102. Material en revisión: Curvatura

Por Mariana Perez

Curvatura de una curva

La curvatura de una curva $\alpha : [a,b] \subset \mathbb{R} \rightarrow \mathbb{R}^n$ en un punto $\alpha(t_0)$ es la curvatura de la circunferencia osculatriz (osculadora), «la que más se parece a la curva cerca del punto».

  • ¿Cuál es la curvatura de una circunferencia?
  • De todas las circunferencias que pasan por el punto, ¿cuál es la que más se parece a la curva?

Definamos la curvatura de una circunferencia de radio $r$ como el número $\textcolor{RoyalBlue}{\mathcal{K} = \frac{1}{r}}$

Observación «física»:

Supongamos que tenemos una circunferencia parametrizada con rapidez constante 1.

$\alpha (s)$ nos da la posición.

${\alpha}’ (s)$ nos da la velocidad.

${{\alpha}’}’ (s)$ nos da la aceleración.

$\big\| {\alpha}’ (s) \big\| = 1$

$\big\| {\alpha}’ (s) \big\|^2 = 1$ constante.

Como la aceleración es perpendicular a la velocidad, se cumple que $ \langle {\alpha}’ (s) , {{\alpha}’}’ (s) \rangle = 0$

$ \langle {\alpha}’ (s) , {\alpha}’ (s) \rangle \equiv 1$ derivando $ \langle {{\alpha}’}’ (s) , {\alpha}’ (s) \rangle + \langle {\alpha}’ (s) , {{\alpha}’}’ (s) \rangle \equiv 0$

¿Cuál es la relación que hay entre $\mathcal{K}$ y ${{\alpha}’}’ (s)$ ?

Circunferencia de radio $1$ parametrizada con rapidez unitaria

$\alpha (t) = (\cos (t), \sin (t))$

${\alpha}’ (t) = ( – \sin (t) , \cos (t))$

$\big\| {\alpha}’ (t) \big\| = 1$

Circunferencia de radio $2$ parametrizada con rapidez unitaria

$\alpha (t) = 2 (\cos (t), \sin (t))$

${\alpha}’ (t) = 2 ( – \sin (t) , \cos (t))$

$\big\| {\alpha}’ (t) \big\| = 2$

Reparametricemos

$t = h(s)$ inyectiva, creciente, derivable.

$\beta (s) = \alpha (h(s))$

Tal que $\big\| {\beta \, }’ (s) \big\| = 1$

Como $\beta (s) = \alpha (h(s))$ entonces, ${\beta \, }’ (s) = {\alpha}’ (h(s)) h’ (s).$

Luego, $ \big\| {\alpha}’ (h(s)) \big\| h’ (s) = 1 $

$2 h’ (s) = 1$

$h’ (s) = \frac{1}{2}$

Entonces, nos sirve la función $h(s) = \frac{1}{2}s $

$\beta (s) = 2 \big(\cos \big(\frac{1}{2} s \big), \sin \big(\frac{1}{2} s \big) \big)$

${\beta \, }’ (s) = 2 \big( – \frac{1}{2} \sin \big(\frac{1}{2} s \big), \frac{1}{2} \cos \big(\frac{1}{2} s \big) \big)$

${\beta \, }’ (s) = \big( – \sin \big(\frac{1}{2} s \big), \cos \big(\frac{1}{2} s \big) \big)$

$\big\| {\beta \, }’ (s) \big\| = 1$

${{\beta \, }’ \, }’ (s) = 2 \big( – \frac{1}{2} \cos \big(\frac{1}{2} s \big), – \frac{1}{2} \sin \big(\frac{1}{2} s \big) \big)$

$\big\| {{\beta \, }’\, }’ (s) \big\| = \frac{1}{2}$

Circunferencia de radio $r > 0$

$\alpha (s) = r \big(\cos \big(\frac{1}{r}s \big), r \sin \big(\frac{1}{r}s \big) \big)$

${\alpha}’ (s) = \big(- \sin \big(\frac{1}{r}s \big), \cos \big(\frac{1}{r}s \big) \big)$

${{\alpha \, }’ \, }’ (s) = \big( – \frac{1}{r} \cos \big(\frac{1}{r}s \big), – \frac{1}{r} \sin \big(\frac{1}{r}s \big) \big)$

$\big\| {{\alpha \, }’ \, }’ (s) \big\| = \frac{1}{r}$ es la «curvatura».

