Probabilidad I: Teorema de Probabilidad Total

Por Octavio Daniel Ríos García

Introducción

En las entradas dos entradas pasadas hemos abordado temas que corresponden a la interacción entre eventos. En particular, si existe «dependencia» entre ellos, y cómo esta «dependencia» afecta sus probabilidades.

Siguiendo con estas ideas, en esta entrada veremos un resultado muy útil al momento de calcular probabilidades, conocido como el teorema de probabilidad total. La idea de este teorema se basa en tener una partición del espacio muestral $\Omega$. Con base en esto, cualquier evento puede partirse en varios pedazos, uno por cada elemento de la partición, que serán pedazos ajenos. En consecuencia, la probabilidad de cada evento podrá ser calculada a partir de la suma de las probabilidades de estos pedazos. Esto nos dará una herramienta muy útil para calcular probabilidades de eventos cuya probabilidad no es evidente en principio.

Consideraciones previas

En la entrada de Probabilidad Condicional vimos un ejemplo sobre unas latas de refresco y de cerveza. Vimos que cuando tenemos un evento $B \subseteq \Omega$, dado cualquier otro evento $A$ podemos «partir» a $B$ de la siguiente manera:

\begin{align*} B &= B \cap \Omega \\ &= B \cap (A \cup A^{\mathsf{c}}) \\ &= (B \cap A) \cup (B \cap A^{\mathsf{c}}), \end{align*}

En consecuencia, $B$ puede descomponerse en dos pedazos ajenos: $B \cap A$ y $B \cap A^{\mathsf{c}}$. Lo que permitió hacer esta descomposición ajena es que $A$ y $A^{\mathsf{c}}$ son eventos ajenos y que satisfacen $A \cup A^{\mathsf{c}} = \Omega$. Es decir, $A$ y $A^{\mathsf{c}}$ forman una partición del espacio muestral $\Omega$.

No obstante, no siempre se utiliza un evento $A$ y su complemento $A^{\mathsf{c}}$ como partición, ¡cualquier partición de $\Omega$ funciona! En particular, las que nos serán de utilidad son dos tipos de particiones: las finitas y las infinitas numerables. Por si no recuerdas bien la definición de partición, la incluimos a continuación.


Definición. Sea $\Omega$ un conjunto y sea $n \in \mathbb{N}^{+}$. Diremos que una familia finita de conjuntos $\{ B_{1}, B_{2}, \ldots, B_{n} \}$ es una partición finita de $\Omega$ si se cumplen las siguientes condiciones:

  1. Para cada $i \in\{1, \ldots, n\}$ se cumple que $B_{i} \neq \emptyset$.
  2. Para cualesquiera $i$, $j \in \{1, \ldots, n\}$, si $i \neq j$ entonces $B_{i} \cap B_{j} = \emptyset$. Es decir, los elementos de la familia $\{ B_{1}, B_{2}, \ldots, B_{n} \}$ son ajenos dos a dos.
  3. La unión de todos los elementos de la familia $\{ B_{1}, B_{2}, \ldots, B_{n} \}$ es el conjunto $\Omega$: \[\bigcup_{i=1}^{n} B_{i} = \Omega.\]


Definición. Sea $\Omega$ un conjunto. Diremos que una familia numerable de conjuntos $\{ B_{n} \}_{n \in \mathbb{N}^{+}}$ es una partición numerable de $\Omega$ si se cumplen las siguientes condiciones:

  1. Para cada $i \in \mathbb{N}^{+}$ se cumple que $B_{i} \neq \emptyset$.
  2. Para cualesquiera $i$, $j \in \mathbb{N}^{+}$, si $i \neq j$ entonces $B_{i} \cap B_{j} = \emptyset$. Es decir, los elementos de la familia $\{ B_{n} \}_{n \in \mathbb{N}^{+}}$ son ajenos dos a dos.
  3. La unión de todos los elementos de la familia $\{ B_{n} \}_{n \in \mathbb{N}^{+}}$ es el conjunto $\Omega$: \[\bigcup_{i=1}^{\infty} B_{i} = \Omega.\]

El teorema de probabilidad total

A continuación, presentamos el teorema de probabilidad total, también conocido como ley de probabilidad total.


