Archivo de la etiqueta: Probabilidad I

Probabilidad I: Teorema de Continuidad de la Probabilidad

Por Octavio Daniel Ríos García

Introducción

En la entrada previa a esta vimos el importantísimo teorema de Bayes. Por ahora dejaremos de lado las propiedades de la probabilidad condicional. En contraste, el teorema que veremos en esta entrada es un resultado teórico que será de utilidad mucho más adelante.

El tema de esta entrada es el teorema de continuidad de las medidas de probabilidad. Esencialmente, se trata de una propiedad que satisface toda medida de probabilidad. En particular, se relaciona con la noción que tienes de continuidad en funciones. Sin embargo, se trata de una propiedad más básica de continuidad para límites de eventos, que son conjuntos.

Conceptos previos

En el contexto de cálculo y análisis, una propiedad de las funciones continuas es su capacidad de «meter» el límite. Esto es, que si $\{ a_{n} \}_{n \in \mathbb{N}^{+}} \subseteq \RR$ es una sucesión de números reales tal que existe $a \in \RR$ que satisface $\lim_{n \to \infty} a_{n} = a$, y $f\colon\RR\to\RR$ es una función continua, entonces

\[ \lim_{n\to\infty} f(a_{n}) = f{\left( \lim_{n\to\infty} a_{n} \right)} = f(a). \]

Nosotros queremos ver que cualquier medida de probabilidad satisface una propiedad similar. Sin embargo, dado un espacio de probabilidad $(\Omega, \mathscr{F}, \mathbb{P})$, el dominio de $\mathbb{P}$ no es $\RR$, ¡es $\mathscr{F}$! Es decir, ¡el argumento de una medida de probabilidad es un conjunto! Por ello, es necesario presentar una noción de límite de eventos. La manera en que lo haremos será a través de las llamadas sucesiones crecientes.


Definición. Sea $(\Omega, \mathscr{F}, \mathbb{P})$ un espacio de probabilidad, y sea $\{A_{n}\}_{n\in\mathbb{N}^{+}} \subseteq \mathscr{F}$ una sucesión de eventos. Diremos que es una sucesión creciente de eventos si

\[ \forall n \in \mathbb{N}^{+}\colon A_{n} \subseteq A_{n+1}. \]

Esto es, que cada $A_{n}$ es un subconjunto del evento que le sigue, $A_{n+1}$. A veces esto se denota como $A_{1} \subseteq A_{2} \subseteq \ldots$ Por su parte, la unión

\[ A = \bigcup_{n=1}^{\infty} A_{n} \]

de una sucesión de este tipo es llamada el límite de la sucesión. Este hecho suele denotarse por $A_{n} \uparrow A$.


En la definición anterior, la unión $A = \bigcup_{n=1}^{\infty} A_{n}$ de una sucesión creciente de eventos es, nuevamente, un evento. Esto pasa gracias a las propiedades de un σ-álgebra y a que $\{A_{n}\}_{n\in\mathbb{N}^{+}}$ es una familia numerable de eventos.

Por otro lado, también se define la noción de sucesión decreciente de eventos como sigue.


Definición. Sea $(\Omega, \mathscr{F}, \mathbb{P})$ un espacio de probabilidad, y sea $\{A_{n}\}_{n\in\mathbb{N}^{+}} \subseteq \mathscr{F}$ una sucesión de eventos. Diremos que es una sucesión decreciente de eventos si

\[ \forall n \in \mathbb{N}^{+}\colon A_{n} \supseteq A_{n+1}. \]

Es decir, cada $A_{n}$ contiene (como subconjunto) al evento que le sigue, $A_{n+1}$. En ocasiones, esto se denota como $A_{1} \supseteq A_{2} \supseteq \cdots$ Además, la intersección

\[ A = \bigcap_{n=1}^{\infty} A_{n} \]

de una sucesión de este tipo es llamada el límite de la sucesión. Este hecho suele denotarse por $A_{n} \downarrow A$.


De la misma manera que con una sucesión creciente, la intersección $A = \bigcap_{n=1}^{\infty} A_{n}$ de una sucesión decreciente de eventos también es un evento.

La continuidad de una medida de probabilidad

A continuación presentamos el teorema de continuidad de una medida de probabilidad.


Teorema. Sea $(\Omega, \mathscr{F}, \mathbb{P})$ un espacio de probabilidad. Entonces se cumplen las siguientes propiedades.

  1. Si $\{ A_{n} \}_{n\in\mathbb{N}^{+}}$ es una sucesión creciente de eventos, entonces\[ \lim_{n\to\infty} \Prob{A_{n}} = \Prob{\bigcup_{n=1}^{\infty} A_{n}}. \]
  2. Si $\{ A_{n} \}_{n\in\mathbb{N}^{+}}$ es una sucesión decreciente de eventos, entonces\[ \lim_{n\to\infty} \Prob{A_{n}} = \Prob{\bigcap_{n=1}^{\infty} A_{n}}. \]

Demostración. Para demostrar 1, podemos utilizar un truco que usamos hace ya varias entradas. Esto es, que

\[ \bigcup_{n=1}^{\infty} A_{n} = A_{1} \cup (A_{2} \smallsetminus A_{1}) \cup (A_{3} \smallsetminus A_{2}) \cup \cdots \]

Es decir, si para cada $i \in \mathbb{N}^{+}$ definimos $B_{i} = A_{i} \smallsetminus A_{i−1}$, con $A_{0} = \emptyset$, se tiene que

\[ \bigcup_{n=1}^{\infty} A_{n} = \bigcup_{n=1}^{\infty} B_{n}. \]

Además, observa que los conjuntos $B_{i}$ son ajenos dos a dos, por construcción. Entonces podemos aplicar la σ-aditividad de $\mathbb{P}$ para obtener que

\begin{align*} \Prob{\bigcup_{n=1}^{\infty} A_{n}} &= \Prob{B_{1}} + \Prob{B_{2}} + \Prob{B_{3}} + \cdots \\ &= \lim_{n\to\infty} \sum_{k=1}^{n} \Prob{B_{k}}. \end{align*}

Sin embargo, sabemos que para cada $i \in \mathbb{N}^{+}$ se cumple que $A_{i} \subseteq A_{i+1}$ y $B_{i} = A_{i} \smallsetminus A_{i−1}$, así que para cada $i \in \mathbb{N}^{+}$ se tiene que

\[ \Prob{B_{i}} = \Prob{A_{i} \smallsetminus A_{i−1}} = \Prob{A_{i}} − \Prob{A_{i−1}}. \]

Por lo tanto,

\begin{align*} \Prob{ \cup_{n=1}^{\infty} A_{n}} &= \lim_{n\to\infty} \sum_{k=1}^{n} [\Prob{A_{k}} − \Prob{A_{k−1}}] \\ &= \lim_{n\to\infty} [\Prob{A_{n}} − \Prob{A_{0}}] \\ &= \lim_{n\to\infty} [\Prob{A_{n}} − \Prob{\emptyset}] \\ &= \lim_{n\to\infty} \Prob{A_{n}}, \end{align*}

que es justamente lo que queríamos demostrar.

$\square$

Para demostrar la parte 2 del teorema puede usarse la parte 1 de manera conveniente. La manera de hacerlo viene detallada (a manera de instrucciones) en la tarea moral.

Una aplicación del teorema de continuidad

A pesar de que, de momento, no utilizaremos con profundidad el teorema que acabamos de ver, es posible hacer un ejemplo donde se aplica de manera no teórica.

Ejemplo. Es intuitivamente claro que la probabilidad de nunca obtener un «águila» en una infinidad de lanzamientos de una moneda equiprobable es $0$. Podemos demostrarlo usando el teorema anterior. En primer lugar, el espacio muestral de este experimento es

\[ \Omega = {\left\lbrace (x_{n} )_{n\in\mathbb{N}^{+}} \mid \forall i \in \mathbb{N}^{+}\colon x_{i} \in \{ \mathrm{A, B} \} \right\rbrace} \]

el conjunto de todas las sucesiones infinitas de $\mathrm{A}$’s y $\mathrm{S}$’s. Para cada $i \in \mathbb{N}^{+}$, definimos los conjuntos

\begin{align*} A_{i} &= {\left\lbrace (x_{n})_{n\in\mathbb{N}^{+}} \in \Omega \mid x_{i} = \mathrm{A} \right\rbrace}, \\ S_{i} &= {\left\lbrace (x_{n})_{n\in\mathbb{N}^{+}} \in \Omega \mid x_{i} = \mathrm{S} \right\rbrace} \end{align*}

Es decir, $A_{i}$ es el conjunto de todas las sucesiones infinitas de $\mathrm{A}$’s y $\mathrm{S}$’s tales que su $i$-ésima entrada es una $\mathrm{A}$. Por ejemplo, para $A_{1}$, se tiene que

\begin{align*} (\mathrm{A, S, S, A, A, A, A, A, \ldots}) &\in A_{1}, \\ (\mathrm{A, S, S, S, S, S, S, S, \ldots}) &\in A_{1}, \\ (\mathrm{A, S, A, S, A, S, A, S, \ldots}) &\in A_{1}, \end{align*}

etcétera. El subíndice de $A_{i}$ indica que la $i$-ésima entrada de todos sus elementos es $\mathrm{A}$. Análogamente, $S_{i}$ es el conjunto de todas las sucesiones infinitas de $\mathrm{A}$’s y $\mathrm{S}$’s tales que su $i$-ésima entrada es una $\mathrm{S}$. Ahora, considera la siguiente familia de subconjuntos de $\Omega$:

\[ \mathscr{C} = \{ A_{i} \mid i \in \mathbb{N}^{+} \} \cup \{ S_{i} \mid i \in \mathbb{N}^{+} \} \]

Esto es, $\mathscr{C} \subseteq \mathscr{P}(\Omega)$ es el conjunto cuyos elementos son todos los $A_{i}$’s y todos los $B_{i}$’s. De este modo, tomaremos a $\sigma(\mathscr{C})$ como σ-álgebra.

