Diferencial de orden N, Teorema de Taylor

Por Angélica Amellali Mercado Aguilar

Introduccion

El diferencial de orden n es una extensión del diferencial de orden 2 y se utiliza cuando se quiere aproximar el cambio de una función de manera más detallada respecto al cambio lineal. También veremos el Teorema de Taylor para varias variables, recordemos que la expansión de Taylor es una aproximación a una función que es siempre diferencialbe mediante polinomios.

Diferencial de orden n

$$d^{n}f=\frac{\partial^{n} f}{\partial x^{n}}dx^{n}+\left(\begin{matrix}n\\1\end{matrix}\right)\frac{\partial^{n-1} f}{\partial x^{n-1}\partial y}dx^{n-1}dy+\left(\begin{matrix}n\\2\end{matrix}\right)\frac{\partial^{n-2} f}{\partial x^{n-2}\partial y^{2}}dx^{n-2}dy^{2}+\cdots+$$ $$\left(\begin{matrix}n\\k\end{matrix}\right)\frac{\partial^{n-k} f}{\partial x^{n-k}\partial y^{k}}dx^{n-k}dy^{k}+\cdots+\frac{\partial^{n}f}{\partial y^{n}}dy^{n}$$
que se puede escribir
$$d^{n}f=\sum_{j=0}^{n}\left(\begin{matrix}n\\j\end{matrix}\right)\frac{\partial^{n}f}{\partial x^{n-j}\partial y^{j}}dx^{n-j}dy^{j}$$

Ejercicio. Probar usando inducción
$$d^{n}f=\sum_{j=0}^{n}\left(\begin{matrix}n\\j\end{matrix}\right)\frac{\partial^{n}f}{\partial x^{n-j}\partial y^{j}}dx^{n-j}dy^{j}$$

Solución. Para n=1 se tiene
$$df=\frac{\partial f}{\partial x}dx+\frac{\partial f}{\partial y}dy$$
Suponemos valido para n

$$d^{n}f=\sum_{j=0}^{n}\left(\begin{matrix}n\\j\end{matrix}\right)\frac{\partial^{n}f}{\partial x^{n-j}\partial y^{j}}dx^{n-j}dy^{j}$$
Por demostrar que es valida para n+1
$$d^{n+1}f=d(d^{n}f)=\frac{\partial}{\partial x}\left(\sum_{j=0}^{n}\left(\begin{matrix}n\\j\end{matrix}\right)\frac{\partial^{n}f}{\partial x^{n-j}\partial y^{j}}dx^{n-j}dy^{j}\right)dx+\frac{\partial}{\partial y}\left(\sum_{j=0}^{n}\left(\begin{matrix}n\\j\end{matrix}\right)\frac{\partial^{n}f}{\partial x^{n-j}\partial y^{j}}dx^{n-j}dy^{j}\right)dy=$$

$$\sum_{j=0}^{n}\left(\begin{matrix}n\\j\end{matrix}\right)\frac{\partial^{n+1}f}{\partial x^{n+1-j}\partial y^{j}}dx^{n+1-j}dy^{j}+\sum_{j=0}^{n}\left(\begin{matrix}n\\j\end{matrix}\right)\frac{\partial^{n+1}f}{\partial x^{n-j}\partial y^{j+1}}dx^{n-j}dy^{j+1}=$$
$$\sum_{j=0}^{n}\left(\begin{matrix}n\\j\end{matrix}\right)\frac{\partial^{n+1}f}{\partial x^{n+1-j}\partial y^{j}}dx^{n+1-j}dy^{j}+\sum_{j=1}^{n+1}\left(\begin{matrix}n\\j-1\end{matrix}\right)\frac{\partial^{n+1}f}{\partial x^{n+1-j}\partial y^{j}}dx^{n+1-j}dy^{j}=$$

