Diferencial de orden N, Teorema de Taylor

Por Angélica Amellali Mercado Aguilar

Diferencial de orden n

$$d^{n}f=\frac{\partial^{n} f}{\partial x^{n}}dx^{n}+\left(\begin{matrix}n\\1\end{matrix}\right)\frac{\partial^{n-1} f}{\partial x^{n-1}\partial y}dx^{n-1}dy+\left(\begin{matrix}n\\2\end{matrix}\right)\frac{\partial^{n-2} f}{\partial x^{n-2}\partial y^{2}}dx^{n-2}dy^{2}+\cdots+$$ $$\left(\begin{matrix}n\\k\end{matrix}\right)\frac{\partial^{n-k} f}{\partial x^{n-k}\partial y^{k}}dx^{n-k}dy^{k}+\cdots+\frac{\partial^{n}f}{\partial y^{n}}dy^{n}$$
que se puede escribir
$$d^{n}f=\sum_{j=0}^{n}\left(\begin{matrix}n\\j\end{matrix}\right)\frac{\partial^{n}f}{\partial x^{n-j}\partial y^{j}}dx^{n-j}dy^{j}$$

Ejercicio. Probar usando inducción
$$d^{n}f=\sum_{j=0}^{n}\left(\begin{matrix}n\\j\end{matrix}\right)\frac{\partial^{n}f}{\partial x^{n-j}\partial y^{j}}dx^{n-j}dy^{j}$$

Solución. Para n=1 se tiene
$$df=\frac{\partial f}{\partial x}dx+\frac{\partial f}{\partial y}dy$$
Suponemos valido para n

$$d^{n}f=\sum_{j=0}^{n}\left(\begin{matrix}n\\j\end{matrix}\right)\frac{\partial^{n}f}{\partial x^{n-j}\partial y^{j}}dx^{n-j}dy^{j}$$
Por demostrar que es valida para n+1
$$d^{n+1}f=d(d^{n}f)=\frac{\partial}{\partial x}\left(\sum_{j=0}^{n}\left(\begin{matrix}n\\j\end{matrix}\right)\frac{\partial^{n}f}{\partial x^{n-j}\partial y^{j}}dx^{n-j}dy^{j}\right)dx+\frac{\partial}{\partial y}\left(\sum_{j=0}^{n}\left(\begin{matrix}n\\j\end{matrix}\right)\frac{\partial^{n}f}{\partial x^{n-j}\partial y^{j}}dx^{n-j}dy^{j}\right)dy=$$

$$\sum_{j=0}^{n}\left(\begin{matrix}n\\j\end{matrix}\right)\frac{\partial^{n+1}f}{\partial x^{n+1-j}\partial y^{j}}dx^{n+1-j}dy^{j}+\sum_{j=0}^{n}\left(\begin{matrix}n\\j\end{matrix}\right)\frac{\partial^{n+1}f}{\partial x^{n-j}\partial y^{j+1}}dx^{n-j}dy^{j+1}=$$
$$\sum_{j=0}^{n}\left(\begin{matrix}n\\j\end{matrix}\right)\frac{\partial^{n+1}f}{\partial x^{n+1-j}\partial y^{j}}dx^{n+1-j}dy^{j}+\sum_{j=1}^{n+1}\left(\begin{matrix}n\\j-1\end{matrix}\right)\frac{\partial^{n+1}f}{\partial x^{n+1-j}\partial y^{j}}dx^{n+1-j}dy^{j}=$$

$$\frac{\partial^{n+1}f}{\partial x^{n+1}}dx^{n+1}+\sum_{j=1}^{n}\left(\begin{matrix}n\\j\end{matrix}\right)\frac{\partial^{n+1}f}{\partial x^{n+1-j}\partial y^{j}}dx^{n+1-j}dy^{j}+\sum_{j=1}^{n}\left(\begin{matrix}n\\j-1\end{matrix}\right)\frac{\partial^{n+1}f}{\partial x^{n+1-j}\partial y^{j}}dx^{n+1-j}dy^{j}+\frac{\partial^{n+1}f}{\partial y^{n+1}}dy^{n+1}=$$