Ahora, definimos nuestra medida de probabilidad para los $A_{i}$’s y $B_{i}$’s como sigue: para cada $i \in \mathbb{N}^{+}$, la probabilidad de $A_{i}$ y $B_{i}$ se define como

\[ \Prob{A_{i}} = \frac{1}{2}, \]

\[ \Prob{B_{i}} = 1 − \frac{1}{2}, \]

La definimos de esta forma pues asumimos que la moneda es equiprobable, por lo que la probabilidades de que en la $i$-ésima posición salga «águila» o salga «sol» deben de ser iguales. Además, le pediremos a $\mathbb{P}$ que cualquier familia de $A_{i}$’s y $S_{i}$’s sean independientes. Esto es, que para todo $n \in \mathbb{N}^{+}$, los eventos $A_{1}$, $A_{2}$, …, $A_{n}$ son independientes. Esto asegura que también sus complementos, $S_{1}$, $S_{2}$, …, $S_{n}$ forman una familia de eventos independientes.

Ahora, para cada $n \in \mathbb{N}^{+}$, definamos el evento $C_{n}$ como el evento en el que, de los primeros $n$ lanzamientos, ninguno es un águila. Observa que, en términos de $A_{i}$’s y $S_{i}$’s, $C_{n}$ sería

\[ C_{n} = \bigcap_{k=1}^{n} S_{k}, \]

Pues $S_{1}$ son todas aquellas sucesiones cuya primera entrada está fija como un $\mathrm{S}$, $S_{2}$ son todas aquellas en donde la segunda entrada está fija como un $\mathrm{S}$, y así sucesivamente hasta llegar a $S_{n}$. Al intersecar esos eventos, el evento resultante es aquel en el que las primeras $n$ entradas están fijas como una $\mathrm{S}$, por lo que es el evento en el que ninguno de los primeros $n$ lanzamientos es un águila. Además, observa que para cada $n \in \mathbb{N}^{+}$, se cumple que $C_{n} \supseteq C_{n+1}$. Es decir, $\{ C_{n} \}_{n\in\mathbb{N}^{+}}$ es una sucesión decreciente de eventos. Entonces, por el teorema de continuidad de la medida de probabilidad, se tiene que

\[ \lim_{n\to\infty} \Prob{C_{n}} = \Prob{\bigcap_{n=1}^{\infty} C_{n}}, \]

Por un lado, observa que

\[ \lim_{n\to\infty} \Prob{C_{n}} = \lim_{n\to\infty} \Prob{\bigcap_{k=1}^{n} S_{k}} = \lim_{n\to\infty} [\Prob{S_{1}} \cdot \Prob{S_{2}} \cdots \Prob{S_{n}}] = \lim_{n\to\infty} {\left( \frac{1}{2} \right)}^{n} = 0\]

donde $\Prob{\bigcap_{k=1}^{n} S_{k}} = \Prob{S_{1}} \cdot \Prob{S_{2}} \cdots \Prob{S_{n}}$ ocurre gracias a que supusimos que para todo $n \in \mathbb{N}^{+}$ los eventos $A_{1}$, $A_{2}$, …, $A_{n}$ son independientes.

En consecuencia, tenemos que

\[ \Prob{\bigcap_{n=1}^{\infty} C_{n}} = 0. \]

En conclusión, la probabilidad del evento $\bigcap_{n=1}^{\infty} C_{n}$ es $0$. Pero, ¿qué evento es ese? Observa que $\bigcap_{n=1}^{\infty} C_{n}$ es precisamente el evento de que nunca haya un águila, pues es la intersección de todos los eventos en los que los primeros $n$ lanzamientos no hay un águila. Esto es justamente lo que dictaba la intuición al inicio de este ejemplo.


Tarea moral

Los siguientes ejercicios son opcionales. Es decir, no formarán parte de tu calificación. Sin embargo, te recomiendo resolverlos para que desarrolles tu dominio de los conceptos abordados en esta entrada.

  1. Demuestra la parte 2 del teorema de continuidad. Sugerencia: Puedes utilizar la parte 1 del teorema, pues ya la demostramos.
    1. Para hacerlo, toma $\{ B_{n} \}_{n\in\mathbb{N}^{+}}$ una sucesión decreciente de eventos. Para cada $i \in \mathbb{N}^{+}$, define $A_{i} = B_{i}^{\mathsf{c}}$, donde el complemento es relativo a $\Omega$. Demuestra que $\{ A_{n} \}_{n\in\mathbb{N}^{+}}$ es una sucesión creciente de eventos.
    2. Ahora, sabiendo que $\{ A_{n} \}_{n\in\mathbb{N}^{+}}$ es una sucesión creciente de eventos, aplica la parte 1 del teorema. ¿Qué se obtiene?
    3. Usando la parte 1 del teorema se llega a que\[ \Prob{\bigcup_{n=1}^{\infty} A_{n}} = \lim_{n\to\infty} \Prob{A_{n}}. \]Sabiendo que cada $A_{i} = B_{i}^{\mathsf{c}}$, sustituye en la expresión anterior.
    4. Finalmente, usa la regla de complementación para concluir.

Más adelante…

Con esta entrada concluye la primera unidad de este curso. Esto es, aquí concluye el tratamiento de propiedades generales de las medidas de probabilidad. En la siguiente entrada comenzaremos el estudio de las variables aleatorias−que no son otra cosa que funciones cuyo dominio es el espacio muestral−y la gran cantidad conceptos asociados a estas.

Un consejo… ¡No olvides lo que vimos en esta unidad! Todo lo que vimos en esta unidad será importante para el resto de este curso, y para las materias de probabilidad y estadística que cursarás más adelante.

Entradas relacionadas

Probabilidad I: Teorema de Probabilidad Total

Por Octavio Daniel Ríos García

Introducción

En las entradas dos entradas pasadas hemos abordado temas que corresponden a la interacción entre eventos. En particular, si existe «dependencia» entre ellos, y cómo esta «dependencia» afecta sus probabilidades.

Siguiendo con estas ideas, en esta entrada veremos un resultado muy útil al momento de calcular probabilidades, conocido como el teorema de probabilidad total. La idea de este teorema se basa en tener una partición del espacio muestral $\Omega$. Con base en esto, cualquier evento puede partirse en varios pedazos, uno por cada elemento de la partición, que serán pedazos ajenos. En consecuencia, la probabilidad de cada evento podrá ser calculada a partir de la suma de las probabilidades de estos pedazos. Esto nos dará una herramienta muy útil para calcular probabilidades de eventos cuya probabilidad no es evidente en principio.

Consideraciones previas

En la entrada de Probabilidad Condicional vimos un ejemplo sobre unas latas de refresco y de cerveza. Vimos que cuando tenemos un evento $B \subseteq \Omega$, dado cualquier otro evento $A$ podemos «partir» a $B$ de la siguiente manera:

\begin{align*} B &= B \cap \Omega \\ &= B \cap (A \cup A^{\mathsf{c}}) \\ &= (B \cap A) \cup (B \cap A^{\mathsf{c}}), \end{align*}

En consecuencia, $B$ puede descomponerse en dos pedazos ajenos: $B \cap A$ y $B \cap A^{\mathsf{c}}$. Lo que permitió hacer esta descomposición ajena es que $A$ y $A^{\mathsf{c}}$ son eventos ajenos y que satisfacen $A \cup A^{\mathsf{c}} = \Omega$. Es decir, $A$ y $A^{\mathsf{c}}$ forman una partición del espacio muestral $\Omega$.

No obstante, no siempre se utiliza un evento $A$ y su complemento $A^{\mathsf{c}}$ como partición, ¡cualquier partición de $\Omega$ funciona! En particular, las que nos serán de utilidad son dos tipos de particiones: las finitas y las infinitas numerables. Por si no recuerdas bien la definición de partición, la incluimos a continuación.


Definición. Sea $\Omega$ un conjunto y sea $n \in \mathbb{N}^{+}$. Diremos que una familia finita de conjuntos $\{ B_{1}, B_{2}, \ldots, B_{n} \}$ es una partición finita de $\Omega$ si se cumplen las siguientes condiciones:

  1. Para cada $i \in\{1, \ldots, n\}$ se cumple que $B_{i} \neq \emptyset$.
  2. Para cualesquiera $i$, $j \in \{1, \ldots, n\}$, si $i \neq j$ entonces $B_{i} \cap B_{j} = \emptyset$. Es decir, los elementos de la familia $\{ B_{1}, B_{2}, \ldots, B_{n} \}$ son ajenos dos a dos.
  3. La unión de todos los elementos de la familia $\{ B_{1}, B_{2}, \ldots, B_{n} \}$ es el conjunto $\Omega$: \[\bigcup_{i=1}^{n} B_{i} = \Omega.\]


Definición. Sea $\Omega$ un conjunto. Diremos que una familia numerable de conjuntos $\{ B_{n} \}_{n \in \mathbb{N}^{+}}$ es una partición numerable de $\Omega$ si se cumplen las siguientes condiciones:

  1. Para cada $i \in \mathbb{N}^{+}$ se cumple que $B_{i} \neq \emptyset$.
  2. Para cualesquiera $i$, $j \in \mathbb{N}^{+}$, si $i \neq j$ entonces $B_{i} \cap B_{j} = \emptyset$. Es decir, los elementos de la familia $\{ B_{n} \}_{n \in \mathbb{N}^{+}}$ son ajenos dos a dos.
  3. La unión de todos los elementos de la familia $\{ B_{n} \}_{n \in \mathbb{N}^{+}}$ es el conjunto $\Omega$: \[\bigcup_{i=1}^{\infty} B_{i} = \Omega.\]

El teorema de probabilidad total

A continuación, presentamos el teorema de probabilidad total, también conocido como ley de probabilidad total.


