0)$. De manera análoga, $x_0 \in u$ es un máximo local si existe una vecindad $v$ de $x_0$ tal que $f(x)< f(x_0)$ $\forall \quad x \in v$. El punto $x_0 \in u$ es un extremo local o relativo, si es un mínimo local o máximo local.
Un punto $x_0$ es un punto crítico de $f$ si $Df(x_0)=0$.
Un punto crítico que no es un extremo local se llama punto silla.
Teorema 1. $\textcolor{Red}{\textbf{Criterio de la primera derivada}}$ Si $u \in \mathbb{R}$ es abierto, la función $f:u\subset \mathbb{R}^n \rightarrow \mathbb{R}$ es diferenciable y $x_0 \in u$ es un extremo local entonces $\nabla f(x_0)=0$, esto es $x_0$ es un punto crítico de $f$.
Demostración. Supongamos que $t$ alcanza su máximo local en $x_0$. Entonces para cualquier $h \in \mathbb{R}^n$ la función $g(t)=f(x_0+th)$ tiene un máximo local en $t=0$. Asi, del cálculo de una variable $g'(0)=0$ ya que como $g(0)$ es máximo local, $g(t)\leq g(0)$ para $t > 0$ pequeño $$\therefore \quad g'(0)=\displaystyle\lim_{t \rightarrow t_0^+}\frac{g(t)-g(0)}{t}=0$$ Análogamente para $t< 0$ pequeño tomamos $$g'(0)=\displaystyle\lim_{t \rightarrow t_0^-}\frac{g(t)-g(0)}{t}=0$$ Ahora por regla de la cadena $$g'(0)=\frac{\partial f}{\partial x_{1}}(x_{0})h_{1}+\frac{\partial f}{\partial x_{2}}(x_{0})h_{2}+\cdots+\frac{\partial f}{\partial x_{n}}(x_{0})h_{0}=\nabla f(x_{0})\cdot h$$ Así $\nabla f(x_{0})\cdot h=0 \quad \forall \: h$ de modo que $\nabla f(x_{0})=0$. En resumen si $x_0$ es un extremo local, entonces $\displaystyle\frac{\partial f}{\partial x_i}(x_0)=0 \quad \forall~i=1,\ldots,n$. En otras palabras $\nabla f(x_0)=0$. $\square$
Ejemplo. Hallar los máximos y mínimos de la función $f:\mathbb{R}^2 \rightarrow \mathbb{R}$, definida por $$f(x,y)=x^2+y^2-2x-6y+14$$
Solución. Debemos identificar los puntos críticos de $f$ resolviendo $\displaystyle{\frac{\partial f}{\partial x}=0}$, $\displaystyle{\frac{\partial f}{\partial y}=0}$ para $x,y$, $$2x-2=0~~~2y-6=0$$ De modo que el punto crítico es $(1,3)$. Como $$f(x,y)=\left(x^{2}-2x+1\right)+\left(y^{2}-6y+9\right)+4=\left(x-1\right)^{2}+\left(y-3\right)^{2}+4$$ tenemos que $f(x,y)\geq 4$ por lo tanto en $(1,3)$ $f$ alcanza un mínimo relativo.
Ejemplo. Considerar la función $f:\mathbb{R}^2 \rightarrow \mathbb{R}$, $f(x,y)=4-x^2-y^2$ entonces $\displaystyle{\frac{\partial f}{\partial x}=-2x}$, $\displaystyle{\frac{\partial f}{\partial y}=-2y}$. $f$ solo tiene un punto crítico en el origen, donde el valor de $f$ es 4. Como $$f(x,y)=4-(x^{2}+y^{2})$$ tenemos que $f(x,y)\leq 4$ por lo tanto en $(0,0)$ $f$ alcanza un máximo relativo.