$$\frac{\partial^{n+1}f}{\partial x^{n+1}}dx^{n+1}+\sum_{j=1}^{n}\left(\begin{matrix}n\\j\end{matrix}\right)\frac{\partial^{n+1}f}{\partial x^{n+1-j}\partial y^{j}}dx^{n+1-j}dy^{j}+\sum_{j=1}^{n}\left(\begin{matrix}n\\j-1\end{matrix}\right)\frac{\partial^{n+1}f}{\partial x^{n+1-j}\partial y^{j}}dx^{n+1-j}dy^{j}+\frac{\partial^{n+1}f}{\partial y^{n+1}}dy^{n+1}=$$

$$\frac{\partial^{n+1}f}{\partial x^{n+1}}dx^{n+1}+\sum_{j=1}^{n}\left(\left(\begin{matrix}n\\j\end{matrix}\right)+\left(\begin{matrix}n\\j-1\end{matrix}\right)\right)\frac{\partial^{n+1}f}{\partial x^{n+1-j}\partial y^{j}}dx^{n+1-j}dy^{j}+\frac{\partial^{n+1}f}{\partial y^{n+1}}dy^{n+1}=$$

$$\frac{\partial^{n+1}f}{\partial x^{n+1}}dx^{n+1}+\sum_{j=1}^{n}\left(\begin{matrix}n+1\\j\end{matrix}\right)\frac{\partial^{n+1}f}{\partial x^{n+1-j}\partial y^{j}}dx^{n+1-j}dy^{j}+\frac{\partial^{n+1}f}{\partial y^{n+1}}dy^{n+1}=\sum_{j=0}^{n+1}\left(\begin{matrix}n\\j\end{matrix}\right)\frac{\partial^{n}f}{\partial x^{n-j}\partial y^{j}}dx^{n-j}dy^{j}$$

La última fórmula puede expresarse simbólicamente por la ecuación
$$d^{n}f=\left(\frac{\partial}{\partial x}dx+\frac{\partial}{\partial y}dy\right)^{n}f$$

donde primero debe desarrollarse le expresión de la derecha formalmente por medio del teorema del binomio y, a continuación deben sustituirse los términos
$$\frac{\partial^{n}f}{\partial x^{n}}dx^{n},\frac{\partial^{n}f}{\partial x^{n-1}\partial y}dx^{n-1}dy,\cdots,\frac{\partial^{n}f}{\partial y^{n}}dy^{n}$$
por los términos
$$\left(\frac{\partial}{\partial x}dx\right)^{n}f,\left(\frac{\partial}{\partial x}dx\right)^{n-1}\left(\frac{\partial}{\partial y}dy\right)f,\cdots,\left(\frac{\partial}{\partial y}dy\right)^{n}f$$

Teorema de Taylor para funciones $f:A\subset\mathbb{R}^{2}\rightarrow\mathbb{R}$}

Recordando el Teorema de Taylor para funciones $f:\mathbb{R}\rightarrow\mathbb{R}$

Teorema. Si $f(x)$ tiene n-ésima derivada continua en una vecindad de $x_{0}$, entonces en esa vecindad
$$f(x)=f(x_{0})+\frac{1}{1!}f'(x_{0})(x-x_{0})+\frac{1}{2!}f»(x_{0})(x-x_{0})^{2}+\frac{1}{3!}f»'(x_{0})(x-x_{0})^{3}+…+\frac{1}{n!}f^{n}(x_{0})(x-x_{0})^{n}+R_{n}$$
donde
$$R_{n}=\frac{f^{n+1}(\epsilon)}{(n+1)!}(x-x_{0})^{n+1},~donde~\epsilon\in(x_{0},x)$$

Sea $f:A\subset\mathbb{R}^{2}\rightarrow\mathbb{R}$ y sea $F(t)=f(x_{0}+h_{1}t,y_{0}+h_{2}t)$ con $t\in[0,1]$, de esta manera f recorre el segmento de $[x_{0},y_{0}]$ a $[x_{0}+h_{1}t,y_{0}+h_{2}t]$. Se tiene entonces que usando la regla de la cadena
$$F'(t)=\frac{\partial f}{\partial x}(x_{0}+h_{1}t,y_{0}+h_{2}t)\cdot \frac{d(x_{0}+h_{1}t)}{dt}+\frac{\partial f}{\partial y}(x_{0}+h_{1}t,y_{0}+h_{2}t)\cdot \frac{d(y_{0}+h_{2}t)}{dt}=$$