$$\frac{\partial^{n+1}f}{\partial x^{n+1}}dx^{n+1}+\sum_{j=1}^{n}\left(\left(\begin{matrix}n\\j\end{matrix}\right)+\left(\begin{matrix}n\\j-1\end{matrix}\right)\right)\frac{\partial^{n+1}f}{\partial x^{n+1-j}\partial y^{j}}dx^{n+1-j}dy^{j}+\frac{\partial^{n+1}f}{\partial y^{n+1}}dy^{n+1}=$$

$$\frac{\partial^{n+1}f}{\partial x^{n+1}}dx^{n+1}+\sum_{j=1}^{n}\left(\begin{matrix}n+1\\j\end{matrix}\right)\frac{\partial^{n+1}f}{\partial x^{n+1-j}\partial y^{j}}dx^{n+1-j}dy^{j}+\frac{\partial^{n+1}f}{\partial y^{n+1}}dy^{n+1}=\sum_{j=0}^{n+1}\left(\begin{matrix}n\\j\end{matrix}\right)\frac{\partial^{n}f}{\partial x^{n-j}\partial y^{j}}dx^{n-j}dy^{j}$$

La última fórmula puede expresarse simbólicamente por la ecuación
$$d^{n}f=\left(\frac{\partial}{\partial x}dx+\frac{\partial}{\partial y}dy\right)^{n}f$$

donde primero debe desarrollarse le expresión de la derecha formalmente por medio del teorema del binomio y, a continuación deben sustituirse los términos
$$\frac{\partial^{n}f}{\partial x^{n}}dx^{n},\frac{\partial^{n}f}{\partial x^{n-1}\partial y}dx^{n-1}dy,\cdots,\frac{\partial^{n}f}{\partial y^{n}}dy^{n}$$
por los términos
$$\left(\frac{\partial}{\partial x}dx\right)^{n}f,\left(\frac{\partial}{\partial x}dx\right)^{n-1}\left(\frac{\partial}{\partial y}dy\right)f,\cdots,\left(\frac{\partial}{\partial y}dy\right)^{n}f$$

Teorema de Taylor para funciones $f:A\subset\mathbb{R}^{2}\rightarrow\mathbb{R}$}

Recordando el Teorema de Taylor para funciones $f:\mathbb{R}\rightarrow\mathbb{R}$

Teorema. Si $f(x)$ tiene n-ésima derivada continua en una vecindad de $x_{0}$, entonces en esa vecindad
$$f(x)=f(x_{0})+\frac{1}{1!}f'(x_{0})(x-x_{0})+\frac{1}{2!}f»(x_{0})(x-x_{0})^{2}+\frac{1}{3!}f»'(x_{0})(x-x_{0})^{3}+…+\frac{1}{n!}f^{n}(x_{0})(x-x_{0})^{n}+R_{n}$$
donde
$$R_{n}=\frac{f^{n+1}(\epsilon)}{(n+1)!}(x-x_{0})^{n+1},~donde~\epsilon\in(x_{0},x)$$

Sea $f:A\subset\mathbb{R}^{2}\rightarrow\mathbb{R}$ y sea $F(t)=f(x_{0}+h_{1}t,y_{0}+h_{2}t)$ con $t\in[0,1]$, de esta manera f recorre el segmento de $[x_{0},y_{0}]$ a $[x_{0}+h_{1}t,y_{0}+h_{2}t]$. Se tiene entonces que usando la regla de la cadena
$$F'(t)=\frac{\partial f}{\partial x}(x_{0}+h_{1}t,y_{0}+h_{2}t)\cdot \frac{d(x_{0}+h_{1}t)}{dt}+\frac{\partial f}{\partial y}(x_{0}+h_{1}t,y_{0}+h_{2}t)\cdot \frac{d(y_{0}+h_{2}t)}{dt}=$$

$$\frac{\partial f}{\partial x}(x_{0}+h_{1}t,y_{0}+h_{2}t)\cdot h_{1}+\frac{\partial f}{\partial y}(x_{0}+h_{1}t,y_{0}+h_{2}t)\cdot h_{2}$$
Vamos ahora a calcular $F^{´´}(t)$

