Nota 33. Matrices.

Por Julio César Soria Ramírez

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

Una matriz es un objeto matemático que se compone de una colección ordenada de números, llamados elementos, dispuestos en filas y columnas. Las matrices se utilizan en numerosas áreas de las matemáticas, la física, la informática, la ingeniería y otras disciplinas para manipular y analizar datos, realizar cálculos y resolver problemas. Bajo las condiciones adecuadas las matrices se pueden sumar, multiplicar, transformar mediante operaciones matriciales, etc. para obtener información relevante. Las matrices también se utilizan en la representación de sistemas lineales de ecuaciones.

Ve el siguiente video:

Definición

Sean $n$ y $m$ naturales positivos y $K$ un conjunto. Una matriz $A$ con entradas en $K$ de $m$ renglones y $n$ columnas es una función:

$A:\set{1,2,\dotsc,m}\times \set{1,2,\dotsc,n}\to K.$

Decimos en este caso que $A$ es una matriz de tamaño $m\times n$ o simplemente una matriz $m\times n$.

Al elemento de $K$ $A(i,j)$ se le llama la entrada $i\,j$ de $A$.

Decimos que $A$ es una matriz cuadrada si $m=n$, que es una matriz renglón si $m=1$ y que es una matriz columna si $n=1.$

Notación

$A(i,j)$ se denotará por $A_{ij}$ o por $a_{ij}$

$A$ se describirá mediante una tabla con $m$ renglones y $n$ columnas o de forma abreviada como $(a_{ij})$:

$A=\begin{equation*} \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n}\\ a_{21} & a_{22} & \cdots & a_{2n}\\ \vdots & \vdots & \ddots & \vdots\\a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \end{equation*}=(a_{ij})$

Nota: Usualmente consideraremos $K=\mathbb R$ o de modo más general $K$ un campo.

Ejemplos

$1.$ Considera la siguiente matriz de tamaño $3\times 2$:

$A=\begin{equation*} \left(\begin{array}{rr} 0 & \frac{1}{2}\\ 4 & \pi \\ -7 & 0 \\ \end{array} \right) \end{equation*}$.

$A_{11}=0,\,A_{12}=\frac{1}{2},\,A_{21}=4,\,A_{22}=\pi,\,A_{31}=-7,\,A_{32}=0.$

$2.$ Considera la siguiente matriz cuadrada de tamaño $2\times 2$:

$B=\begin{equation*} \left(\begin{array}{rr} 1 & 5\\ 5 & -2 \\ \end{array} \right)\end{equation*}$.

$B_{11}=1,\,B_{12}=5,\,B_{21}=5,\,B_{22}=-2.$

$3.$ Considera la siguiente matriz columna de tamaño $3\times 1$:

$C=\begin{equation*} \left(\begin{array}{r} 3 \\ 9 \\ -5\\ \end{array} \right)\end{equation*}$.

$C_{11}=3,\,C_{21}=9,\,C_{31}=-5.$

$4.$ Considera la siguiente matriz renglón de tamaño $1\times 4$:

$D=\begin{equation*} \left(\begin{array}{rrrr} 1 & 2 & -3 & 4\\ \end{array} \right) \end{equation*}$.

$D_{11}=1,\,D_{12}=2,\,D_{13}=-3,\,D_{14}=4.$

Definición

Sean $n,m,r$ y $s$ naturales positivos y $K$ un conjunto. Sea $A$ una matriz $m\times n$ con entradas en $K$ y $B$ una matriz $r\times s$ con entradas en $K$.

Decimos que $A$ es igual a $B$ si:

$m=r,\,n=s$ y $A_{ij}=B_{ij}\,\,\, \forall i\in \set{1,\dotsc, n},\,\,\,\forall j\in \set{1,\dotsc, n}.$

Es decir dos matrices son iguales si tienen la misma cantidad de renglones, la misma cantidad de columnas, y coinciden entrada a entrada.