$$\frac{\partial f}{\partial x}(x_{0}+h_{1}t,y_{0}+h_{2}t)\cdot h_{1}+\frac{\partial f}{\partial y}(x_{0}+h_{1}t,y_{0}+h_{2}t)\cdot h_{2}$$
Vamos ahora a calcular $F^{´´}(t)$

$$F^{´´} ( t )=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}h_{1}+ \frac{\partial f}{\partial y}h_{2}\right)h_{1}+\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}h_{1}+ \frac{\partial f}{\partial y}h_{2}\right)h_{2}=$$
$$\frac{\partial^{2} f}{\partial x^{2}}h_{1}^{2}+2\frac{\partial^{2} f}{\partial x\partial y}h_{1}h_{2}+\frac{\partial^{2} f}{\partial y^{2}}h_{2}^{2}$$

simbólicamente se puede escribir
$$F^{»}(t)=\left(\frac{\partial }{\partial x}\cdot h_{1}+\frac{\partial }{\partial y}\cdot h_{2}\right)^{2}f$$
y en general

$$F^{n}(t)=\frac{\partial^{n} f}{\partial x^{n}}h_{1}^{n}+\left(\begin{matrix}n\\1\end{matrix}\right)\frac{\partial^{n-1} f}{\partial x^{n-1}\partial y}h_{1}^{n-1}h_{2}+\left(\begin{matrix}n\\2\end{matrix}\right)\frac{\partial^{n-2} f}{\partial x^{n-2}\partial y^{2}}h_{1}^{n-2}h_{2}^{2}+\cdots+\left(\begin{matrix}n\\k\end{matrix}\right)\frac{\partial^{n-k} f}{\partial x^{n-k}\partial y^{k}}h_{1}^{n-k}h_{2}^{k}+\cdots+\frac{\partial^{n}f}{\partial y^{n}}h_{2}^{n}$$

que simbólicamente se puede escribir
$$F^{n}=\sum_{j=0}^{n}\left(\begin{matrix}n\\j\end{matrix}\right)\frac{\partial^{n}f}{\partial x^{n-j}\partial y^{j}}h_{1}^{n-j}h_{2}^{j}=\left(\frac{\partial }{\partial x}\cdot h_{1}+\frac{\partial }{\partial y}\cdot h_{2}\right)^{n}f$$

Ahora bien si se aplica la fórmula de Taylor con la forma del residuo de Lagrange a la función $$F(t)=f(x_{0}+h_{1}t,y_{0}+h_{2}t)$$ y ponemos $t=0$, se tiene
$$F(t)=F(0)+\frac{1}{1!}F'(0)t+\frac{1}{2!}F^{»}(0)t^{2}+\frac{1}{3!}F»'(0)t^{3}+…++\frac{1}{n!}F^{^{n}}(0)t^{n}+R_{n}$$
ahora bien con $t=1$
$$f(x_{0}+h_{1},y_{0}+h_{2})=f(x_{0},y_{0})+\frac{1}{1!}\left(\frac{\partial f}{\partial x}(x_{0},y_{0})\cdot h_{1}+\frac{\partial f}{\partial y}(x_{0},y_{0})\cdot h_{2}\right)+\frac{1}{2!}\left(\frac{\partial^{2} f}{\partial x^{2}}(x_{0},y_{0})h_{1}^{2}+2\frac{\partial^{2} f}{\partial x\partial y}(x_{0},y_{0})h_{1}h_{2}+\frac{\partial^{2} f}{\partial y^{2}}(x_{0},y_{0})h_{2}^{2}\right)$$
$$+\cdots+\frac{1}{n!}\left(\sum_{j=0}^{n+1}\left(\begin{matrix}n\\j\end{matrix}\right)\frac{\partial^{n}f}{\partial x^{n-j}\partial y^{j}}(x_{0},y_{0})h_{1}^{n-j}h_{2}^{j}\right)$$

