Matemáticas Financieras: Tasas efectivas de interés

Por Erick de la Rosa

Introducción

Este apartado se presentara el concepto de tasa efectiva de interés, sus características y la forma en que se puede aplicar, tanto al modelo de interés simple como al compuesto, para evidenciar su uso.

Definición

Se entiende como tasa efectiva de interés o también tasa efectiva por periodo, a la proporción de intereses ganados por unidad de capital de tiempo. El llamarla efectivo mensual o efectiva, dentro de las matemáticas financieras, para especificar la tasa de la que se está hablando, esto es la tasa que corresponde a la que se pagará por unidad de capital y de tiempo.

Desarrollo

La periodicidad de la tasa es la que nos va a indicar cada cuando se tienen que pagar los intereses. Éstos pueden ser pagados con la periodicidad que se desee, esto es; en años, meses, días, semanas, etc. Bastará con hacer mención que la tasa es efectiva por día, por semana, por mes, etc. Es necesario hacer mención que la tasa de interés siempre tendrá que contar con el lapso o periodicidad con la que se esté trabajando, ya que con esto se da a conocer cada cuando se harán los pagos de los intereses.

El hecho de que éste tipo de tasas se les agregue la palabra «efectiva» hace posible que se eviten confusiones con otro tipo de tasas, como las nominales, las instantáneas, las cuales se verán más adelante.

Ejercicios resueltos

Ejercicio. En el modelo de interés simple se nos pide que se calcule Los intereses generados por un capital de \$100 con una tasa efectiva mensual del 15% en un plazo de 5 meses

Solución

La respuesta se obtiene aplicando el modelo de interés simple, como a continuación se muestra:

$$M=K(1+it)=100(1+.15(5))=175$$

Los intereses generado son de: \$75

Ejercicio. Haciendo uso del modelo de interés simple, calcula los intereses generados por una tasa efectiva trimestral de 22%, en un plazo de 10 meses con un capital de \$500

Solución

Se sabe que un en 10 meses se tienen 3 trimestres, por lo que $t=3+.333=3.333$

Repitiendo el mismo procedimiento, se tiene:

$$M=500(1+(.22)(3.3333))=536.663$$

Los intereses generados son de \$36.663

Ejercicio. Usando el modelo de interés compuesto calcula los intereses generados por una tasa efectiva anual del 6.5%, luego de 2 años 6 meses, con un monto de \$300.

Solución

La tasa es efectiva anual, entonces el tiempo es de 2.5 años. Luego usando el modelo de interés compuesto se tiene:

$$M=300(1+(0.065))^{2.5}=300(1.170507)=351.15121$$

Los intereses que genera dicha tasa son: \$51.15120

Más adelante…

Se estarán analizando los diferentes tipos de tasas con las que operan las matemáticas financieras, para conocer e identificar sus características así como sus diferencias.

Ir a Matemáticas Financieras

Entrada anterior

Entrada siguiente

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.