Teorema. Sea $(\Omega, \mathscr{F}, \mathbb{P})$ un espacio de probabilidad y sea $\mathscr{U} \subseteq \mathscr{F}$ una partición a lo más numerable de $\Omega$ (es decir, $\mathscr{U}$ es finita o numerable). Entonces para cualquier evento $A$ se cumple que

\begin{equation} \label{eq:tot} \Prob{A} = \sum_{B \in \mathscr{U}} \Prob{A \cap B}. \end{equation}

Más aún, si $\mathscr{U}^{+} = \{ B \in \mathscr{U} \mid \Prob{B} > 0 \}$, entonces se tiene que

\begin{equation} \label{eq:pos} \Prob{A} = \sum_{B \in \mathscr{U}^{+}} \Prob{A \mid B} \Prob{B}. \end{equation}

Esto es, la suma en \eqref{eq:pos} se hace sobre aquellos $B$’s que satisfacen $\Prob{B} > 0$.


Demostración. Sea $A \in \mathscr{F}$ un evento. Para demostrar la validez de \eqref{eq:tot}, primero hay que observar que

\begin{align*} A &= A \cap \Omega \\ &= A \cap {\left( \bigcup_{B \in \mathscr{U}} B \right)} \\ &= \bigcup_{B \in \mathscr{U}} (A \cap B), \end{align*}

pues $\mathscr{U}$ es una partición de $\Omega$. Además, por el mismo motivo, para cualesquiera $B$, $C \in \mathscr{U}$ se cumple que si $B \neq C$, entonces $(A \cap B) \cap (A \cap C) = \emptyset$. Por su parte, sabemos que $\mathbb{P}$ es una medida de probabilidad, así que $\mathbb{P}$ es σ-aditiva y finitamente aditiva, por lo que

\begin{align*} \Prob{A} &= \Prob{\bigcup_{B \in \mathscr{U}} (A \cap B)} \\ &= \sum_{B \in \mathscr{U}} \Prob{A \cap B}, \end{align*}

lo cual demuestra la validez de \eqref{eq:tot}. Para verificar la validez de \eqref{eq:pos}, observa que para cada evento $B \in \mathscr{U}$ tal que $\Prob{B} = 0$ se cumple que $\Prob{A \cap B} = 0$, pues $A \cap B \subseteq B$. En consecuencia, la suma en \eqref{eq:tot} puede tener algunos términos que son $0$.

Por lo tanto, si $\mathscr{U}^{+} = \{ B \in \mathscr{U} \mid \Prob{B} > 0 \}$, se tiene que

\[ \sum_{B \in \mathscr{U}} \Prob{A \cap B} = \sum_{B \in \mathscr{U}^{+}} \Prob{A \cap B} \]

Ahora, para aquellos $B \in \mathscr{U}$ para los cuales $\Prob{B} > 0$, vimos en la entrada de Probabilidad Condicional que $\Prob{A \cap B} = \Prob{A \mid B} \Prob{B}$. Entonces se cumple que

\[ \Prob{A} = \sum_{B \in \mathscr{U}^{+}} \Prob{A \cap B} = \sum_{B \in \mathscr{U}^{+}} \Prob{A \mid B} \Prob{B}, \]

y así queda demostrada la validez de la ecuación \eqref{eq:pos}.

$\square$

Las fórmulas de la ley de probabilidad total

Para la demostración anterior utilizamos una escritura no muy común al momento de presentar la ley de probabilidad total (denotando a la partición como $\mathscr{U}$). No obstante, el teorema cubre los casos para particiones finitas y numerables. Además, también contempla aquellos casos en los que algunos de los eventos de la partición tienen probabilidad $0$.

A continuación, presentaremos dos fórmulas de la ley de probabilidad total como se usan cotidianamente.


Resultados. Sea $(\Omega, \mathscr{F}, \mathbb{P})$ un espacio de probabilidad y sea $n \in \mathbb{N}^{+}$.

  1. Sea $\{B_{1}, \ldots, B_{n}\} \subseteq \mathscr{F}$ una partición de $\Omega$ tal que para cada $i \in \{1, \ldots, n\}$ se cumple que $\Prob{B_{i}} > 0$. Entonces para cualquier evento $A$ se cumple que\[ \Prob{A} = \sum_{i = 1}^{n} \Prob{A \mid B_{i}} \Prob{B_{i}}. \]
  2. Sea $\{B_{i}\}_{i\in \mathbb{N}^{+}} \subseteq \mathscr{F}$ una partición numerable de $\Omega$ tal que para cada $i \in \mathbb{N}^{+}$ se cumple que $\Prob{B_{i}} > 0$. Entonces para cualquier evento $A$ se tiene que\[ \Prob{A} = \sum_{i=1}^{\infty} \Prob{A \mid B_{i}} \Prob{B_{i}}. \]

Ejemplo 1. En una empresa de tecnología se compran teclados para los trabajadores. Dichos teclados provienen de $3$ compañías distintas. La compañía $1$ provee el $60\%$ de los teclados, la compañía $2$ provee el $30\%$, y el $10\%$ restante proviene de la compañía $3$. La empresa de tecnología ha tenido experiencia previa con estas compañías y ha recaudado la siguiente información:

  • $2\%$ de los teclados de la compañía $1$ son defectuosos,
  • $3\%$ de los teclados de la compañía $2$ son defectuosos,
  • y $5\%$ de los teclados de la compañía $3$ son defectuosos.

Si una de las computadoras de los empleados de la empresa es elegida, al azar, ¿cuál es la probabilidad de que tenga un teclado defectuoso?

Denotemos por $\Omega$ al espacio muestral de este ejemplo. En este caso, $\Omega$ sería el conjunto de todos los teclados de las computadoras de la empresa. Para dar solución a este problema, considera los siguientes eventos:

  • $C_{1}$: el evento de que el teclado provenga de la compañía $1$, así que $\Prob{C_{1}} = 0.6$
  • $C_{2}$: el evento de que el teclado provenga de la compañía $2$, por lo que $\Prob{C_{2}} = 0.3$
  • y $C_{3}$: el evento de que el teclado provenga de la compañía $3$, y así, $\Prob{C_{3}} = 0.1$.

Por otro lado, define el evento $D$ como sigue:

  • $D$: el teclado elegido es defectuoso.

Aquí lo que nos interesa es obtener $\Prob{D}$. Por la información que nos dieron al inicio de este ejemplo, sabemos que

\begin{align*} &\Prob{C_{1}} = 0.6 \\ &\Prob{D \mid C_{1}} = 0.02 \end{align*}

\begin{align*} &\Prob{C_{2}} = 0.3 \\ &\Prob{D \mid C_{2}} = 0.03 \end{align*}

\begin{align*} &\Prob{C_{3}} = 0.1 \\ &\Prob{D \mid C_{3}} = 0.05. \end{align*}

Además, los eventos $C_{1}$, $C_{2}$ y $C_{3}$ forman una partición de $\Omega$, pues ninguno es vacío, son ajenos dos a dos y su unión es $\Omega$. En consecuencia, podemos aplicar la ley de probabilidad total para $n = 3$, que nos dice que

\[ \Prob{D} = \Prob{D \mid C_{1}} \Prob{C_{1}} + \Prob{D \mid C_{2}} \Prob{C_{2}} + \Prob{D \mid C_{3}} \Prob{C_{3}}, \]

y gracias a la información del ejercicio, esto significa que

\[ \Prob{D} = (0.02)(0.6) + (0.03)(0.3) + (0.05)(0.1) = 0.026, \]

así que la probabilidad de escoger un teclado defectuoso es $0.026 = 2.6\%$.


Con los resultados que tenemos hasta ahora, es posible calcular probabilidades más ambiciosas que aparentemente no podríamos calcular directamente. El siguiente ejemplo retoma lo visto en el anterior, pero calcularemos algo distinto.

Ejemplo 2. Retomando el ejemplo anterior, abordemos una pregunta distinta. Si al seleccionar una computadora se encuentra que esta tiene un teclado defectuoso, ¿cuál es la probabilidad de que este teclado provenga de la compañía $3$?

