Archivo de la etiqueta: superficie de revolucion

Cálculo Diferencial e Integral II: Área de una superficie de revolución

Por Miguel Ángel Rodríguez García

Introducción

En la sección anterior vimos como calcular el volumen de una superficie de revolución por el método de capas cilíndricas, ahora, en esta entrada veremos como calcular el área de una superficie de revolución.

Área de una superficie de revolución

Consideremos una región delimitada por el eje $x$, las rectas $x=a$ y $x=b$ y la curva que tiene como función $y=f(x)$, continua en el intervalo $[a , b]$, giramos esta región alrededor del eje $x$ obteniendo una superficie de revolución como en la figura $(1)$.

Figura 1: Aproximación de un cono al area $\Delta S_{i}$

Dividimos el intervalo $[a , b]$ en $n$ subintervalos en donde el i-ésimo subintervalo es $[x_{i-1}, x_{i}]$ y sea $\Delta S_{i}$ el valor del área superficial del i-ésimo subintervalo $[x_{i-1}, x_{i}]$ lo podemos calcular viéndolo como un tronco cónico (encerrado en líneas puntuadas, figura $(1)$) en donde su área de superficial es:

$$S=\pi (r_{1}+r_{2})g \tag{1}$$

Donde $g$ es la generatriz del tronco cónico, $r_{1}$ y $r_{2}$ son los radios respecto al eje de rotación.

Para dar correspondencia a la figura $(1)$, sea $g_{i}= \Delta L_{i}$ la generatriz del i-esimo tronco cónico, que se aproxima a la gráfica $y=f(x)$ como se muestra en la figura $(1)$ en el intervalo $[x_{i-1}, x_{i}]$, por lo que el área superficial del i-esimo tronco cónico designado como $\Delta S_{i}$, lo podemos aproximar mediante la relación $(1)$ como:

$$\Delta S_{i}\approx \pi (f(x_{i-1})+f(x_{i}))\Delta L_{i}$$

Pero $\Delta L_{i}$ lo podemos aproximar por la definición de la longitud de arco en el intervalo $[x_{i-1}, x_{i}]$, así:

$$\Delta L_{i}\approx \sqrt{1+(f'(x_{i})^{2})}\Delta x$$

Con $\Delta x=x_{i}-x_{i-1}$, por tanto:

$$\Delta S_{i}\approx \pi (f(x_{i-1})+f(x_{i}))\sqrt{1+(f'(x_{i})^{2})}\Delta x \tag{2}$$

Por otro lado, en el curso de Cálculo I, se vio el desarrollo de Taylor de una función $f(x)$, por lo que la definición del desarrollo en Taylor está dado de la forma:

$$y(x+h)\approx y(x)+hy'(x)+\frac{h^{2}y^{\prime \prime}(x)}{2!}+….$$

Aplicando lo anterior para $f(x_{i-1})$ suponiendo que $\Delta^{n} x$ es pequeño respecto al término $\Delta x$, se tiene que:

$$f(x_{i-1})=f(x_{i-1}+x_{i}-x_{i})=f(x_{i}-\Delta x) \approx f(x_{i})-f'(x_{i})\Delta x$$

Substituyendo en $\Delta S_{i}$ $(2)$, tenemos que:

$$\Delta S_{i}\approx \pi \sqrt{1+(f'(x_{i})^{2})} (f(x_{i-1})+f(x_{i}))\Delta x=\pi \sqrt{1+(f'(x_{i})^{2})}\Delta x (f(x_{i})-f'(x_{i})\Delta x+f(x_{i}))$$

$$=\pi \sqrt{1+(f'(x_{i})^{2})}\Delta x (2f(x_{i})-f'(x_{i})\Delta x)=\pi \sqrt{1+(f'(x_{i})^{2})}\Delta x 2f(x_{i})-\pi \sqrt{1+(f'(x_{i})^{2})}\Delta^{2} x f'(x_{i})$$