Definición

Sean $n$ y $m$ naturales positivos, $A$ y $B$ matrices $m\times n$ con entradas en $\mathbb R$. La suma de $A$ y $B$ es la matriz $A+B$ de $m\times n$ tal que $(A+B)_{ij}=A_{ij}+B_{ij}.$

Dado $\lambda\in \mathbb R$ el producto escalar de $\lambda$ por $A$ es la matriz $\lambda A$ de $m\times n$ tal que $(\lambda A)_{ij}=\lambda A_{ij}.$

Notación.

Dados $n$ y $m$ naturales positivos $\mathscr M_{m\times n}(\mathbb R)=\set{A\mid A\,\,es\,\,una\,\,matriz\,\,m\times n\,\,con\,\,entradas\,\,reales}.$

Ejemplos

$1.$ $A=\begin{equation*} \left(\begin{array}{rrrr} 1 & -2 & 0 & 4\\ 3 & \frac{1}{2} & 1 & -5 \end{array} \right) \end{equation*}$, $ B=\begin{equation*} \left(\begin{array}{rrrr} 2 & 0 & -3 & -5\\ 7 & 1 & \frac{1}{4} & 2 \end{array} \right) \end{equation*}$.

$A+B=\begin{equation*} \left(\begin{array}{rrrr} 3 & -2 & -3 & -1\\ 10 & \frac{3}{2} & \frac{5}{4} & -3 \end{array} \right) \end{equation*}.$

Si $\lambda =2$

$\lambda A=2 A=\begin{equation*} \left(\begin{array}{rrrr} 2 & -4 & 0 & 8\\ 6 & 1 & 2 & -10 \end{array} \right) \end{equation*}.$

$2.$ $C=\begin{equation*}\left(\begin{array}{rr} 1 & \frac{1}{2}\\ 0 & \frac{1}{3} \end{array} \right) \end{equation*}$, $ D=\begin{equation*} \left(\begin{array}{rr} 2 & 0\\ 4 & 8 \end{array} \right) \end{equation*}.$

$C+D=\begin{equation*} \left(\begin{array}{rr} 3 & \frac{1}{2}\\ 4 & \frac{25}{3} \\ \end{array} \right) \end{equation*}.$

Si $\lambda =\frac{1}{4}$

$\lambda D=\frac{1}{4} D=\begin{equation*} \left(\begin{array}{rr} \frac{1}{2} & 0\\ 1 & 2 \end{array} \right) \end{equation*}.$

Proposición

Sean $n$ y $m$ naturales positivos, $A,B,C\in \mathscr M_{m\times n}(\mathbb R),\,\,\lambda,\mu \in \mathbb R .$

Se cumplen las siguientes propiedades:

$1.$ $(A+B)+C=A+(B+C)$

$2.$ $A+B=B+A$

$3.$ Existe $\theta \in \mathscr M_{m\times n}(\mathbb R)$ tal que:

$A+\theta=\theta+A=A\,\,\,\forall A\in \mathscr M_{m\times n}(\mathbb R)$.

$4.$ Para cada $A\in \mathscr M_{m\times n}(\mathbb R)$ existe $\tilde{A}\in \mathscr M_{m\times n}(\mathbb R)$ tal que:

$A+\tilde{A}=\tilde{A}+A=\theta$

$5.$ $1A=A\,\,\forall A\in \mathscr M_{m\times n}(\mathbb R)$

$6.$ $\lambda(\mu A)=(\lambda\mu)A$

$7.$ $(\lambda+\mu)A=\lambda A+\mu A$

$8.$ $\lambda(A+B)=\lambda A+\lambda B$

Demostración

Vamos a probar las propiedades $1,3$ y $7$. Las demás se dejan al lector. Recuerda no confundir las operaciones entre matrices, con las operaciones en los números reales.