Teorema. Sea $(\Omega, \mathscr{F}, \mathbb{P})$ un espacio de probabilidad y sea $\mathscr{U} \subseteq \mathscr{F}$ una partición a lo más numerable de $\Omega$ (es decir, $\mathscr{U}$ es finita o numerable). Entonces para cualquier evento $A$ se cumple que

\begin{equation} \label{eq:tot} \Prob{A} = \sum_{B \in \mathscr{U}} \Prob{A \cap B}. \end{equation}

Más aún, si $\mathscr{U}^{+} = \{ B \in \mathscr{U} \mid \Prob{B} > 0 \}$, entonces se tiene que

\begin{equation} \label{eq:pos} \Prob{A} = \sum_{B \in \mathscr{U}^{+}} \Prob{A \mid B} \Prob{B}. \end{equation}

Esto es, la suma en \eqref{eq:pos} se hace sobre aquellos $B$’s que satisfacen $\Prob{B} > 0$.


Demostración. Sea $A \in \mathscr{F}$ un evento. Para demostrar la validez de \eqref{eq:tot}, primero hay que observar que

\begin{align*} A &= A \cap \Omega \\ &= A \cap {\left( \bigcup_{B \in \mathscr{U}} B \right)} \\ &= \bigcup_{B \in \mathscr{U}} (A \cap B), \end{align*}

pues $\mathscr{U}$ es una partición de $\Omega$. Además, por el mismo motivo, para cualesquiera $B$, $C \in \mathscr{U}$ se cumple que si $B \neq C$, entonces $(A \cap B) \cap (A \cap C) = \emptyset$. Por su parte, sabemos que $\mathbb{P}$ es una medida de probabilidad, así que $\mathbb{P}$ es σ-aditiva y finitamente aditiva, por lo que

\begin{align*} \Prob{A} &= \Prob{\bigcup_{B \in \mathscr{U}} (A \cap B)} \\ &= \sum_{B \in \mathscr{U}} \Prob{A \cap B}, \end{align*}

lo cual demuestra la validez de \eqref{eq:tot}. Para verificar la validez de \eqref{eq:pos}, observa que para cada evento $B \in \mathscr{U}$ tal que $\Prob{B} = 0$ se cumple que $\Prob{A \cap B} = 0$, pues $A \cap B \subseteq B$. En consecuencia, la suma en \eqref{eq:tot} puede tener algunos términos que son $0$.

Por lo tanto, si $\mathscr{U}^{+} = \{ B \in \mathscr{U} \mid \Prob{B} > 0 \}$, se tiene que

\[ \sum_{B \in \mathscr{U}} \Prob{A \cap B} = \sum_{B \in \mathscr{U}^{+}} \Prob{A \cap B} \]

Ahora, para aquellos $B \in \mathscr{U}$ para los cuales $\Prob{B} > 0$, vimos en la entrada de Probabilidad Condicional que $\Prob{A \cap B} = \Prob{A \mid B} \Prob{B}$. Entonces se cumple que

\[ \Prob{A} = \sum_{B \in \mathscr{U}^{+}} \Prob{A \cap B} = \sum_{B \in \mathscr{U}^{+}} \Prob{A \mid B} \Prob{B}, \]

y así queda demostrada la validez de la ecuación \eqref{eq:pos}.

$\square$

Las fórmulas de la ley de probabilidad total

Para la demostración anterior utilizamos una escritura no muy común al momento de presentar la ley de probabilidad total (denotando a la partición como $\mathscr{U}$). No obstante, el teorema cubre los casos para particiones finitas y numerables. Además, también contempla aquellos casos en los que algunos de los eventos de la partición tienen probabilidad $0$.

A continuación, presentaremos dos fórmulas de la ley de probabilidad total como se usan cotidianamente.


Resultados. Sea $(\Omega, \mathscr{F}, \mathbb{P})$ un espacio de probabilidad y sea $n \in \mathbb{N}^{+}$.

  1. Sea $\{B_{1}, \ldots, B_{n}\} \subseteq \mathscr{F}$ una partición de $\Omega$ tal que para cada $i \in \{1, \ldots, n\}$ se cumple que $\Prob{B_{i}} > 0$. Entonces para cualquier evento $A$ se cumple que\[ \Prob{A} = \sum_{i = 1}^{n} \Prob{A \mid B_{i}} \Prob{B_{i}}. \]
  2. Sea $\{B_{i}\}_{i\in \mathbb{N}^{+}} \subseteq \mathscr{F}$ una partición numerable de $\Omega$ tal que para cada $i \in \mathbb{N}^{+}$ se cumple que $\Prob{B_{i}} > 0$. Entonces para cualquier evento $A$ se tiene que\[ \Prob{A} = \sum_{i=1}^{\infty} \Prob{A \mid B_{i}} \Prob{B_{i}}. \]

Ejemplo 1. En una empresa de tecnología se compran teclados para los trabajadores. Dichos teclados provienen de $3$ compañías distintas. La compañía $1$ provee el $60\%$ de los teclados, la compañía $2$ provee el $30\%$, y el $10\%$ restante proviene de la compañía $3$. La empresa de tecnología ha tenido experiencia previa con estas compañías y ha recaudado la siguiente información:

  • $2\%$ de los teclados de la compañía $1$ son defectuosos,
  • $3\%$ de los teclados de la compañía $2$ son defectuosos,
  • y $5\%$ de los teclados de la compañía $3$ son defectuosos.