Observemos que cuando $n$ es demasiado grande el termino $\Delta^{2} x$ es pequeño respecto al término $\Delta x$, por lo que para $n$ lo suficientemente grande podemos despreciar el termino $\Delta^{2}x$, así:

$$\Delta S_{i}\approx 2 \pi f(x_{i}) \sqrt{1+(f'(x_{i})^{2})}\Delta x$$

Sumando todas las $n$ áreas superficiales y tendiendo $n \to \infty$ tenemos que el área de superficie $A_{s}$ es:

$$A_{s}=\lim_{n \to \infty} \sum_{i=1}^{n} \Delta S_{i}=\lim_{n \to \infty} \sum_{i=1}^{n} 2 \pi f(x_{i}) \sqrt{1+(f'(x_{i})^{2})}\Delta x$$

Se define el área superficial de un sólido de revolución si una función $f(x)\geq 0$ es continua en el intervalo $[a, b]$ y gira alrededor del eje $x$ como:

$$A_{s}=\int_{a}^{b} 2 \pi y \sqrt{1+\left ( \frac{dy}{dx} \right )^{2}}dx =\int_{a}^{b} 2 \pi f(x) \sqrt{1+(f'(x)^{2})}dx \tag{3}$$

Análogamente, se define el área superficial de un sólido de revolución alrededor del eje $y$ como:

$$A_{s}=\int_{c}^{d} 2 \pi x \sqrt{1+\left ( \frac{dx}{dy} \right )^{2}}dy =\int_{c}^{d} 2 \pi f(y) \sqrt{1+(f'(y)^{2})}dy \tag{4}$$

Ejemplos

  • Determinar el área de la superficie generada al hacer girar la curva $2\sqrt{x}$, donde $1 \leq x \leq 2$ alrededor del eje x.
Figura 2: Grafica de la función $f(x)=2\sqrt{x}$ y su correspondiente superficie de revolución.

Tenemos que $a=1$, $b=2$ y la curva que tiene como función $f(x)=2\sqrt{x}$, derivando obtenemos:

$$\frac{dy}{dx}f(x)=\frac{1}{\sqrt{x}}$$

La gráfica la vemos en la figura $(2)$, así, utilizamos la relación $(3)$ y calculamos el área como:

$$S=\int_{1}^{2} 2\pi (2\sqrt{x}) \sqrt{1+\left ( \frac{1}{\sqrt{x}} \right )^{2}}dx$$

Vemos que:

$$\sqrt{1+\left ( \frac{1}{\sqrt{x}} \right )^{2}}=\sqrt{1+\frac{1}{x}}=\sqrt{\frac{x+1}{x}}=\frac{\sqrt{x+1}}{\sqrt{x}}$$

Sustituyendo esta expresión:

$$S=\int_{1}^{2} 2\pi (2\sqrt{x}) \frac{\sqrt{x+1}}{\sqrt{x}} dx= \int_{1}^{2} 4\pi \sqrt{x+1} dx$$

Utilizando el método de sustitución tenemos que esta integral nos da por resultado:

$$S=4\pi \frac{2}{3}\left [ (x+1)^{2/3} \right ]\bigg|_{1}^{2}=\frac{8 \pi}{3}(3\sqrt{3}-2\sqrt{2})$$

  • El segmento de recta $x=1-y$, $0 \leq y \leq 1$ se hace girar alrededor del eje $y$ para generar el cono de la figura $(3)$, determinar el área de su superficie lateral (la cual excluye el área de la base).
Figura 3: Grafica de la recta $x=1-y$ y su correspondiente superficie de revolución.