Sean $n$ y $m$ naturales positivos, $A,B,C\in \mathscr M_{m\times n}(\mathbb R),\,\,\lambda,\mu \in \mathbb R .$

Demostración de la propiedad $1$

Por demostrar que $(A+B)+C=A+(B+C).$

Como $A+B\in \mathscr M_{m\times n}(\mathbb R)$ y $C\in \mathscr M_{m\times n}(\mathbb R)$ entonces $(A+B)+C\in \mathscr M_{m\times n}(\mathbb R)$.

Como $A\in \mathscr M_{m\times n}(\mathbb R)$ y $B+C\in \mathscr M_{m\times n}(\mathbb R)$ entonces $A+(B+C)\in \mathscr M_{m\times n}(\mathbb R).$

Considera a $i \in \set{1,\dotsc,m},\,\, j \in \set{1,\dotsc,n}$

Explicación de las igualdades
$(A+(B+C))_{ij}=$Partimos de un elemento arbitrario $ij$
de la matriz $A+(B+C).$
$=A_{ij}+(B+C)_{ij}$Por definición de suma de matrices.
$=A_{ij}+(B_{ij}+C_{ij})$Por definición de suma de matrices.
$=(A_{ij}+B_{ij})+C_{ij}$Por asociatividad en $\mathbb R.$
$=(A+B)_{ij}+C_{ij}$Por definición de suma de matrices.
$=((A+B)+C)_{ij}$Por definición de suma de matrices.

Por lo tanto $A+(B+C)$ y $(A+B)+C$ son matrices del mismo tamaño y para toda $i$ y para toda $j$ tenemos que $(A+(B+C))_{ij}=((A+B)+C)_{ij}$. Así, $A+(B+C)=(A+B)+C.$

Demostración de la propiedad $3$

Sea $\theta\in \mathscr M_{m\times n}(\mathbb R)$ tal que $\theta_{ij}=0\,\,\forall i,j$. Sea $A\in \mathscr M_{m\times n}(\mathbb R).$

Por demostrar que $A+\theta=\theta +A=A.$

Sabemos que $A+\theta\in \mathscr M_{m\times n}(\mathbb R)$. Sean $i \in \set{1,\dotsc,m},\,\, j \in \set{1,\dotsc,n}.$

Explicación de las igualdades
$(A+\theta)_{ij}=$Partimos de un elemento arbitrario $ij$
de la matriz $A+\theta .$
$=A_{ij}+\theta_{ij}$Por definición de suma de matrices.
$=A_{ij}+0$Por definición de $\theta$: $\theta_{ij}=0,\,\,\,\forall i,j.$
$=A_{ij}$$0$ es el neutro en $\mathbb R .$

Por lo tanto $A+\theta$ y $A$ son matrices del mismo tamaño y para toda $i$ y para toda $j$ tenemos que $(A+\theta)_{ij}=A_{ij}$. Así, $A+\theta=A$. Análogamente $\theta +A=A.$

Demostración de la propiedad $7$

Por demostrar que $(\lambda+\mu)A=\lambda A+\mu A.$

Sabemos que $(\lambda+\mu)A\in \mathscr M_{m\times n}(\mathbb R)$. También $\lambda A\in \mathscr M_{m\times n}(\mathbb R)$ y $\mu A\in \mathscr M_{m\times n}(\mathbb R)$ por lo que $\lambda A+\mu A\in \mathscr M_{m\times n}(\mathbb R)$. Sean $i \in \set{1,\dotsc,m},\,\, j \in \set{1,\dotsc,n}.$

Explicación de las igualdades
$((\lambda+\mu)A)_{ij}=$Partimos un elemento arbitrario $ij$
de la matriz $(\lambda+\mu)A.$
$=(\lambda+\mu)A_{ij}$Por definición del producto por escalar de matrices.
$=\lambda A_{ij}+\mu A_{ij}$Por la distributividad en $\mathbb R.$
$=(\lambda A)_{ij}+(\mu A)_{ij}$Por definición del producto por escalar de matrices.
$=(\lambda A+\mu A)_{ij}$Por definición de suma de matrices.