$x=x_{0}+h_{1}$, $y_{0}+h_{2}=y$ por lo que $h_{1}=x-x_{0}$ y $h_{2}=y-y_{0}$ entonces

$$f(x,y)=f(x_{0},y_{0})+\frac{1}{1!}\left(\frac{\partial f}{\partial x}(x_{0},y_{0})\cdot (x-x_{0})+\frac{\partial f}{\partial y}(x_{0},y_{0})\cdot (y-y_{0})\right)+$$

$$\frac{1}{2!}\left(\frac{\partial^{2} f}{\partial x^{2}}(x_{0},y_{0})(x-x_{0})^{2}+2\frac{\partial^{2} f}{\partial x\partial y}(x_{0},y_{0})(x-x_{0})(y-y_{0})+\frac{\partial^{2} f}{\partial y^{2}}(x_{0},y_{0})(y-y_{0})^{2}\right)+$$

$$\cdots+\frac{1}{n!}\left(\sum_{j=0}^{n+1}\left(\begin{matrix}n\\j\end{matrix}\right)\frac{\partial^{n}f}{\partial x^{n-j}\partial y^{j}}(x_{0},y_{0})(x-x_{0})^{n-j}(y-y_{0})^{j}\right)+R_{n}$$

donde
$$R_{n}=\frac{1}{n+1!}\left((x-x_{0})^{n+1}\frac{\partial^{n+1}f}{\partial x^{n+1}}(\xi,\eta)+\cdots+(y-y_{0})^{n+1}\frac{\partial^{n+1}f}{\partial y^{n+1}}(\xi,\eta)\right)$$ donde $\xi\in(x_{0},x_{0}+h_{1})$ y $\eta\in(y_{0},y_{0}+h_{2})$\En general el residuo $R_{n}$ se anula en un orden mayor que el término $d^{n}f$

Ejemplo. Desarrollar la fórmula de Taylor en $(x_{0},y_{0})=(0,0)$ con $n=3$ para la función $$f(x,y)=e^{y}\cos x$$

Solución. En este caso tenemos que
$$f(0,0)=e^{0}\cos(0)=1$$
Para la diferencial de orden 1
$$\frac{\partial f}{\partial x}(0,0)~\Rightarrow~\frac{\partial (e^{y}\cos(x))}{\partial x}(0,0)~\Rightarrow~-e^{y} sen\left( x\right) \big{|}{(0,0)}=0$$ $$\frac{\partial f}{\partial y}(0,0)~\Rightarrow~\frac{\partial (e^{y} \cos x)}{\partial y}(0,0)~\Rightarrow~-e^{y}\cos(x)\big{|}{(0,0)}=1$$
por lo tanto
$$\frac{1}{1!}\left(\frac{\partial f}{\partial x}(x_{0},y_{0})\cdot (x-x_{0})+\frac{\partial f}{\partial y}(x_{0},y_{0})\cdot (y-y_{0})\right)=\frac{1}{1!}\left((0)(x)+(1)(y)\right)=y$$
Para la diferencial de orden 2
$$\frac{\partial^{2} f}{\partial x^{2}}(x_{0},y_{0})~\Rightarrow~\frac{\partial^{2} (e^{y}\ cos x)}{\partial x^{2}}(0,0)~\Rightarrow~-e^{y} \cos~x\big{|}{(0,0)}=-1$$ $$\frac{\partial^{2} f}{\partial y^{2}}(x_{0},y_{0})~\Rightarrow~\frac{\partial^{2} (e^{y} \cos x)}{\partial y^{2}}(0,0)~\Rightarrow~e^{y} \cos~x\big{|}{(0,0)}=1$$ $$\frac{\partial^{2} f}{\partial x~\partial y}(x_{0},y_{0})~\Rightarrow~\frac{\partial^{2} (e^{y}\cos x)}{\partial x~\partial y}(0,0)~\Rightarrow~-e^{y} sen~x~ \big{|}{(0,0)}=0$$ Por lo tanto $$\frac{1}{2!}\left(\frac{\partial^{2} f}{\partial x^{2}}(x_{0},y_{0})h_{1}^{2}+2\frac{\partial^{2} f}{\partial x\partial y}(x_{0},y_{0})h_{1}h_{2}+\frac{\partial^{2} f}{\partial y^{2}}(x_{0},y_{0})h_{2}^{2}\right)=\frac{1}{2!}((-1)x^{2}+2(0)xy+(1)y^{2})$$
Para la diferencial de orden 3