Ejemplo. En el siguiente ejemplo mostramos que no todo punto critico es un valor extremo\Sea $f(x,y)=x^{2}y+y^{2}x$ tenemos que sus puntos criticos son $$\frac{\partial f}{\partial x}=2xy+y^{2}~\frac{\partial f}{\partial y}=2xy+x^{2}=0$$ por lo tanto $$\left(\begin{matrix}2xy+y^{2}=0\\2xy+x^{2}=0\end{matrix}\right)\Leftrightarrow\left(\begin{matrix}x=y\\x=-y\end{matrix}\right)$$ tomando $x=-y$ tenemos que $$2xy+y^{2}=0~\Rightarrow~-2y^{2}+y^{2}=0~\Rightarrow~y^{2}=0\Rightarrow~y=0~\Rightarrow~x=0$$ tomando $x=y$ tenemos que $$2xy+y^{2}=0~\Rightarrow~2y^{2}+y^{2}=0~\Rightarrow~-3y^{2}=0\Rightarrow~y=0~\Rightarrow~x=0$$ por lo tanto $(0,0)$ es el único punto critico.\Ahora bien para $f(x,y)$ tomamos $x=y$ $$f(x,x)=2x^{3}$$ la cual es ($<0$ si $x<0$) y ($>0$ si $x>0$) por lo tanto el punto critico $(0,0)$ no es ni máximo ni mínimo local de f \Ahora bien para $f(x,y)$ tomamos $x=-y$ $$f(x,-x)=0~\forall x$$ por lo tanto el punto critico $(0,0)$ no es ni máximo ni mínimo local de $f$
Requerimos un criterio que dependa de la segunda derivada para que un punto sea extremo relativo. En el caso particular $n=1$ el criterio es $f»(x)>0$ y $f»(x)<0$ para máximo o mínimo respectivamente para el contexto de varias variables usaremos el hessiano el cual esta definido por
Recordando un poco de la expresión de taylor$$f(x,y)=f(x_{0},y_{0})+\left(\frac{\partial f}{\partial x}\right){p}(x-x{0})+\left(\frac{\partial f}{\partial y}\right){p}(y-y{0})+\textcolor{Red}{\frac{1}{2!}\left(\frac{\partial^{2}f}{\partial x^{2}}{p}(x-x{0})^{2}+2\frac{\partial^{2}f}{\partial y \partial x}{p}(x-x{0})(y-y_{0})+\frac{\partial^{2}f}{\partial y^{2}}{p}(y-y{0})^{2}\right)}$$
Teorema 2. Sea $B=\left[ \begin{array}{cc} a & b \\ b & c \ \end{array} \right] $ y $H(h)=\frac{1}{2}[h_1,h_2]\left[ \begin{array}{cc} a & b \\ b & c \ \end{array} \right]\left( \begin{array}{c} h_1 \\ h_2 \ \end{array} \right) $ entonces $H(h)$ es definida positiva si y solo si $a>0$ y $ac-b^2>0$.
Demostración. Tenemos $$H(h)=\frac{1}{2}[h_1,h_2]\left[ \begin{array}{cc} a h_1& bh_2 \\ b h_1& ch_2 \ \end{array} \right]=\frac{1}{2}(ah_1^2+2bh_1h_2+ch_1^2)$$ si completamos el cuadrado $$H(h)=\frac{1}{2}a\left(h_1+\frac{b}{a}h_2\right)^2+\frac{1}{2}\left(c-\frac{b^2}{a}\right)h_2^2$$ supongamos que $h$ es definida positiva. Haciendo $h_2=0$ vemos que $a>0$. Haciendo $h_1=-\frac{b}{a}h_2$ $c-\frac{b^2}{a}>0$ ó $ac-b^2>0$ De manera analoga $H(h)$ es definida negativa si y solo si $a<0$ y $ac-b^2>0$. $\square$
Criterio del máximo y del mínimo para funciones de dos variables Sea $f(x,y)$ de clase $C^3$ en un conjunto abierto $u$ de $\mathbb{R}^2$. Un punto $x_0,y_0$ es un mínimo local (Estricto) de $f$ si se cumple las siguientes tres condiciones:
III ) $\left(\frac{\partial^2 f}{\partial x^2}\right)\left(\frac{\partial^2 f}{\partial y^2}\right)-\left(\frac{\partial^2 f}{\partial x \partial y}\right)^2> 0$ en $(x_0,y_0)$ (Discriminante)
Si en II) tenemos $<0$ en lugar de $>0$ sin cambiar III) hay un máximo local
Ejemplo. Sea $f:\mathbb{R}^2\rightarrow\mathbb{R}$ la función dada por $$f(x,y)=2(x-1)^2+3(y-2)^2$$ tenemos entonces que $\frac{\partial f}{\partial x}=4(x-1)$ $\frac{\partial f}{\partial y}=6(y-2)$ por lo tanto $\frac{\partial f}{\partial x}=0$ $\Rightarrow \quad x=1$