Tenemos que $c=0$, $d=1$ y la función de la curva:

$$x=1-y \Rightarrow \frac{dx}{dy}=-1 \Rightarrow \sqrt{1+\left ( \frac{dx}{dy} \right )^{2}}=\sqrt{1+(-1)^{2}}=\sqrt{2}$$

Utilizamos la relación $(4)$ y calculamos el área superficial como:

$$S= \int_{0}^{1} 2\pi f(y) \sqrt{2}dy=\int_{0}^{1} 2\pi (1-y) \sqrt{2}dy=2\pi \sqrt{2}\left [ y-\frac{y^{2}}{2} \right ]\bigg|_{0}^{1}=2\pi \sqrt{2}(1-\frac{1}{2})=\pi \sqrt{2}$$

Tarea moral

Los siguientes ejercicios no son para evaluación, pero son ejercicios para que practiques lo aprendido que te ayudaran en el desarrollo del entendimiento del tema, por lo que te invitamos a resolver los siguientes ejercicios propuestos relacionados con el tema visto.

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. El segmento de recta $y=\frac{x}{2}$, $0 \leq x \leq 4$ se hace girar alrededor del eje x para generar un cono, determinar el área de su superficie lateral.
  2. Un segmento de recta $y=\sqrt{2}$, $\frac{3}{4} \leq x \leq \frac{15}{4}$ se hace girar alrededor del eje x determinar el área de su superficie.
  3. El segmento de recta $x=\frac{y^{3}}{3}$, $0 \leq y \leq 1$ se hace girar alrededor del eje y determinar el área de su superficie.
  4. Un segmento de recta $x=2 \sqrt{4-y}$, $0 \leq y \leq \frac{15}{4}$ se hace girar alrededor del eje y determinar el área de su superficie.
  5. El segmento de recta $y= \sqrt{x+1}$, $1 \leq x \leq 5$ se hace girar alrededor del eje x determinar el área de su superficie.

Más adelante…

En esta entrada vimos como calcular el área de superficie de un sólido generado a partir de una curva respecto de un eje. En la siguiente sección trabajaremos con un teorema relacionado con el cálculo de estas áreas llamado el teorema de Pappus-Guldinus.

Entradas relacionadas

Cálculo Diferencial e Integral II: Cálculo de volúmenes por secciones transversales y por rotación alrededor de un eje

Por Miguel Ángel Rodríguez García

Introducción

En la entrada anterior vimos como calcular la longitud de arco de una curva. Otra aplicación de las integrales es calcular el volumen de sólidos de revolución, por lo que en esta entrada se aprenderá a calcular el volumen de un sólido $S$ mediante secciones transversales o también llamado el método de los discos, además, veremos el método de las arandelas o también llamado el método de los anillos.

Superficies de revolución

Antes de comenzar a estudiar el método de los discos, definiremos lo que es una superficie de revolución.

Una superficie de revolución es una figura sólida que se obtiene al girar una curva plana alrededor de un eje que se encuentra en el mismo plano, a este eje se le conoce como eje de revolución. Veamos unos ejemplos.

Figura 1: Rectángulo (Figura de la izquierda) y el cilindro de revolución (figura de la derecha).

En la figura $(1)$ tenemos un rectángulo con altura y ancho, variables (figura de la izquierda), obsérvese que está en un plano, es decir, es una figura en 2 dimensiones, si nosotros hacemos girar esta figura alrededor del eje $x$ obtenemos un cilindro como en la figura de la derecha.

En la siguiente figura $(2)$ tenemos un triángulo rectángulo isósceles (figura de la izquierda), si nosotros hacemos girar este triángulo alrededor del eje $y$ lo que obtendremos es una pirámide como el lado derecho de la figura 2.

Figura 2: Triangulo iscóceles (figura de la izquierda) y pirámide (figura de la derecha).

A estas figuras «creadas» se les conoce como superficies de revolución, a continuación veremos como calcular su volumen por el método de los discos.

Método de los discos

Supongamos que tenemos una función $f(x)$ en un intervalo $[a, b]$ y que cortamos una «rebanada» con un ancho $\Delta x$ de la función $f(x)$ como se muestra en la figura $(3)$.