Por lo tanto $(\lambda+\mu)A$ y $\lambda A+\mu A$ son matrices del mismo tamaño y para toda $i$ y para toda $j$ tenemos que $((\lambda+\mu)A)_{ij}=(\lambda A+\mu A)_{ij}$. Así, $(\lambda+\mu)A=\lambda A+\mu A.$

$\square$

Observa que $\mathscr M_{m\times n}(\mathbb R)$ cumple entonces propiedades análogas a las que cumple $\mathbb R^n$ con las operaciones de suma y producto por escalar. Debido a ello se le llama también un $\mathbb R$-espacio vectorial.

Se cumplen diversas propiedades que se desprenden de las anteriores, cuya pruebas son análogas a las que se realizaron en la unidad anterior para $\mathbb R^n$, como por ejemplo:

El neutro aditivo $\theta$ es único y es la matriz de ceros. La prueba de la unicidad se deja de tarea moral.

El inverso aditivo de $A$ es único y es $(-1)A$, se denota por $-A$. Esta prueba se deja de tarea moral.

Tarea Moral

$1.$ Considera la matriz:

$A=\begin{equation*} \left(\begin{array}{rrrr} \frac{4}{3} & -9 & 7 & -1 \\ -\frac{2}{3} & -3 & 4 & 0 \\ 1 & 22 & -11 & \pi \\ \end{array} \right)\end{equation*}$

$i)$ Encuentra el tamaño de $A.$

$ii)$ Determina cuál es la entrada $A_{24}.$

$iii)$ Expresa al primer renglón de $A$ como una matriz renglón y a la tercera columna de $A$ como una matriz columna, indicando en cada caso el tamaño de ambas matrices.

$2.$ Considera las siguientes matrices:

$A=\begin{equation*}\left(\begin{array}{rrr} -3 & 5 & 2 \\ 7 & -4 & 11 \\ \end{array} \right) \end{equation*}$ y $B=\begin{equation*} \left(\begin{array}{rrr} 6 & -\frac{3}{4} & 0 \\ 4 & 1 & -5 \\ \end{array} \right) \end{equation*}$

Obtén $-7A+B$ y encuentra la matriz $X$ tal que $\frac{1}{5}B+4X=-A.$

$3.$ Compara las propiedades de suma y producto por escalar de matrices con las de $\mathbb R^n.$

$4.$ Sean $n$ y $m$ naturales positivos. Prueba que el neutro aditivo de $\mathscr M_{m\times n}(\mathbb R)$ es único.

$5.$ Sean $n$ y $m$ naturales positivos. Prueba que cada $A\in \mathscr M_{m\times n}(\mathbb R)$ tiene un único inverso aditivo.

$6.$ Sean $n$ y $m$ naturales positivos,. Sean $A,B,C \in \mathscr M_{m\times n}(\mathbb R)$ y $\lambda\in \mathbb R$. Prueba o da un contraejemplo para las siguientes afirmaciones.

$i)$ Si $A+C=B+C$, entonces $A=B.$

$ii)$ Si $\lambda A$ es la matriz nula, entonces $\lambda=0.$

$iii)$ Si $\lambda A=A$, entonces $\lambda=1.$

$iv)$ $(-1)A$ es el inverso aditivo de $A.$

$7.$ Sean $n$ y $m$ naturales positivos y $A \in \mathscr M_{m\times n}(\mathbb R)$. Sea $t\in \mathbb N$. ¿Podremos sumar $A$ $t$ veces, sin importar qué tan grande sea $t$?, ¿podremos sumar $A$ una infinidad de veces?

Más adelante

En la siguiente nota definiremos la multiplicación de matrices, así como la matriz identidad, las matrices inversas y las transpuestas.

Enlaces relacionados

Página principal del curso.

Enlace a la nota anterior. Nota 32. Dimensión de un $\mathbb R-$espacio vectorial

Enlace a la nota siguiente. Nota 34. Multiplicación de matrices, identidad, inversas y transpuesta.

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.