Observa que ahora la probabilidad que nos interesa es diferente. Por lo que dice la pregunta, el evento que está dado es $D$, así que nos interesa calcular $\Prob{C_{3} \mid D}$. Utilizando las definiciones y resultados vistos hasta ahora, podemos ver que

\[ \Prob{C_{3} \mid D} = \frac{\Prob{C_{3} \cap D}}{\Prob{D}} = \frac{\Prob{D \mid C_{3}}\Prob{C_{3}}}{\Prob{D \mid C_{1}}\Prob{C_{1}} + \Prob{D \mid C_{2}}\Prob{C_{2}} + \Prob{D \mid C_{3}}\Prob{C_{3}}}, \]

Los valores en la fracción anterior son todos conocidos, por lo que

\[ \Prob{C_{3} \mid D} = \frac{(0.05)(0.1)}{(0.02)(0.6) + (0.03)(0.3) + (0.05)(0.1)} = \frac{0.005}{0.026} = \frac{5}{26} \approx 0.1923,\]

así que la probabilidad de que el teclado elegido provenga de la compañía $3$ dado que es defectuoso es $0.1923 = 19.23\%$.


El desarrollo de la expresión para $\Prob{C_{3} \mid D}$ que hicimos en el último ejemplo corresponde a un resultado que veremos en la siguiente entrada: el teorema de Bayes. Antes de terminar esta entrada, veamos otro ejemplo utilizando la ley de probabilidad total.

Ejemplo 3. Supón que tenemos $2$ cajas llenas de pelotas. En la primera caja, hay $4$ pelotas blancas y $8$ pelotas negras, mientras que en la segunda hay $8$ blancas y $6$ negras. Si elegimos una caja al azar y luego, de esta caja, se extrae una pelota al azar, ¿cuál es la probabilidad de obtener una pelota negra?

Como es costumbre, hay que definir el espacio muestral y los eventos que nos interesan. Podemos pensar que el espacio muestral $\Omega$ es el conjunto de todas las pelotas disponibles. Estas pueden ser de alguno de dos tipos: provenientes de la caja $1$ o de la caja $2$. Definimos los siguientes eventos:

  • $C_{1}$: el evento de que se escoge una pelota de la caja $1$.
  • $C_{2}$: el evento de que se escoge una pelota de la caja $2$.
  • $B$: el evento de que se escoge una pelota blanca.
  • $N$: el evento de que se escoge una pelota negra.

De acuerdo con la información que nos proporciona el ejemplo, la elección de la caja es equiprobable, por lo que $\Prob{C_{1}} = \frac{1}{2}$ y $\Prob{C_{2}} = \frac{1}{2}$. Por su parte, la pregunta del ejemplo nos indica que hay que calcular $\Prob{N}$. Observa que los eventos $C_{1}$ y $C_{2}$ forman una partición de $\Omega$, pues son no vacíos (por construcción), son ajenos (pues una pelota no puede estar en ambas cajas) y $C_{1} \cup C_{2} = \Omega$, pues en las dos cajas se encuentran todas las pelotas de este ejemplo.

Ahora, la redacción del problema nos dice que una vez que se escogió la caja, se toma una pelota al azar. Es decir, de manera equiprobable. Por ello, tenemos que

\begin{align*} &\Prob{C_{1}} = \frac{1}{2} \\ &\Prob{N \mid C_{1}} = \frac{8}{12} = \frac{2}{3} \end{align*}

\begin{align*} &\Prob{C_{2}} = \frac{1}{2} \\ &\Prob{N \mid C_{2}} = \frac{6}{14} = \frac{3}{7} \end{align*}

Podemos aplicar la ley de probabilidad total para ver que

\begin{align*} \Prob{N} = \Prob{N \mid C_{1}} \Prob{C_{1}} + \Prob{N \mid C_{1}} \Prob{C_{1}} = {\left( \frac{2}{3} \right)} {\left( \frac{1}{2} \right)} + {\left( \frac{3}{7} \right)} {\left( \frac{1}{2} \right)} = \frac{23}{42}. \end{align*}

Por lo tanto, la probabilidad de extraer una bola negra es de $\Prob{N} = \frac{23}{42} \approx 0.547 = 54.7\%$.


Tarea moral

Los siguientes ejercicios son opcionales. Es decir, no formarán parte de tu calificación. Sin embargo, te recomiendo resolverlos para que desarrolles tu dominio de los conceptos abordados en esta entrada.

  1. ¿Por qué es necesario que la familia de conjuntos en la ley de probabilidad total sea una partición? ¿Es posible hacer lo mismo con una familia de conjuntos que no forman una partición? Explica qué pasa cuando cada una de las propiedades de una partición no se cumplen.
  2. En la demostración de la ley de probabilidad total, explica por qué es necesario construir el conjunto \(\mathscr{U}^{+}\).
  3. Utiliza el método del ejemplo 2 para encontrar la probabilidad del evento \(C_{2}\).
  4. En el ejemplo 3, verifica que $\Prob{B} = 1 − \Prob{N}$. Para ello, calcula $\Prob{B}$, la probabilidad de obtener una pelota blanca, usando la ley de probabilidad total.

Más adelante…

El teorema de probabilidad total (y las fórmulas resultates) constituye una herramienta muy útil en el cálculo de probabilidades. Además, hay ejercicios y resultados teóricos que hacen uso de este teorema. Por ello, es recomendable que lo atesores bien, sirve mucho en las materias posteriores que tienen que ver con probabilidad.

Por otro lado, en la entrada siguiente veremos un resultado que ya presagiamos en esta entrada: el teorema de Bayes.

Entradas relacionadas

Probabilidad I: Independencia de Eventos

Por Octavio Daniel Ríos García

Introducción

En la entrada anterior introdujimos un nuevo concepto: la probabilidad condicional. Vimos que dada una medida de probabilidad $\mathbb{P}$, para un evento $A$ tal que $\Prob{A} > 0$, podemos calcular la probabilidad de que ocurra otro evento $B$ condicionado a que ya ocurrió $A$. Este concepto es importante, pues también habrá veces en las que la probabilidad condicional $\Prob{B \mid A}$ es la única que se conoce.

Por otro lado, hay algo que también nos debe de interesar. Para dos eventos $A$, $B$ tales que $\Prob{A} > 0$, ¿será siempre cierto que condicionar a que $A$ ya ocurrió cambia la probabilidad de $B$? Es decir, ¿siempre es cierto que $\Prob{B} \neq \Prob{B \mid A}$? La respuesta es que no. Al definir eventos, encontraremos casos en los que la probabilidad de uno no afecta la del otro. Esta propiedad es conocida como independencia de eventos. En esta entrada veremos la definición de independencia de $2$ eventos. Después, veremos cómo se extiende para $3$ o más eventos, pues no es inmediato deducirla a partir de la independencia de $2$ eventos.

Independencia de dos eventos

Sea $(\Omega, \mathscr{F}, \mathbb{P})$ un espacio de probabilidad. Dados dos eventos $A$ y $B$, es posible que al condicionar a que $A$ ya ocurrió, la probabilidad de $B$ no cambie. Esto es, que $\Prob{B} = \Prob{B \mid A}$. De manera intuitiva, esto quiere decir que la ocurrencia o no-ocurrencia de $A$ no cambia la probabilidad de $B$ (y viceversa). Esta propiedad es conocida como independencia, y se define a continuación:


Definición. Sea $(\Omega, \mathscr{F}, \mathbb{P})$ un espacio de probabilidad. Diremos que dos eventos $A$ y $B$ son independientes si se cumple que

\[ \Prob{A \cap B} = \Prob{A} \Prob{B}. \]


Una consecuencia inmediata de la definición anterior es que si $A$ y $B$ son eventos independientes, entonces $\Prob{B \mid A} = \Prob{B}$ y $\Prob{A \mid B} = \Prob{A}$ siempre que $\Prob{A} > 0$ y $\Prob{B} > 0$.

Comentamos que cuando $A$ y $B$ son independientes, la ocurrencia o no-ocurrencia de $A$ no cambia la probabilidad de $B$. Por ejemplo, supón que $A$ y $B$ son eventos independientes tales que $\Prob{A} = 0.2$ y $\Prob{B} = 0.4$. Si realizaras el experimento aleatorio correspondiente muchas veces, se espera que en $20\%$ de esas realizaciones ocurra $A$, y en un $40\%$ ocurra $B$. Al ser independientes, de aquellas realizaciones en las que ocurrió $A$, $B$ ocurriría en un $40\%$ de ellas, pues su probabilidad no se ve afectada por la ocurrencia de $A$ (recuerda, son independientes). Así, $\Prob{A}\Prob{B} = (0.2)(0.4) = 0.08$, y en consecuencia, $\Prob{B \mid A} = \frac{0.08}{0.2} = 0.4$, que es precisamente $\Prob{B}$.

Ejemplo. Supón que realizas $3$ lanzamientos de moneda de manera equiprobable. Es decir, si $\mathrm{A}$ representa a «águila» y $\mathrm{S}$ representa a «sol», tenemos el siguiente espacio muestral equiprobable $\Omega$:

\[ \Omega = \begin{Bmatrix} \mathrm{(A, A, A)}, & \mathrm{(A, A, S)}, & \mathrm{(A, S, A)}, & \mathrm{(S, A, A)}, \\ \mathrm{(A, S, S)}, & \mathrm{(S, A, S)}, & \mathrm{(S, S, A)}, & \mathrm{(S, S, S)} \end{Bmatrix}, \]

donde cada resultado tiene probabilidad de ocurrencia de $\frac{1}{|\Omega|} = \frac{1}{8}$. Podemos acordar la siguiente convención para los distintos resultados de $\Omega$:

\[ \Omega = \{ \mathrm{AAA, AAS, ASA, SAA, ASS, SAS, SSA, SSS} \}, \]

simplificando un poco la escritura de los eventos que veremos a continuación. Sean $A$, $B$ y $C$ los siguientes eventos:

  • $A$: El primer lanzamiento es águila. En consecuencia, $A = \{ \mathrm{AAA, AAS, ASA, ASS} \}$. Además, $\Prob{A} = \frac{4}{8} = \frac{1}{2}$.
  • $B$: El segundo lanzamiento es águila. Así, $B = \{ \mathrm{AAA, AAS, SAA, SAS} \}$. También se tiene que $\Prob{B} = \frac{1}{2}$.
  • $C$: Hay al menos dos águilas. Esto es, $C = \{ \mathrm{AAA, AAS, ASA, SAA} \}$. A su vez, se tiene que $\Prob{C} = \frac{1}{2}$.