Figura 3: Aproximación con un polígono regular a $f(x)$.

Al hacer girar esta función alrededor del eje $x$ obtendremos una superficie de revolución (figura $(4)$), la «rebanada» que tomamos al girarlo alrededor del eje obtendremos un cilindro de radio $r$ y ancho $\Delta x$.

Figura 4: Superficie de revolución

Para calcular el volumen de esta superficie de revolución la «rebanamos» $n$ veces y sumamos estos pedazos, es decir:

Volumen de la superficie de revolución $\approx \sum_{i=1}^{n}$ volúmenes de los cilindros

Recordemos que el volumen de un cilindro está dado como $V=\pi r^{2}h$, entonces el volumen de nuestra superficie de revolución es:

$$V \approx \sum_{i=1}^{n}\pi r^{2}\Delta x=\sum_{i=1}^{n}\pi [f(x)]^{2}\Delta x$$

Si tomamos el límite cuando $n \to \infty$ obtenemos:

$$V=\lim_{n \to \infty}\sum_{i=1}^{n}\pi [f(x)]^{2}\Delta x=\pi \int_{a}^{b}[f(x)]^{2}dx$$

Por lo que definimos el volumen de una superficie de revolución alrededor del eje $x$ como:

$$V=\int_{a}^{b} Área(x)dx=\pi \int_{a}^{b}[R(x)]^{2}dx \tag{1}$$

Análogamente, se puede deducir lo mismo para una superficie de revolución generado por una curva plana alrededor del eje $y$. Se define el volumen de una superficie de revolución alrededor del eje $y$ como:

$$V=\pi \int_{c}^{d}[R(y)]^{2}dy \tag{2}$$

Observación: Para el método de los discos el corte siempre debe ser perpendicular al eje de rotación.

Método de las arandelas

Si la región que se hace girar para generar el sólido de revolución no se acerca al eje de rotación, ni está en él, tendremos que al girarlo sobre el eje se obtendrá un agujero en su centro, es decir, un sólido de revolución con un agujero alrededor del eje de rotación. Si utilizamos el mismo método visto anteriormente para calcular su volumen, en vez de discos, tendremos que las secciones transversales perpendiculares al eje de rotación son arandelas, el área de la arandela está dada como:

$$A=\pi R^{2}(x)-\pi r^{2}(x)=\pi\left ( R^{2}(x)-r^{2}(x) \right )$$

Donde $R(x)$ es el radio mayor y $r(x)$ es el radio menor de la arandela como se muestra en la figura $(5)$, por lo que nos interesa el volumen entre $R(x)$ y $r(x)$.

Figura 5: Solido de revolución generado por las funciones $R(x)$ y $r(x)$ alrededor del eje $x$.

Por consecuencia, el volumen lo podemos calcular como:

$$V=\pi \int_{a}^{b} \left ( R^{2}(x)-r^{2}(x) \right )dx \tag{3}$$

Veamos un ejemplo.

Ejemplos

  • Calcula el volumen del sólido de revolución formado al hacer girar la región acotada por la grafica $f(x)=\sqrt{\sin(x)}$, alrededor del eje $x$ y acotadas por las rectas $x=0$ y $x=\pi$.

En este caso obtenemos la siguiente figura $(6)$.

Figura 6: Función $f(x)=\sqrt{\sin(x)}$ (figura de la izquierda) y la superficie de revolución alrededor del eje x (figura derecha).

Utilizamos la relación $(1)$, ya que la función gira alrededor del eje $x$, por lo que el volumen de este sólido de revolución es:

$$V=\pi \int_{0}^{\pi}\left ( \sqrt{\sin(x)}\right )^{2}dx=\pi \int_{0}^{\pi}\sin(x)dx=\pi (-\cos(x))\bigg|_{0}^{\pi}=\pi -(-1-1)=2 \pi$$

  • Determinar el volumen del sólido de revolución generado alrededor de $y=g(x)=1$ por la función $y=\sqrt{x}$ y las rectas $x=1$ y $x=4$ (figura $(7)$).
Figura 7: Grafica de $f(x)=\sqrt{x}$ y $g(x)=1$.