$$F^{´´} ( t )=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}h_{1}+ \frac{\partial f}{\partial y}h_{2}\right)h_{1}+\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}h_{1}+ \frac{\partial f}{\partial y}h_{2}\right)h_{2}=$$
$$\frac{\partial^{2} f}{\partial x^{2}}h_{1}^{2}+2\frac{\partial^{2} f}{\partial x\partial y}h_{1}h_{2}+\frac{\partial^{2} f}{\partial y^{2}}h_{2}^{2}$$

simbólicamente se puede escribir
$$F^{»}(t)=\left(\frac{\partial }{\partial x}\cdot h_{1}+\frac{\partial }{\partial y}\cdot h_{2}\right)^{2}f$$
y en general

$$F^{n}(t)=\frac{\partial^{n} f}{\partial x^{n}}h_{1}^{n}+\left(\begin{matrix}n\\1\end{matrix}\right)\frac{\partial^{n-1} f}{\partial x^{n-1}\partial y}h_{1}^{n-1}h_{2}+\left(\begin{matrix}n\\2\end{matrix}\right)\frac{\partial^{n-2} f}{\partial x^{n-2}\partial y^{2}}h_{1}^{n-2}h_{2}^{2}+\cdots+\left(\begin{matrix}n\\k\end{matrix}\right)\frac{\partial^{n-k} f}{\partial x^{n-k}\partial y^{k}}h_{1}^{n-k}h_{2}^{k}+\cdots+\frac{\partial^{n}f}{\partial y^{n}}h_{2}^{n}$$

que simbólicamente se puede escribir
$$F^{n}=\sum_{j=0}^{n}\left(\begin{matrix}n\\j\end{matrix}\right)\frac{\partial^{n}f}{\partial x^{n-j}\partial y^{j}}h_{1}^{n-j}h_{2}^{j}=\left(\frac{\partial }{\partial x}\cdot h_{1}+\frac{\partial }{\partial y}\cdot h_{2}\right)^{n}f$$

Ahora bien si se aplica la fórmula de Taylor con la forma del residuo de Lagrange a la función $$F(t)=f(x_{0}+h_{1}t,y_{0}+h_{2}t)$$ y ponemos $t=0$, se tiene
$$F(t)=F(0)+\frac{1}{1!}F'(0)t+\frac{1}{2!}F^{»}(0)t^{2}+\frac{1}{3!}F»'(0)t^{3}+…++\frac{1}{n!}F^{^{n}}(0)t^{n}+R_{n}$$
ahora bien con $t=1$
$$f(x_{0}+h_{1},y_{0}+h_{2})=f(x_{0},y_{0})+\frac{1}{1!}\left(\frac{\partial f}{\partial x}(x_{0},y_{0})\cdot h_{1}+\frac{\partial f}{\partial y}(x_{0},y_{0})\cdot h_{2}\right)+\frac{1}{2!}\left(\frac{\partial^{2} f}{\partial x^{2}}(x_{0},y_{0})h_{1}^{2}+2\frac{\partial^{2} f}{\partial x\partial y}(x_{0},y_{0})h_{1}h_{2}+\frac{\partial^{2} f}{\partial y^{2}}(x_{0},y_{0})h_{2}^{2}\right)$$
$$+\cdots+\frac{1}{n!}\left(\sum_{j=0}^{n+1}\left(\begin{matrix}n\\j\end{matrix}\right)\frac{\partial^{n}f}{\partial x^{n-j}\partial y^{j}}(x_{0},y_{0})h_{1}^{n-j}h_{2}^{j}\right)$$