Las probabilidades de cada evento se obtuvieron considerando que el espacio muestral es equiprobable.

  1. Se tiene que $A \cap B = \{ \mathrm{AAA, AAS} \}$, por lo que \[ \Prob{A \cap B} = \frac{2}{8} = \frac{1}{4} = {\left(\frac{1}{2}\right)} {\left(\frac{1}{2}\right)} = \Prob{A}\Prob{B}. \]En consecuencia, se puede concluir que $A$ y $B$ son independientes.
  2. Por otro lado, $A \cap C = \{ \mathrm{AAA, AAS, ASA } \}$. Así, tenemos que \[ \Prob{A \cap C} = \frac{3}{8} \neq {\left(\frac{1}{2}\right)} {\left(\frac{1}{2}\right)} = \Prob{A}\Prob{C}.\]Como se tiene que $\Prob{A \cap C} \neq \Prob{A}\Prob{C}$, $A$ y $C$ no son independientes.
  3. De manera similar, $B \cap C = \{ \mathrm{AAA, AAS, SAA } \}$, por lo que \[ \Prob{B \cap C} = \frac{3}{8} \neq {\left(\frac{1}{2}\right)} {\left(\frac{1}{2}\right)} = \Prob{B}\Prob{C},\]y se concluye que $B$ y $C$ no son independientes.

Observa que los resultados en 2 y 3 tienen sentido con nuestra noción intuitiva de independencia y probabilidad condicional. Por ejemplo, si queremos la probabilidad condicional de $A$ dado $C$, $\Prob{A \mid C}$, obtenemos que esta es

\[ \Prob{A \mid C} = \frac{\Prob{A \cap C}}{\Prob{C}} = \frac{\frac{3}{8}}{\frac{1}{2}} = \frac{3}{4}, \]

que tiene sentido, pues $3$ de los $4$ resultados en $C$ cumplen lo que establece el evento $A$, «que el primer lanzamiento sea águila». Esto exhibe que condicionar a que $C$ ya ocurrió cambia la probabilidad de ocurrencia de $A$, poniendo en evidencia que no son independientes.

El evento $B^{\mathsf{c}} = \{ \mathrm{SSS, SSA, ASS, ASA} \}$ es tal que $\Prob{B^{\mathsf{c}}} = \frac{1}{2}$. Además, se tiene que $A \cap B^{\mathsf{c}} = \{ \mathrm{ASS, ASA} \}$, por lo que

\[ \Prob{A \cap B^{\mathsf{c}}} = \frac{1}{4} = {\left(\frac{1}{2}\right)} {\left(\frac{1}{2}\right)} = \Prob{A}\Prob{B^{\mathsf{c}}}. \]

Esto nos lleva a concluir que no sólo los eventos $A$ y $B$ son independientes: $A$ y $B^{\mathsf{c}}$ también lo son.


La última parte de este ejemplo revela una propiedad de la independencia de eventos que enunciamos a continuación.


Teorema. Sea $(\Omega, \mathscr{F}, \mathbb{P})$ un espacio de probabilidad y sean $A$ y $B \in \mathscr{F}$ eventos. Si $A$ y $B$ son independientes, entonces:

  1. $A$ y $B^{\mathsf{c}}$ son independientes,
  2. $A^{\mathsf{c}}$ y $B$ son independientes,
  3. $A^{\mathsf{c}}$ y $B^{\mathsf{c}}$ son independientes.

Este último teorema corresponde a la idea de que cuando dos eventos son indepenedientes, la no-ocurrencia de un evento no afecta la probabilidad de que ocurra (o no ocurra) el otro.

Independencia de tres eventos

La definición de independencia puede extenderse a más de dos eventos. Sin embargo, esta extensión se debe de hacer de manera delicada. Si tenemos $3$ eventos $A$, $B$ y $C$, ¿cómo podríamos decir que estos $3$ eventos son independientes? Claramente, queremos preservar esa noción de que la ocurrencia o no ocurrencia de uno o más de estos eventos no afecta la probabilidad de ocurrencia de los restantes.

Más concretamente, esto quiere decir que si $A$, $B$ y $C$ son independientes, entonces la ocurrencia o no ocurrencia de $A$ no debería de afectar la probabilidad de ocurrencia de $B$, ni la de $C$. Similarmente, la ocurrencia de $B$ no debería de afectar la probabilidad de $A$, ni la de $C$; y tampoco la ocurrencia de $C$ debería de afectar la probabilidad de $A$, ni la de $B$.

Además, también deberíamos de pedir que la ocurrencia de $A$ y de $B$ (al mismo tiempo) no debe de afectar la probabilidad de que ocurra $C$. Del mismo modo, la ocurrencia de $A$ y $C$ no debe de afectar la probabilidad de $B$; ni la ocurrencia de $B$ y $C$ debe de afectar la probabilidad de $A$.


Definición. Sea $(\Omega, \mathscr{F}, \mathbb{P})$ un espacio de probabilidad. Sean $A$, $B$ y $C$ eventos. Diermos que $A$, $B$ y $C$ son independientes si

  1. $\Prob{A \cap B} = \Prob{A} \Prob{B}$.
  2. $\Prob{A \cap C} = \Prob{A} \Prob{C}$.
  3. $\Prob{B \cap C} = \Prob{B} \Prob{C}$.
  4. $\Prob{A \cap B \cap C} = \Prob{A} \Prob{B} \Prob{C}$.

Las propiedades 1 a 3 corresponden a la independencia dos a dos que queremos entre los eventos. Además, en conjunto con la propiedad 4 de esta definición, capturan la idea de que la ocurrencia de dos de los eventos no debería de afectar la probabilidad del evento restante. Si $A$, $B$ y $C$ son eventos independientes, entonces

\[ \Prob{A \cap B \cap C} = \Prob{A} \Prob{B} \Prob{C} = \Prob{B} \Prob{A} \Prob{C}, \]

y como $\Prob{A \cap C} = \Prob{A} \Prob{C}$, entonces se tiene que

\[ \Prob{A \cap B \cap C} = \Prob{B} \Prob{A \cap C}, \]

que justamente corresponde a que la ocurrencia de $A$ y $C$ no afecta la probabilidad de $B$. Lo mismo puede hacerse análogamente para el resto de combinaciones de eventos posibles.

En apariencia, la definición de independencia para $3$ eventos parece un poco excesiva. ¿No será posible deducir las propiedades 1, 2 y 3 a partir de la 4? ¿O quizás deducir la propiedad 4 a partir de las primeras 3? Veamos un par de ejemplos para ver que no es el caso.

Ejemplo. Considera nuevamente el experimento de lanzar una moneda $3$ veces de manera equiprobable. El espacio muestral $\Omega$ de este experimento es

\[ \Omega = \{ \mathrm{AAA, AAS, ASA, SAA, ASS, SAS, SSA, SSS} \}, \]

donde $\mathrm{A}$ es «águila» y $\mathrm{S}$ es «sol». Considera los siguientes $2$ eventos:

  1. $A$ el evento de que el primer lanzamiento es «águila»: $A = \{ \mathrm{AAA, AAS, ASA, ASS} \}$.
  2. $B$ el evento de que los primeros dos lanzamientos son «águilas», o los últimos dos lanzamientos son «soles». Esto es, $B = \{ \mathrm{AAA, AAS, ASS, SSS} \}$.

Puede observarse intuitivamente que los dos eventos no son independientes, pues ambos dependen del resultado del primer lanzamiento. Formalmente, basta con demostrar que no cumplen la definición de independencia. Para ello, nota que $A \cap B = \{ \mathrm{AAA, AAS, ASS} \}$, por lo que

\[ \Prob{A \cap B} = \frac{|A \cap B|}{|\Omega|} = \frac{3}{8}. \]

Por otro lado, se tiene que $\Prob{A} = \frac{1}{2}$ y $\Prob{B} = \frac{1}{2}$, así que

\[ \Prob{A} \Prob{B} = {\left( \frac{1}{2} \right)}{\left( \frac{1}{2} \right)} = \frac{1}{4}. \]

En conclusión, tenemos que $\Prob{A \cap B} \neq \Prob{A} \Prob{B}$, y en consecuencia, $A$ y $B$ no son independientes.

Ahora, consideremos un tercer evento:

  1. $C$ el evento de que los últimos dos lanzamientos son distintos. En este caso, se tiene que el evento es $C = \{ \mathrm{AAS, ASA, SAS, SSA} \}$.