$$\frac{\partial^{3} f}{\partial x^{3}}(x_{0},y_{0})~\Rightarrow~e^{y} sen~x\big{|}_{(0,0)}=0$$

$$\frac{\partial^{3} f}{\partial y^{3}}(x_{0},y_{0})~\Rightarrow~\frac{\partial^{2} (e^{y}\cos x)}{\partial y^{3}}(0,0)~\Rightarrow~e^{y}\cos~x\big{|}_{(0,0)}=1$$

$$\frac{\partial^{3} f}{\partial x^{2}~\partial y}(x_{0},y_{0})~\Rightarrow~\frac{\partial^{2} (e^{y}\cos x)}{\partial x^{2}~\partial y}(0,0)~\Rightarrow~-e^{y}\cos~x\big{|}_{(0,0)}=-1$$

$$\frac{\partial^{3} f}{\partial y^{3}}(x_{0},y_{0})~\Rightarrow~\frac{\partial^{2} (e^{y}\cos x)}{\partial y^{3}}(0,0)~\Rightarrow~e^{y}\cos~x\big{|}_{(0,0)}=1$$

$$\frac{\partial^{3} f}{\partial x~\partial y^{2}}(x_{0},y_{0})~\Rightarrow~\frac{\partial^{2} (e^{y}\cos x)}{\partial x~\partial y^{2}}(0,0)~\Rightarrow~-e^{y} sen~x\big{|}_{(0,0)}=0$$

Por lo tanto
$$\frac{1}{3!}\left(\frac{\partial^{3} f}{\partial x^{3}}h_{1}^{3}+3\frac{\partial^{3} f}{\partial x^{2}\partial y}h_{}1^{2}h_{2}+3\frac{\partial^{3} f}{\partial x\partial y^{2}}h_{1}h_{2}^{2}+\frac{\partial^{3} f}{\partial y^{3}}h_{}2^{3}\right)=$$

$$\frac{1}{3!}\left((0)(x^{3})+3(-1)x^{2}y+3(0)xy^{2}+(1)y^{3}\right)$$
Finalmente para el residuo se tiene

$$\frac{\partial^{4} f}{\partial x^{4}}(x_{0},y_{0})~\Rightarrow~\frac{\partial^{4} (e^{y}\cos(x))}{\partial y^{3}}(0,0)~\Rightarrow~e^{y}\cos~x\big{|}_{(\xi,\eta)}=e^{\eta}\cos~\xi$$

$$\frac{\partial^{4} f}{\partial x^{2}\partial y^{2}}(x_{0},y_{0})~\Rightarrow~\frac{\partial^{4} (e^{y}\cos x)}{\partial x^{2}\partial y^{2}}(0,0)~\Rightarrow~-e^{y}\cos~x\big{|}_{(\xi,\eta)}=-e^{\eta}\cos~\xi$$

$$\frac{\partial^{4} f}{\partial x\partial y^{3}}(x_{0},y_{0})~\Rightarrow~\frac{\partial^{4} (e^{y}\cos x)}{\partial x\partial y^{3}}(0,0)~\Rightarrow~-e^{y} sen~x\big{|}_{(\xi,\eta)}=-e^{\eta} sen~\xi$$

$$\frac{\partial^{4} f}{\partial y^{4}}(x_{0},y_{0})~\Rightarrow~\frac{\partial^{4} (e^{y}\cos x)}{\partial y^{4}}(0,0)~\Rightarrow~e^{y}\cos~x\big{|}_{(\xi,\eta)}=e^{\eta}\cos~\xi$$

$$R_{3}=\frac{1}{4!}\left(\frac{\partial^{4} f}{\partial x^{4}}h_{1}^{4}+4\frac{\partial^{4} f}{\partial x^{3}\partial y}h_{1}^{3}h_{2}+6\frac{\partial^{4} f}{\partial x^{2}\partial y^{2}}h_{1}^{2}h_{2}^{2}+4\frac{\partial^{4} f}{\partial x\partial y^{3}}h_{1}h_{2}^{3}+\frac{\partial^{4} f}{\partial h_{2}^{4}}dy^{4}\right)$$

$$=\frac{1}{4!}\left(x^{4}e^{\eta}\cos~\xi+4x^{3}ye^{\eta} sen~xi-6x^{2}y^{2}e^{\eta}\cos~\xi-4xy^{3}e^{\eta} sen~\xi+y^{4}e^{\eta}\cos~\xi\right)$$