$x=x_{0}+h_{1}$, $y_{0}+h_{2}=y$ por lo que $h_{1}=x-x_{0}$ y $h_{2}=y-y_{0}$ entonces

$$f(x,y)=f(x_{0},y_{0})+\frac{1}{1!}\left(\frac{\partial f}{\partial x}(x_{0},y_{0})\cdot (x-x_{0})+\frac{\partial f}{\partial y}(x_{0},y_{0})\cdot (y-y_{0})\right)+$$

$$\frac{1}{2!}\left(\frac{\partial^{2} f}{\partial x^{2}}(x_{0},y_{0})(x-x_{0})^{2}+2\frac{\partial^{2} f}{\partial x\partial y}(x_{0},y_{0})(x-x_{0})(y-y_{0})+\frac{\partial^{2} f}{\partial y^{2}}(x_{0},y_{0})(y-y_{0})^{2}\right)+$$

$$\cdots+\frac{1}{n!}\left(\sum_{j=0}^{n+1}\left(\begin{matrix}n\\j\end{matrix}\right)\frac{\partial^{n}f}{\partial x^{n-j}\partial y^{j}}(x_{0},y_{0})(x-x_{0})^{n-j}(y-y_{0})^{j}\right)+R_{n}$$

donde
$$R_{n}=\frac{1}{n+1!}\left((x-x_{0})^{n+1}\frac{\partial^{n+1}f}{\partial x^{n+1}}(\xi,\eta)+\cdots+(y-y_{0})^{n+1}\frac{\partial^{n+1}f}{\partial y^{n+1}}(\xi,\eta)\right)$$ donde $\xi\in(x_{0},x_{0}+h_{1})$ y $\eta\in(y_{0},y_{0}+h_{2})$\En general el residuo $R_{n}$ se anula en un orden mayor que el término $d^{n}f$

Ejemplo. Desarrollar la fórmula de Taylor en $(x_{0},y_{0})=(0,0)$ con $n=3$ para la función $$f(x,y)=e^{y}\cos x$$

Solución. En este caso tenemos que
$$f(0,0)=e^{0}\cos(0)=1$$
Para la diferencial de orden 1
$$\frac{\partial f}{\partial x}(0,0)~\Rightarrow~\frac{\partial (e^{y}\cos(x))}{\partial x}(0,0)~\Rightarrow~-e^{y} sen\left( x\right) \big{|}{(0,0)}=0$$ $$\frac{\partial f}{\partial y}(0,0)~\Rightarrow~\frac{\partial (e^{y} \cos x)}{\partial y}(0,0)~\Rightarrow~-e^{y}\cos(x)\big{|}{(0,0)}=1$$
por lo tanto
$$\frac{1}{1!}\left(\frac{\partial f}{\partial x}(x_{0},y_{0})\cdot (x-x_{0})+\frac{\partial f}{\partial y}(x_{0},y_{0})\cdot (y-y_{0})\right)=\frac{1}{1!}\left((0)(x)+(1)(y)\right)=y$$
Para la diferencial de orden 2
$$\frac{\partial^{2} f}{\partial x^{2}}(x_{0},y_{0})~\Rightarrow~\frac{\partial^{2} (e^{y}\ cos x)}{\partial x^{2}}(0,0)~\Rightarrow~-e^{y} \cos~x\big{|}{(0,0)}=-1$$ $$\frac{\partial^{2} f}{\partial y^{2}}(x{0},y_{0})~\Rightarrow~\frac{\partial^{2} (e^{y} \cos x)}{\partial y^{2}}(0,0)~\Rightarrow~e^{y} \cos~x\big{|}{(0,0)}=1$$ $$\frac{\partial^{2} f}{\partial x~\partial y}(x{0},y_{0})~\Rightarrow~\frac{\partial^{2} (e^{y}\cos x)}{\partial x~\partial y}(0,0)~\Rightarrow~-e^{y} sen~x~ \big{|}{(0,0)}=0$$ Por lo tanto $$\frac{1}{2!}\left(\frac{\partial^{2} f}{\partial x^{2}}(x{0},y_{0})h_{1}^{2}+2\frac{\partial^{2} f}{\partial x\partial y}(x_{0},y_{0})h_{1}h_{2}+\frac{\partial^{2} f}{\partial y^{2}}(x_{0},y_{0})h_{2}^{2}\right)=\frac{1}{2!}((-1)x^{2}+2(0)xy+(1)y^{2})$$
Para la diferencial de orden 3

$$\frac{\partial^{3} f}{\partial x^{3}}(x_{0},y_{0})~\Rightarrow~e^{y} sen~x\big{|}_{(0,0)}=0$$