Para $C$, tenemos que $\Prob{C} = \frac{1}{2}$. Además, tenemos que $A \cap B \cap C = \{ \mathrm{AAS} \}$, por lo que

\[ \Prob{A \cap B \cap C} = \frac{1}{8} = {\left( \frac{1}{2} \right)}{\left( \frac{1}{2} \right)}{\left( \frac{1}{2} \right)} = \Prob{A} \Prob{B} \Prob{C}, \]

así que $A$, $B$ y $C$ cumplen la propiedad 4 de la definición de independencia de $3$ eventos, a pesar de que no cumplen la propiedad 1. Esto quiere decir que cuando tú te encuentres con tres eventos $A$, $B$ y $C$ tales que $\Prob{A \cap B \cap C} = \Prob{A} \Prob{B} \Prob{C}$, no se puede deducir que son independientes dos a dos, ¡también tienes que comprobarlo para determinar si son independientes!


Ejemplo. Bueno, ¿y qué hay de la interacción opuesta? Si $A$, $B$ y $C$ son eventos tales que

  1. $\Prob{A \cap B} = \Prob{A} \Prob{B}$,
  2. $\Prob{A \cap C} = \Prob{A} \Prob{C}$,
  3. $\Prob{B \cap C} = \Prob{B} \Prob{C}$,

¿es eso suficiente para concluir que son independientes? Es decir, ¿de ahí podemos deducir que $\Prob{A \cap B \cap C} = \Prob{A} \Prob{B} \Prob{C}$? La respuesta es que no. Considera el experimento de lanzar una moneda $4$ veces de manera equiprobable. En este caso, podemos escribir al espacio muestral $\Omega$ como sigue.

\[ \Omega = \begin{Bmatrix} \mathrm{AAAA}, & \mathrm{AAAS}, & \mathrm{AASA}, & \mathrm{ASAA}, \\ \mathrm{SAAA}, & \mathrm{AASS}, & \mathrm{ASAS}, & \mathrm{SAAS}, \\ \mathrm{ASSA}, & \mathrm{SASA}, & \mathrm{SSAA}, & \mathrm{SSSA}, \\ \mathrm{SSAS}, & \mathrm{SASS}, & \mathrm{ASSS}, & \mathrm{SSSS} \end{Bmatrix}. \]

Considera los siguientes $3$ eventos:

  1. $A$ el evento de que el primer lanzamiento es «águila». Esto es, \[ A = \{ \mathrm{AAAA, AAAS, AASA, ASAA, AASS, ASAS, ASSA, ASSS}\}. \]
  2. $B$ el evento de que el último lanzamiento es «águila». Es decir,\[ B = \{ \mathrm{AAAA, AASA, ASAA, SAAA, ASSA, SASA, SSAA, SSSA} \}. \]
  3. $C$ el evento de que los cuatro lanzamientos resulten en $2$ «águilas» y $2$ «soles». Así,\[ C = \{ \mathrm{AASS, ASAS, SAAS, SASA, ASSA, SSAA} \}. \]

En consecuencia, encontramos que $\Prob{A} = \frac{8}{16} = \frac{1}{2}$, $\Prob{B} = \frac{8}{16} = \frac{1}{2}$, y $\Prob{C} = \frac{6}{16} = \frac{3}{8}$.

Al tomar las intersecciones de estos $3$ eventos, obtenemos lo siguiente:

  • $A \cap B = \{ \mathrm{AAAA, AASA, ASAA, ASSA} \}$, por lo que \[ \Prob{A \cap B} = \frac{4}{16} = \frac{1}{4} = {\left( \frac{1}{2} \right)}{\left( \frac{1}{2} \right)} = \Prob{A} \Prob{B}, \]y en consecuencia, $A$ y $B$ son independientes.
  • $A \cap C = \{ \mathrm{AASS, ASAS, ASSA} \}$, y por lo tanto, \[ \Prob{A \cap C} = \frac{3}{16} = {\left( \frac{1}{2} \right)}{\left( \frac{3}{8} \right)} = \Prob{A} \Prob{C}, \]así que $A$ y $C$ son independientes.
  • $B \cap C = \{ \mathrm{SASA, ASSA, SSAA} \}$, y así, \[ \Prob{B \cap C} = \frac{3}{16} = {\left( \frac{1}{2} \right)}{\left( \frac{3}{8} \right)} = \Prob{B} \Prob{C}, \]de donde se concluye que $B$ y $C$ son independientes.

No obstante, nota que $A \cap B \cap C = \{ \mathrm{ASSA} \}$. Por ello, se tiene que

\[ \Prob{A \cap B \cap C} = \frac{1}{16} \neq \frac{3}{32} = {\left( \frac{1}{2} \right)}{\left( \frac{1}{2} \right)}{\left( \frac{3}{8} \right)} = \Prob{A} \Prob{B} \Prob{C}. \]

Por lo tanto, $\Prob{A \cap B \cap C} \neq \Prob{A} \Prob{B} \Prob{C}$, así que $A$, $B$ y $C$ no son independientes. Este ejemplo exhibe que aún cuando tengas tres eventos $A$, $B$ y $C$ independientes dos a dos, esto no asegura que se cumple que $\Prob{A \cap B \cap C} = \Prob{A} \Prob{B} \Prob{C}$, ¡debes de comprobarlo para concluir que los $3$ eventos son independientes!


Independencia de más de 3 eventos

La definición de independencia puede generalizarse para $n \in \mathbb{N}^{+}$ eventos. La idea de la definición será la misma que usamos para definir la independencia de $3$ eventos, pero extendida a todas las combinaciones de tamaño $k$ posibles, con $2 \leq k \leq n$. Presentamos esta definición a continuación.


Definición. Sea $(\Omega, \mathscr{F}, \mathbb{P})$ un espacio de probabilidad, y sea $n \in \mathbb{N}^{+}$ tal que $n \geq 2$. Sean $A_{1}$, $A_{2}$, …, $A_{n}$ eventos. Diremos que son independientes si y sólamente si para toda colección finita $\{i_{1}, \ldots, i_{k}\}$ de índices distintos en $\{1,\ldots,n\}$ se cumple que

\[ \Prob{A_{i_{1}} \cap A_{i_{2}} \cap \cdots \cap A_{i_{k}}} = \Prob{A_{i_{1}}} \Prob{A_{i_{2}}} \cdots \Prob{A_{i_{k}}}. \]


La definición anterior puede apantallar un poco, pero observa que lo que significa es que se tiene una lista de propiedades que debe de cumplir la familia $A_{1}$, $A_{2}$, …, $A_{n}$ para poder decir que son independientes. De manera más explícita, estas serían:

  • $\Prob{A_{i_{1}} \cap A_{i_{2}}} = \Prob{A_{i_{1}}}\Prob{A_{i_{2}}}$ para cada $i_{1}$, $i_{2} \in \{1,\ldots,n\}$ tales que $i_{1} \neq i_{2}$.
  • $\Prob{A_{i_{1}} \cap A_{i_{2}} \cap A_{i_{3}}} = \Prob{A_{i_{1}}} \Prob{A_{i_{2}}} \Prob{A_{i_{3}}}$ para cada $i_{1}$, $i_{2}$, $i_{3} \in \{1,\ldots, n\}$ tales que $i_{1} \neq i_{2} \neq i_{3}$.

$\vdots$

  • $\Prob{A_{1} \cap A_{2} \cap \cdots \cap A_{n}} = \Prob{A_{1}}\Prob{A_{2}} \cdots \Prob{A_{n}}$.

Es decir, para verificar que $n$ eventos son independientes, hay que checar que la probabilidad «abre» la intersección como un producto primero con todas las combinaciones de eventos dos a dos, luego tres a tres, y así sucesivamente hasta llegar a la propiedad con todos los eventos.

Tarea moral

Los siguientes ejercicios son opcionales. Es decir, no formarán parte de tu calificación. Sin embargo, te recomiendo resolverlos para que desarrolles tu dominio de los conceptos abordados en esta entrada.

  1. Sean $A$ y $B$ eventos tales que $\Prob{A} > 0$ y $\Prob{B} > 0$. Demuestra que si $A$ y $B$ son independientes, entonces se cumple que $\Prob{B \mid A} = \Prob{B}$ y $\Prob{A \mid B} = \Prob{A}$.
  2. Demuestra que para cualesquiera $A$, $B$ eventos, si $A$ y $B$ son independientes, entonces $A^{\mathsf{c}}$ y $B$ son independientes.
  3. A partir de la definición de independencia de $n$ eventos, escribe las propiedades que deben de cumplir $4$ eventos $A$, $B$, $C$ y $D$ para ser llamados independientes. Sugerencia: Primero revisa cómo se llega a la definición para $3$ eventos a partir de la de $n$ eventos.

Más adelante…

La independencia de eventos es un concepto importantísimo en la probabilidad, pues en muchos ejercicios y aplicaciones, se hacen supuestos de independencia. A pesar de que demostrar que $n$ conjuntos son independientes puede resultar complicado, cuando asumes la independencia, tienes una gran cantidad de propiedades a tu disposición. Por ello, en muchos teoremas básicos, la independencia se toma como hipótesis.

Más adelante, cuando veamos el concepto de variable aleatoria, veremos lo que significa que dos variables aleatorias sean independientes, y será necesario utilizar las definiciones que hemos visto aquí.

El siguiente tema que abordaremos son dos fórmulas para el cálculo de probabilidades muy útiles y que se basan en la probabilidad condicional: el teorema de probabilidad total y el teorema de Bayes.

Entradas relacionadas

Probabilidad I: La Probabilidad Clásica

Por Octavio Daniel Ríos García

Introducción

En la entrada anterior concluimos nuestro estudio de los principios de conteo. Estos principios resultan muy útiles para el cálculo de cardinalidades de conjuntos. Además, la medida de probabilidad que veremos en esta entrada requiere precisamente de cardinalidades de conjuntos para ser calculada. Por ello, los principios de conteo que vimos serán cruciales para el cálculo de probabilidades bajo este enfoque.