Al girar la función $f(x)=\sqrt{x}$ alrededor de $y=1$ tendremos una especie de parábola.

Observamos que:

$$R(x)=f(x)-g(x)=\sqrt{x}-1 \Rightarrow R^{2}(x)=x-2\sqrt{x}+1$$

Por ende, utilizamos la relación $(1)$ para calcular el volumen como:

$$V=\pi \int_{1}^{4} \left (x-2\sqrt{x}+1 \right )dx=\pi \left ( \frac{x^{2}}{2}-2\frac{2}{3}x^{3/2}+x \right )\bigg|_{1}^{4}=\frac{7\pi}{6}$$

  • Determina el volumen del sólido de revolución acotada por las curvas $y=x^{2}+1$ y la recta $y=-x+3$ alrededor del eje $x$.

Para saber en qué intervalo vamos a integrar, igualamos las funciones:

$$x^{2}+1=-x+3 \Rightarrow x^{2}+x-2=0 \Rightarrow (x+2)(x-1)=0$$

Por lo que integramos desde $x=-2$ a $x=1$

Del eje de rotación, sea el radio menor $r(x)=x^{2}+1$ por estar más próximo a este eje en este intervalo, y sea el radio mayor $R(x)=-x+3$, como se muestra en la figura $(8)$.

Figura 8: Área de interés entre las curvas (figura de la izquierda) con su respectivo solido de revolución (figura de la derecha).

Para calcular el volumen de este sólido, utilizamos la relación $(3)$, por lo que:

$$V=\pi \int_{a}^{b} \left ( R^{2}(x)-r^{2}(x) \right )dx=\int_{-2}^{1}\pi \left [ \left ( -x+3 \right )^{2}-\left ( x^{2}+1 \right )^{2} \right ]dx$$

$$=\int_{-2}^{1}\pi \left ( 8-6x-x^{2}-x^{4} \right )dx=\pi \left [ 8x-3x^{2}-\frac{x^{3}}{3}-\frac{x^{5}}{5} \right ]\bigg|_{-2}^{1}=\frac{117\pi}{5}$$

Tarea moral

Los siguientes ejercicios no son para evaluación, pero son ejercicios para que practiques lo aprendido que te ayudaran en el desarrollo del entendimiento del tema, por lo que te invitamos a resolver los siguientes ejercicios propuestos relacionados con el tema visto.

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Determine el volumen del solido resultante al hacer girar la región comprendida entre el eje $y$ y la curva $x=2/y$, donde $1\leq y \leq 4$, alrededor del eje y.
  2. Encuentre el volumen del solido generado al giran la región acotada por las graficas $y=\sqrt{x}$, $y=x^{2}$ en torno al eje x.
  3. Encuentre el volumen del solido generado al giran la región acotada por las graficas $y=x^{2}+1$, $y=0$, $x=0$ y $x=1$ en torno al eje y.
  4. La circunferencia $x^{2}+y^{2}=a^{2}$ se hace girar alrededor del eje y, calcular su volumen.
  5. Un fabricante diseña un objeto en forma de esfera con un radio de 5 pulgadas y con un orificio cilíndrico en su interior. El hueco tiene un radio de 3 pulgadas ¿Cuál es el volumen del objeto resultante?

Más adelante…

En esta entrada deducimos las relaciones para calcular el volumen de un sólido generado por rotación alrededor de un eje por el método del disco y también deducimos la relación para calcular el volumen de un sólido generado por rotación entre dos curvas dadas por el método del anillo, en la siguiente entrada veremos otro método para calcular el volumen de un sólido generado llamado el método de las capas cilíndricas.

Entradas relacionadas