$$\frac{\partial^{3} f}{\partial y^{3}}(x_{0},y_{0})~\Rightarrow~\frac{\partial^{2} (e^{y}\cos x)}{\partial y^{3}}(0,0)~\Rightarrow~e^{y}\cos~x\big{|}_{(0,0)}=1$$

$$\frac{\partial^{3} f}{\partial x^{2}~\partial y}(x_{0},y_{0})~\Rightarrow~\frac{\partial^{2} (e^{y}\cos x)}{\partial x^{2}~\partial y}(0,0)~\Rightarrow~-e^{y}\cos~x\big{|}_{(0,0)}=-1$$

$$\frac{\partial^{3} f}{\partial y^{3}}(x_{0},y_{0})~\Rightarrow~\frac{\partial^{2} (e^{y}\cos x)}{\partial y^{3}}(0,0)~\Rightarrow~e^{y}\cos~x\big{|}_{(0,0)}=1$$

$$\frac{\partial^{3} f}{\partial x~\partial y^{2}}(x_{0},y_{0})~\Rightarrow~\frac{\partial^{2} (e^{y}\cos x)}{\partial x~\partial y^{2}}(0,0)~\Rightarrow~-e^{y} sen~x\big{|}_{(0,0)}=0$$

Por lo tanto
$$\frac{1}{3!}\left(\frac{\partial^{3} f}{\partial x^{3}}h_{1}^{3}+3\frac{\partial^{3} f}{\partial x^{2}\partial y}h_{}1^{2}h_{2}+3\frac{\partial^{3} f}{\partial x\partial y^{2}}h_{1}h_{2}^{2}+\frac{\partial^{3} f}{\partial y^{3}}h_{}2^{3}\right)=$$

$$\frac{1}{3!}\left((0)(x^{3})+3(-1)x^{2}y+3(0)xy^{2}+(1)y^{3}\right)$$
Finalmente para el residuo se tiene

$$\frac{\partial^{4} f}{\partial x^{4}}(x_{0},y_{0})~\Rightarrow~\frac{\partial^{4} (e^{y}\cos(x))}{\partial y^{3}}(0,0)~\Rightarrow~e^{y}\cos~x\big{|}_{(\xi,\eta)}=e^{\eta}\cos~\xi$$

$$\frac{\partial^{4} f}{\partial x^{2}\partial y^{2}}(x_{0},y_{0})~\Rightarrow~\frac{\partial^{4} (e^{y}\cos x)}{\partial x^{2}\partial y^{2}}(0,0)~\Rightarrow~-e^{y}\cos~x\big{|}_{(\xi,\eta)}=-e^{\eta}\cos~\xi$$

$$\frac{\partial^{4} f}{\partial x\partial y^{3}}(x_{0},y_{0})~\Rightarrow~\frac{\partial^{4} (e^{y}\cos x)}{\partial x\partial y^{3}}(0,0)~\Rightarrow~-e^{y} sen~x\big{|}_{(\xi,\eta)}=-e^{\eta} sen~\xi$$

$$\frac{\partial^{4} f}{\partial y^{4}}(x_{0},y_{0})~\Rightarrow~\frac{\partial^{4} (e^{y}\cos x)}{\partial y^{4}}(0,0)~\Rightarrow~e^{y}\cos~x\big{|}_{(\xi,\eta)}=e^{\eta}\cos~\xi$$

$$R_{3}=\frac{1}{4!}\left(\frac{\partial^{4} f}{\partial x^{4}}h_{1}^{4}+4\frac{\partial^{4} f}{\partial x^{3}\partial y}h_{1}^{3}h_{2}+6\frac{\partial^{4} f}{\partial x^{2}\partial y^{2}}h_{1}^{2}h_{2}^{2}+4\frac{\partial^{4} f}{\partial x\partial y^{3}}h_{1}h_{2}^{3}+\frac{\partial^{4} f}{\partial h_{2}^{4}}dy^{4}\right)$$

$$=\frac{1}{4!}\left(x^{4}e^{\eta}\cos~\xi+4x^{3}ye^{\eta} sen~xi-6x^{2}y^{2}e^{\eta}\cos~\xi-4xy^{3}e^{\eta} sen~\xi+y^{4}e^{\eta}\cos~\xi\right)$$