Lo que veremos en esta entrada es el enfoque clásico de la probabilidad. A grandes rasgos, este enfoque centra su atención en la cantidad de resultados posibles de un experimento; es decir, la cardinalidad de su espacio muestral. A su vez, dado algún evento de ese espacio muestral, el enfoque clásico establecerá la probabilidad de ese evento es proporcional a su cardinalidad con respecto a la cardinalidad del espacio muestral. Esto significa que bajo el enfoque clásico, el espacio de probabilidad es equiprobable. Veamos qué queremos decir por esto.

Motivación

Ya vimos que en el enfoque frecuentista se propone que la medida de probabilidad debe de representar la «frecuencia relativa» de un evento. Por ello, en la definición de la medida de probabilidad frecuentista de un evento $A$ se toma el límite al infinito de la frecuencia relativa de $A$.

Continuando con nuestro paseo por los enfoques más importantes de la probabilidad, sigue el caso de la probabilidad clásica. En este caso partiremos de un enfoque distinto del frecuentista. Para empezar, motivaremos este enfoque con un ejemplo. Supón que nos interesa modelar el resultado de revolver una baraja inglesa y tomar $4$ cartas, sin reemplazo. Esta actividad se considera un experimento aleatorio pues se revuelve la baraja antes de tomar las $4$ cartas. Podemos representar a una baraja estándar como el conjunto

\begin{align*} \mathfrak{B} = \begin{Bmatrix} \textcolor{red}{\mathrm{A}\heartsuit}, & \textcolor{red}{1\heartsuit}, & \textcolor{red}{2\heartsuit}, & \textcolor{red}{3\heartsuit}, & \textcolor{red}{4\heartsuit}, & \textcolor{red}{5\heartsuit}, & \textcolor{red}{6\heartsuit}, & \textcolor{red}{7\heartsuit}, & \textcolor{red}{8\heartsuit}, & \textcolor{red}{9\heartsuit}, & \textcolor{red}{10\heartsuit}, & \textcolor{red}{\mathrm{J}\heartsuit}, & \textcolor{red}{\mathrm{Q}\heartsuit}, & \textcolor{red}{\mathrm{K}\heartsuit}, \\ \textcolor{red}{\mathrm{A}\blacklozenge}, & \textcolor{red}{1\blacklozenge}, & \textcolor{red}{2\blacklozenge}, & \textcolor{red}{3\blacklozenge}, & \textcolor{red}{4\blacklozenge}, & \textcolor{red}{5\blacklozenge}, & \textcolor{red}{6\blacklozenge}, & \textcolor{red}{7\blacklozenge}, & \textcolor{red}{8\blacklozenge}, & \textcolor{red}{9\blacklozenge}, & \textcolor{red}{10\blacklozenge}, & \textcolor{red}{\mathrm{J}\blacklozenge}, & \textcolor{red}{\mathrm{Q}\blacklozenge}, & \textcolor{red}{\mathrm{K}\blacklozenge}, \\ \mathrm{A}\spadesuit, & 1\spadesuit, & 2\spadesuit, & 3\spadesuit, & 4\spadesuit, & 5\spadesuit, & 6\spadesuit, & 7\spadesuit, & 8\spadesuit, & 9\spadesuit, & 10\spadesuit, & \mathrm{J}\spadesuit, & \mathrm{Q}\spadesuit, & \mathrm{K}\spadesuit, \\ \mathrm{A}\clubsuit, & 1\clubsuit, & 2\clubsuit, & 3\clubsuit, & 4\clubsuit, & 5\clubsuit, & 6\clubsuit, & 7\clubsuit, & 8\clubsuit, & 9\clubsuit, & 10\clubsuit, & \mathrm{J}\clubsuit, & \mathrm{Q}\clubsuit, & \mathrm{K}\clubsuit \end{Bmatrix} \end{align*}

donde cada elemento representa a cada uno de los elementos de la baraja. Por ejemplo, el elemento $\textcolor{red}{9\blacklozenge}$ es el $9$ de diamantes, $\mathrm{Q}\clubsuit$ es la reina de tréboles, $\mathrm{K}\spadesuit$ es el rey de espadas y $\textcolor{red}{\mathrm{J}\heartsuit}$ es la jota de corazones.

¡Atención! El conjunto $\mathfrak{B}$ no es el espacio muestral de nuestro experimento. Recuerda que el espacio muestral de un experimento aleatorio es el conjunto de todos sus posibles resultados. Así, como nuestro experimento consiste en extraer 4 cartas de una baraja revuelta, los elementos del espacio muestral debieran de ser manos de 4 cartas. Además, no importa el orden en el que tomemos las cartas, la mano resultante es la misma.

Por ello, las manos resultantes en este experimento pueden verse como subconjuntos de $\mathfrak{B}$. Por ejemplo, supón que $4$ cartas y te salen $6\clubsuit$, $\textcolor{red}{9\blacklozenge}$, $\mathrm{K}\clubsuit$ y $\textcolor{red}{8\heartsuit}$. El resultado del experimento en esta situación fue ${6\clubsuit, \textcolor{red}{9\blacklozenge}, \mathrm{K}\clubsuit, \textcolor{red}{8\heartsuit}}$, pues en un conjunto no importa el orden. Además, observa que el resultado tiene cardinalidad $4$. En consecuencia, podemos tomar al espacio muestral como

\[ \Omega = \{ M \in \mathscr{P}(\mathfrak{B}) \mid |M| = 4 \}. \]

Es decir, el espacio muestral $\Omega$ de este experimento es el conjunto de todos los subconjuntos de la baraja que tienen $4$ cartas. Como $\mathfrak{B}$ es un conjunto finito (se cumple que $|\mathfrak{B}|=52$), también $\Omega$ es un conjunto finito. De hecho, se cumple que $|\Omega| = {52 \choose 4} = 270{,}725$, pues hay ${52 \choose 4}$ combinaciones de tamaño $4$ de las $52$ cartas. Podemos tomar como σ-álgebra a $\mathscr{P}(\Omega)$, que siempre es un σ-álgebra.

Ahora, ¿qué probabilidad le asignamos a cada evento de $\Omega$? Por ejemplo, ¿cuál es la probabilidad de que en las $4$ cartas que tomamos no haya tréboles? Un posible resultado de este tipo es que las $4$ cartas que nos salgan sean $\{ \textcolor{red}{\mathrm{J}\heartsuit}, 10\spadesuit, \textcolor{red}{9\blacklozenge}, 5\spadesuit \}$. Para hacerlo, el enfoque clásico propone lo siguiente:

La probabilidad de un evento es la proporción entre el número de casos favorables a este, y el número de casos totales del experimento.

Esta hipótesis es conocida como equiprobabilidad. Así, para obtener la probabilidad de que en las $4$ cartas que tomemos no haya tréboles, debemos de obtener cuántas manos de $4$ cartas sin tréboles hay. Para ello, observa que en la baraja hay $13$ cartas que son tréboles. Por tanto, la combinación de cartas de nuestro evento está restringida a las $39$ cartas que no son tréboles. En consecuencia, hay ${39 \choose 4} = 82{,}251$ manos de $4$ cartas sin tréboles, pues hay ${39 \choose 4}$ combinaciones de tamaño $4$ de las $39$ cartas que no son tréboles. Así, desde el enfoque clásico de la probabilidad, la probabilidad de que en las $4$ cartas que tomemos no haya tréboles es

\[ \frac{\text{Número de casos favorables}}{\text{Número de casos totales}} = \frac{{39 \choose 4}}{{52 \choose 4}} = \frac{82{,}251}{270{,}725} \]

Definición de una medida equiprobable

De acuerdo con la motivación expuesta en la sección anterior, presentamos la definición formal de un espacio equiprobable. Esta definición resume las ideas del enfoque clásico de la probabilidad.


Definición. Sea $\Omega$ un conjunto finito. Definimos a $\mathbb{P}\colon \mathscr{P}(\Omega) \rightarrow \mathbb{R}$, la medida de probabilidad clásica, como sigue. Para cada $A \in \mathscr{P}(\Omega)$, se define la probabilidad de $A$ como

\[ \Prob{A} = \frac{|A|}{|\Omega|}. \]

Un espacio de probabilidad $(\Omega, \mathscr{F}, \mathbb{P})$ con esta medida de probabilidad es conocido como un espacio equiprobable.


De acuerdo con la definición anterior, el enfoque clásico de la probabilidad tiene dos hipótesis importantes sobre el fenómeno aleatorio que se intenta describir:

  1. Primero, que $\Omega$ el espacio muestral del fenómeno es finito.
  2. Segundo, que se trata de un espacio equiprobable. Esto es, que si el fenómeno tiene $|\Omega|$ resultados posibles, entonces cada uno tiene una probabilidad de ocurrencia igual a $\frac{1}{|\Omega|}$.

En particular, el segundo supuesto puede ser problemático. ¿Qué nos asegura que al revolver la baraja del último ejemplo obtenemos efectivamente un espacio equiprobable? Hay que tener cuidado con esto, ya que es un supuesto muy fuerte que no necesariamente se cumple.

Importante. En la literatura referente a la probabilidad, es común encontrar la expresión «al azar» en la forma de «se escoge un estudiante del grupo al azar», o «se escoge(n) una(s) carta(s) de la baraja al azar». Sin embargo, no existe una manera única de hacer una tarea «al azar», ya que hay muchísimas medidas de probabilidad, así que podría resultar ambiguo. Por ello, es común que la expresión «al azar» se refiera a asumir que el espacio es equiprobable, a menos que se indique lo contraro.