Si una de las computadoras de los empleados de la empresa es elegida, al azar, ¿cuál es la probabilidad de que tenga un teclado defectuoso?

Denotemos por $\Omega$ al espacio muestral de este ejemplo. En este caso, $\Omega$ sería el conjunto de todos los teclados de las computadoras de la empresa. Para dar solución a este problema, considera los siguientes eventos:

  • $C_{1}$: el evento de que el teclado provenga de la compañía $1$, así que $\Prob{C_{1}} = 0.6$
  • $C_{2}$: el evento de que el teclado provenga de la compañía $2$, por lo que $\Prob{C_{2}} = 0.3$
  • y $C_{3}$: el evento de que el teclado provenga de la compañía $3$, y así, $\Prob{C_{3}} = 0.1$.

Por otro lado, define el evento $D$ como sigue:

  • $D$: el teclado elegido es defectuoso.

Aquí lo que nos interesa es obtener $\Prob{D}$. Por la información que nos dieron al inicio de este ejemplo, sabemos que

\begin{align*} &\Prob{C_{1}} = 0.6 \\ &\Prob{D \mid C_{1}} = 0.02 \end{align*}

\begin{align*} &\Prob{C_{2}} = 0.3 \\ &\Prob{D \mid C_{2}} = 0.03 \end{align*}

\begin{align*} &\Prob{C_{3}} = 0.1 \\ &\Prob{D \mid C_{3}} = 0.05. \end{align*}

Además, los eventos $C_{1}$, $C_{2}$ y $C_{3}$ forman una partición de $\Omega$, pues ninguno es vacío, son ajenos dos a dos y su unión es $\Omega$. En consecuencia, podemos aplicar la ley de probabilidad total para $n = 3$, que nos dice que

\[ \Prob{D} = \Prob{D \mid C_{1}} \Prob{C_{1}} + \Prob{D \mid C_{2}} \Prob{C_{2}} + \Prob{D \mid C_{3}} \Prob{C_{3}}, \]

y gracias a la información del ejercicio, esto significa que

\[ \Prob{D} = (0.02)(0.6) + (0.03)(0.3) + (0.05)(0.1) = 0.026, \]

así que la probabilidad de escoger un teclado defectuoso es $0.026 = 2.6\%$.


Con los resultados que tenemos hasta ahora, es posible calcular probabilidades más ambiciosas que aparentemente no podríamos calcular directamente. El siguiente ejemplo retoma lo visto en el anterior, pero calcularemos algo distinto.

Ejemplo 2. Retomando el ejemplo anterior, abordemos una pregunta distinta. Si al seleccionar una computadora se encuentra que esta tiene un teclado defectuoso, ¿cuál es la probabilidad de que este teclado provenga de la compañía $3$?

Observa que ahora la probabilidad que nos interesa es diferente. Por lo que dice la pregunta, el evento que está dado es $D$, así que nos interesa calcular $\Prob{C_{3} \mid D}$. Utilizando las definiciones y resultados vistos hasta ahora, podemos ver que

\[ \Prob{C_{3} \mid D} = \frac{\Prob{C_{3} \cap D}}{\Prob{D}} = \frac{\Prob{D \mid C_{3}}\Prob{C_{3}}}{\Prob{D \mid C_{1}}\Prob{C_{1}} + \Prob{D \mid C_{2}}\Prob{C_{2}} + \Prob{D \mid C_{3}}\Prob{C_{3}}}, \]

Los valores en la fracción anterior son todos conocidos, por lo que

\[ \Prob{C_{3} \mid D} = \frac{(0.05)(0.1)}{(0.02)(0.6) + (0.03)(0.3) + (0.05)(0.1)} = \frac{0.005}{0.026} = \frac{5}{26} \approx 0.1923,\]

así que la probabilidad de que el teclado elegido provenga de la compañía $3$ dado que es defectuoso es $0.1923 = 19.23\%$.