En general, dada una curva $\alpha : I \subset \mathbb{R} \rightarrow \mathbb{R}^n$ si ${\alpha \, }’ (t_0) \neq \vec{0}$, podemos definir «el» vector tangente unitario como $$\textcolor{ForestGreen}{\vec{T} (t_0) = \frac{{\alpha \, }’ (t_0) }{ \big\| {\alpha \, }’ (t_0) \big\|}}$$

Si la curva está parametrizada con rapidez unitaria $\alpha (s) $ tal que existe ${\alpha}’ (s)$ con $\big\|{\alpha \, }'(s) \big\| = 1$ para toda $s$, se tiene que $$T(s) = {\alpha \, }’ (s)$$

Dada una curva $\alpha (t)$, de clase $\mathcal{C}^1$, podemos reparametrizarla con rapidez unitaria.

Si ${\alpha \, }’ (t) \neq \vec{0} \; \; \forall \, t$; decimos que la curva es «regular».

Buscamos una función $t = h(s)$ tal que $\beta = \alpha \circ h$ y ${\beta \, }’ (s) = {\alpha \, }’ (h(s)) h’ (s)$ y que cumple que $\big\| {\beta \, }’ (s) \big\| = 1$ entonces $\big\|{\beta\, }’ (s) \big\| = \big\|{\alpha \, }’ (h(s)) \big\| h’ (s)$, con $h$ una función creciente.

Por lo que $$h’ (s) = \frac{1}{ \big\|{\alpha \, }’ (h(s)) \big\|}$$

Si además podemos que ${{\alpha \, }’ \, }’ (s) \neq \vec{0}$ entonces, definimos «el» vector normal $N (s)$ como $$\textcolor{NavyBlue}{N (s) = \frac{{{\alpha \, }’ \, }’ (s)}{\big\|{{\alpha \, }’ \, }’ (s) \big\|}}$$

Dada una curva $\alpha (t)$, si ${\alpha \, }’ (t) \neq 0$ y existe ${{\alpha \, }’ \, }’ (t)$ entonces $${{\alpha\, }’ \, }’ (t) = \lambda {\alpha \, }’ (t) + \beta (t) $$

donde ${{\alpha \, }’ \, }’ (t)$ es la aceleración,

${\alpha \, }’ (t)$ es la aceleración tangencial, y

$\beta (t)$ es la aceleración normal.

Es decir $${{\alpha \, }’ \, }’ (t) = \lambda T (t) + N (t) $$

¿Cuál es la circunferencia osculatriz?

El radio está dado por $$\textcolor{BrickRed}{\frac{1}{\big\|{{\alpha \, }’ \, }'(s_0) \big\|}}$$

El centro de la circunferencia osculatriz es $$\alpha (s_0) + \frac{1}{\big\|{{\alpha \, }’ \, }’ (s_0) \big\|}.N(s_0) $$ $$\alpha (s_0) + \frac{1}{\|{{\alpha \, }’ \, }’ (s_0) \big\|}. \frac{{{\alpha \, }’ \, }’ (s_0)}{ \big\|{{\alpha \, }’ \, }’ (s_0) \big\|}$$ $$ \textcolor{BrickRed}{\text{Centro} = \alpha (s_0) + \frac{{{\alpha \, }’ \, }’ (s_0)}{{\big\|{{\alpha \, }’ \, }’ (s_0)} \big\|^2}}$$

En conclusión, la curvatura mide el cambio en la dirección comparado con el cambio en la longitud de arco recorrida.

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.