Ejemplos con el enfoque clásico

Ejemplo 1. En una encuesta a 120 comensales, un restaurante encontró que \(48\) personas consumen vino con sus alimentos, \(78\) consumen refresco, y \(66\) consumen té helado. Además, se encontró que \(36\) personas consumieron cada par de bebidas con sus alimentos. Es decir, \(36\) personas consumieron vino y refresco; \(36\) consumieron vino y té helado; etcétera. Finalmente, el último hallazgo fue que \(24\) personas consumieron todas las bebidas.

Si se eligen \(2\) comensales al azar, de manera equiprobable, de este grupo de \(120\), cuál es la probabilidad de que

  • ambos quieran únicamente té helado con sus alimentos? (Evento \(A\))
  • ambos consuman exactamente dos de las tres opciones de bebidas? (Evento \(B\))

Utilizando la información provista por la encuesta, podemos construir el siguiente diagrama de Venn-Euler:

Figura. Diagrama que representa los conjuntos de personas dentro de la encuesta. \(U\) es la muestra de \(120\) personas, \(V\) son las que consumieron vino, \(T\) las que consumieron té helado, y \(R\) las que consumieron refresco.

Sin embargo, nota que nuestro espacio muestral no es \(U\), porque lo que hacemos es tomar dos personas al azar. Por ello, el espacio muestral \(\Omega\) consiste de todos los pares de comensales que se pueden elegir de la muestra de \(120\). Por ello, \(|\Omega| = \binom{120}{2} = 7140\). Por otro lado, el diagrama nos dice que hay \(18\) comensales que consumieron únicamente té helado con sus alimentos. Por ello, el número de pares de comensales que consumieron únicamente té helado es \(\binom{18}{2}\). Esto quiere decir que \(|A| = \binom{18}{2} = 153\). En consecuencia,

\begin{align*} \Prob{A} &= \frac{|A|}{|\Omega|} = \frac{153}{7140} \approx 0.02143. \end{align*}

Esto es, la probabilidad de que las dos personas escogidas consuman únicamente té helado es aproximadamente \(2.143\%\).


Ejemplo 2. Sea \(X = \{1,2,3,\ldots,99,100\}\). Imagina que seleccionamos \(2\) elementos de \(X\) al azar, sin reemplazo. ¿Cuál será la probabilidad de que la suma de esos dos números sea par?

Para encontrar esta probabilidad, primero hay que plantear nuestro espacio muestral y el evento cuya probabilidad queremos. Lo que hacemos es seleccionar \(2\) elementos de \(X\) sin reemplazo, así que nuestro espacio muestral \(\Omega\) debe de tener pares de números. Sin embargo, nota que son pares en los que no importa el orden, pues elegir los números \(14\) y \(73\) es lo mismo que escoger los números \(73\) y \(14\). Por ello, \(\Omega\) es el conjunto de subconjuntos de \(X\) que tienen exactamente dos elementos. Esto es,

\begin{align*} \Omega &= \{ A \in \mathscr{P}(X) \mid |A| = 2 \}. \end{align*}

En consecuencia, tenemos que \(|\Omega| = \binom{100}{2} = 4950\). Ahora, queremos la probabilidad del evento de que la suma de los \(2\) números escogidos sea par. Es decir, buscamos la probabilidad de \mathcal{B} definido como

\begin{align*} \mathcal{B} &= \{ \{a, b\} \in \Omega \mid \text{\(a + b\) es par} \}. \end{align*}

Sin embargo, no parece haber una forma inmediata de calcular \(|\mathcal{B}|\), con lo que podríamos calcular \(\Prob{\mathcal{B}}\). No obstante, podemos descomponer a \(|\mathcal{B}|\) en dos conjuntos cuya cardinalidad sí es posible calcular. Para ello, observa que los elementos de \(X\) pueden ser pares o impares, sin otra opción. En consecuencia, hay \(3\) casos posibles al elegir \(2\) elementos de \(X\). Sea \(A = \{a, b\} \in \Omega\). Entonces puede pasar que

  1. \(a\) y \(b\) son ambos pares. Es decir, existen \(p, q \in \mathbb{Z}\) tales que \(a = 2p\) y \(b = 2q\). En consecuencia, \(a + b = 2p + 2q = 2(p + q)\). En conclusión, si \(a\) y \(b\) son pares, entonces \(a + b\) es par.
  2. \(a\) es par y \(b\) es impar (y viceversa). En este caso, existen \(p, q \in \mathbb{Z}\) tales que \(a = 2p\) y \(b = 2q + 1\). Por ello, \(a + b = 2p + 2q + 1 = 2(p+q) + 1\). Por lo tanto, si \(a\) es par y \(b\) es impar, entonces \(a + b\) es impar.
  3. \(a\) y \(b\) son impares. Esto implica que existen \(p, q \in \mathbb{Z}\) tales que \(a = 2p + 1\) y \(b = 2q + 1\). Por tanto, \(a + b = 2p + 1 + 2q + 1 = 2(p+q+ 1)\). Así, si \(a\) y \(b\) son impares, entonces \(a+b\) es impar.

De este modo, tenemos que \(\mathcal{B}\) se puede descomponer en la unión de dos eventos:

  • \(\mathcal{E}_{1}\) : El evento de que los dos números escogidos sean pares:\begin{align*}\mathcal{E}_{1} = \{\{a, b\} \in \Omega \mid \text{\(a, b\) son pares}\}.\end{align*}
  • \(\mathcal{E}_{2}\) : El evento de que los dos números escogidos sean impares:\begin{align*}\mathcal{E}_{2} = \{\{a, b\} \in \Omega \mid \text{\(a, b\) son impares}\}.\end{align*}

Como en \(X\) hay \(50\) pares y \(50\) impares, se tiene que \(|\mathcal{E}_{1}| = |\mathcal{E}_{2}| = \binom{50}{2} = 1225\). Además, observa que \(\mathcal{E}_{1} \cup \mathcal{E}_{2} = \mathcal{B}\), y que además son eventos ajenos. En consecuencia,

\begin{align*}|\mathcal{B}| &= | \mathcal{E}_{1} \cup \mathcal{E}_{2} | = | \mathcal{E}_{1} | + | \mathcal{E}_{2} | = \binom{50}{2} + \binom{50}{2} = 2450.\end{align*}

Finalmente, con esta información podemos calcular \(\Prob{\mathcal{B}}\). En efecto,

\begin{align*} \Prob{ \mathcal{B}} &= \frac{|\mathcal{B}|}{|\Omega|} = \frac{2450}{4950} = \frac{49}{99} = 0.4949494949\ldots \end{align*}


Un consejo: En los problemas donde se utiliza la probabilidad clásica (es decir, se asume equiprobabilidad en un espacio finito), es recomendable que dejes el cálculo de las probabilidades hasta el final. Realmente el meollo de estos problemas es contar la cantidad de resultados que tiene el espacio muestral \(\Omega\), así como el número de resultados que tiene un evento \(A\). Por ello, centra tu atención en esos cálculos antes de calcular probabilidades.

Tarea moral

Los siguientes ejercicios son opcionales. Es decir, no formarán parte de tu calificación. Sin embargo, te recomiendo resolverlos para que desarrolles tu dominio de los conceptos abordados en esta entrada.

  1. Demuestra que la medida de probabilidad clásica es una medida de probabilidad.
  2. En el ejemplo de la encuesta a los comensales, verifica que
    1. los números en el diagrama de Venn-Euler son las cardinalidades correctas.
    2. la probabilidad del evento \(B\) es \(3/34 \approx 0.08824\).
  3. Usando el conjunto \(X = \{1,2,\ldots,99,100\}\) del Ejemplo 2, si se eligen 3 elementos de \(X\) al azar y sin reemplazo, ¿cuál es la probabilidad de que la suma de estos 3 números sea par? Sugerencia: Procede de manera similar a como hicimos aquí, y obtén los casos en los que la suma de los \(3\) números resulta en un número par.

Más adelante…

Esta entrada concluye nuestro estudio de los tres enfoques que contempla el temario de la Facultad de Ciencias para Probabilidad I. Es importante entender que los enfoques (o interpretaciones) de la probabilidad que hemos visto tienen gran importancia histórica. Sin embargo, pueden ser escritos matemáticamente a través de las herramientas que construimos al principio, que conforman el enfoque más moderno de este curso: la probabilidad axiomática. Es conocida de esta manera pues se parte de ciertos objetos matemáticos que satisfacen ciertas reglas (conocidas como axiomas). Este enfoque axiomático, que rige sobre el contenido de estas notas, se atribuye al matemático ruso Andrey Nikolaevich Kolmogorov. Además, es un enfoque flexible que nos ha permitido revisar los enfoques históricos de la probabilidad como casos particulares dentro de la teoría que hemos desarrollado.

Si te interesa saber más sobre la historia de la probabilidad, el libro Introducción a la Teoría de la Probabilidad, Vol. I, del Dr. Miguel Ángel García Álvarez tiene una sección no muy larga dedicada al panorama histórico de esta rama de las matemáticas. Además, al final de esta sección incluye varias referencias de matemáticos de suma importancia en el desarrollo de la probabilidad, como Bernoulli y Laplace, o el mismo Kolmogorov.

Entradas relacionadas