El desarrollo de la expresión para $\Prob{C_{3} \mid D}$ que hicimos en el último ejemplo corresponde a un resultado que veremos en la siguiente entrada: el teorema de Bayes. Antes de terminar esta entrada, veamos otro ejemplo utilizando la ley de probabilidad total.

Ejemplo 3. Supón que tenemos $2$ cajas llenas de pelotas. En la primera caja, hay $4$ pelotas blancas y $8$ pelotas negras, mientras que en la segunda hay $8$ blancas y $6$ negras. Si elegimos una caja al azar y luego, de esta caja, se extrae una pelota al azar, ¿cuál es la probabilidad de obtener una pelota negra?

Como es costumbre, hay que definir el espacio muestral y los eventos que nos interesan. Podemos pensar que el espacio muestral $\Omega$ es el conjunto de todas las pelotas disponibles. Estas pueden ser de alguno de dos tipos: provenientes de la caja $1$ o de la caja $2$. Definimos los siguientes eventos:

  • $C_{1}$: el evento de que se escoge una pelota de la caja $1$.
  • $C_{2}$: el evento de que se escoge una pelota de la caja $2$.
  • $B$: el evento de que se escoge una pelota blanca.
  • $N$: el evento de que se escoge una pelota negra.

De acuerdo con la información que nos proporciona el ejemplo, la elección de la caja es equiprobable, por lo que $\Prob{C_{1}} = \frac{1}{2}$ y $\Prob{C_{2}} = \frac{1}{2}$. Por su parte, la pregunta del ejemplo nos indica que hay que calcular $\Prob{N}$. Observa que los eventos $C_{1}$ y $C_{2}$ forman una partición de $\Omega$, pues son no vacíos (por construcción), son ajenos (pues una pelota no puede estar en ambas cajas) y $C_{1} \cup C_{2} = \Omega$, pues en las dos cajas se encuentran todas las pelotas de este ejemplo.

Ahora, la redacción del problema nos dice que una vez que se escogió la caja, se toma una pelota al azar. Es decir, de manera equiprobable. Por ello, tenemos que

\begin{align*} &\Prob{C_{1}} = \frac{1}{2} \\ &\Prob{N \mid C_{1}} = \frac{8}{12} = \frac{2}{3} \end{align*}

\begin{align*} &\Prob{C_{2}} = \frac{1}{2} \\ &\Prob{N \mid C_{2}} = \frac{6}{14} = \frac{3}{7} \end{align*}

Podemos aplicar la ley de probabilidad total para ver que

\begin{align*} \Prob{N} = \Prob{N \mid C_{1}} \Prob{C_{1}} + \Prob{N \mid C_{1}} \Prob{C_{1}} = {\left( \frac{2}{3} \right)} {\left( \frac{1}{2} \right)} + {\left( \frac{3}{7} \right)} {\left( \frac{1}{2} \right)} = \frac{23}{42}. \end{align*}

Por lo tanto, la probabilidad de extraer una bola negra es de $\Prob{N} = \frac{23}{42} \approx 0.547 = 54.7\%$.


Tarea moral

Los siguientes ejercicios son opcionales. Es decir, no formarán parte de tu calificación. Sin embargo, te recomiendo resolverlos para que desarrolles tu dominio de los conceptos abordados en esta entrada.

  1. ¿Por qué es necesario que la familia de conjuntos en la ley de probabilidad total sea una partición? ¿Es posible hacer lo mismo con una familia de conjuntos que no forman una partición? Explica qué pasa cuando cada una de las propiedades de una partición no se cumplen.
  2. En la demostración de la ley de probabilidad total, explica por qué es necesario construir el conjunto \(\mathscr{U}^{+}\).
  3. Utiliza el método del ejemplo 2 para encontrar la probabilidad del evento \(C_{2}\).
  4. En el ejemplo 3, verifica que $\Prob{B} = 1 − \Prob{N}$. Para ello, calcula $\Prob{B}$, la probabilidad de obtener una pelota blanca, usando la ley de probabilidad total.

Más adelante…

El teorema de probabilidad total (y las fórmulas resultates) constituye una herramienta muy útil en el cálculo de probabilidades. Además, hay ejercicios y resultados teóricos que hacen uso de este teorema. Por ello, es recomendable que lo atesores bien, sirve mucho en las materias posteriores que tienen que ver con probabilidad.

Por otro lado, en la entrada siguiente veremos un resultado que ya presagiamos en esta entrada: el teorema de Bayes.

Entradas relacionadas

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.