Por lo que nuestro desarrollo de Taylor nos queda
$$e^{y}\cos~x=1+y+\frac{1}{2}(x^{2}-y^{2})+\frac{1}{6}(x^{3}-3xy^{2})+R_{3}$$
donde
$$R_{3}=\frac{1}{4!}\left(x^{4}e^{\eta}\cos~\xi+4x^{3}ye^{\eta} sen~xi-6x^{2}y^{2}e^{\eta}\cos~\xi-4xy^{3}e^{\eta} sen~\xi+y^{4}e^{\eta}\cos~\xi\right)$$
$\textbf{Ejercicio}$ Use la fórmula de Taylor en
$$f(x,y)=\cos~(x+y)$$
en el punto $(x_{0},y_{0})=(0,0)$ con $n=2$ para comprobar que
$$\lim_{(x,y)\rightarrow(0,0)}\frac{1-\cos~(x+y)}{(x^{2}+y^{2})^{2}}=\frac{1}{2}$$

En este caso para
$$f(x,y)=\cos(x+y)$$
se tiene
$$f(0,0)=\cos(0+0)=1$$
Para la diferencial de orden 1
$$\frac{\partial f}{\partial x}(0,0)~\Rightarrow~\frac{\partial (\cos x+y)}{\partial x}(0,0)~\Rightarrow~- sen(x+y)\big{|}{(0,0)}=0$$ $$\frac{\partial f}{\partial y}(0,0)~\Rightarrow~\frac{\partial (\cos x+y)}{\partial y}(0,0)~\Rightarrow~- sen(x+y)\big{|}{(0,0)}=0$$
por lo tanto

$$\frac{1}{1!}\left(\frac{\partial f}{\partial x}(x_{0},y_{0})\cdot (x-x_{0})+\frac{\partial f}{\partial y}(x_{0},y_{0})\cdot (y-y_{0})\right)=\frac{1}{1!}\left((0)(x)+(0)(y)\right)=0$$

Para la diferencial de orden 2
$$\frac{\partial^{2} f}{\partial x^{2}}(x_{0},y_{0})~\Rightarrow~\frac{\partial^{2} (\cos x+y)}{\partial x^{2}}(0,0)~\Rightarrow~-\cos~x+y\big{|}{(0,0)}=-1$$ $$\frac{\partial^{2} f}{\partial y^{2}}(x{0},y_{0})~\Rightarrow~\frac{\partial^{2} (\cos x+y)}{\partial y^{2}}(0,0)~\Rightarrow~-\cos~x+y\big{|}{(0,0)}=-1$$ $$\frac{\partial^{2} f}{\partial x~\partial y}(x{0},y_{0})~\Rightarrow~\frac{\partial^{2} (\cos x+y)}{\partial x~\partial y}(0,0)~\Rightarrow~-\cos~x+y\big{|}_{(0,0)}=-1$$
Por lo tanto

$$\frac{1}{2!}\left(\frac{\partial^{2} f}{\partial x^{2}}(x_{0},y_{0})h_{1}^{2}+2\frac{\partial^{2} f}{\partial x\partial y}(x_{0},y_{0})h_{1}h_{2}+\frac{\partial^{2} f}{\partial y^{2}}(x_{0},y_{0})h_{2}^{2}\right)=\frac{1}{2!}((-1)x^{2}-2xy+(-1)y^{2})$$
Por lo que nuestro desarrollo de Taylor nos queda
$$\cos(x+y)=1-\frac{x^{2}}{2}-xy-\frac{y^{2}}{2}$$
De manera que

$$\lim_{(x,y)\rightarrow(0,0)}\frac{1-\cos~(x+y)}{(x^{2}+y^{2})^{2}}=\lim_{(x,y)\rightarrow(0,0)}\frac{1-(1-\frac{x^{2}}{2}-xy-\frac{y^{2}}{2})}{(x^{2}+y^{2})^{2}}$$
$$=\lim_{(x,y)\rightarrow(0,0)}\frac{1}{2}\frac{(x^{2}+y^{2})^{2}}{(x^{2}+y^{2})^{2}}=\frac{1}{2}$$

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.