Por lo que nuestro desarrollo de Taylor nos queda
$$e^{y}\cos~x=1+y+\frac{1}{2}(x^{2}-y^{2})+\frac{1}{6}(x^{3}-3xy^{2})+R_{3}$$
donde
$$R_{3}=\frac{1}{4!}\left(x^{4}e^{\eta}\cos~\xi+4x^{3}ye^{\eta} sen~\xi-6x^{2}y^{2}e^{\eta}\cos~\xi-4xy^{3}e^{\eta} sen~\xi+y^{4}e^{\eta}\cos~\xi\right)$$


$\textbf{Ejercicio}$ Use la fórmula de Taylor en
$$f(x,y)=\cos~(x+y)$$
en el punto $(x_{0},y_{0})=(0,0)$ con $n=2$ para comprobar que
$$\lim_{(x,y)\rightarrow(0,0)}\frac{1-\cos~(x+y)}{(x^{2}+y^{2})^{2}}=\frac{1}{2}$$

En este caso para
$$f(x,y)=\cos(x+y)$$
se tiene
$$f(0,0)=\cos(0+0)=1$$
Para la diferencial de orden 1
$$\frac{\partial f}{\partial x}(0,0)~\Rightarrow~\frac{\partial (\cos x+y)}{\partial x}(0,0)~\Rightarrow~- sen(x+y)\big{|}{(0,0)}=0$$ $$\frac{\partial f}{\partial y}(0,0)~\Rightarrow~\frac{\partial (\cos x+y)}{\partial y}(0,0)~\Rightarrow~- sen(x+y)\big{|}{(0,0)}=0$$
por lo tanto

$$\frac{1}{1!}\left(\frac{\partial f}{\partial x}(x_{0},y_{0})\cdot (x-x_{0})+\frac{\partial f}{\partial y}(x_{0},y_{0})\cdot (y-y_{0})\right)=\frac{1}{1!}\left((0)(x)+(0)(y)\right)=0$$

Para la diferencial de orden 2
$$\frac{\partial^{2} f}{\partial x^{2}}(x_{0},y_{0})~\Rightarrow~\frac{\partial^{2} (\cos x+y)}{\partial x^{2}}(0,0)~\Rightarrow~-\cos~x+y\big{|}{(0,0)}=-1$$ $$\frac{\partial^{2} f}{\partial y^{2}}(x_{0},y_{0})~\Rightarrow~\frac{\partial^{2} (\cos x+y)}{\partial y^{2}}(0,0)~\Rightarrow~-\cos~x+y\big{|}{(0,0)}=-1$$ $$\frac{\partial^{2} f}{\partial x~\partial y}(x{0},y_{0})~\Rightarrow~\frac{\partial^{2} (\cos x+y)}{\partial x~\partial y}(0,0)~\Rightarrow~-\cos~x+y\big{|}_{(0,0)}=-1$$
Por lo tanto

$$\frac{1}{2!}\left(\frac{\partial^{2} f}{\partial x^{2}}(x_{0},y_{0})h_{1}^{2}+2\frac{\partial^{2} f}{\partial x\partial y}(x_{0},y_{0})h_{1}h_{2}+\frac{\partial^{2} f}{\partial y^{2}}(x_{0},y_{0})h_{2}^{2}\right)=\frac{1}{2!}((-1)x^{2}-2xy+(-1)y^{2})$$
Por lo que nuestro desarrollo de Taylor nos queda
$$\cos(x+y)=1-\frac{x^{2}}{2}-xy-\frac{y^{2}}{2}$$
De manera que

$$\lim_{(x,y)\rightarrow(0,0)}\frac{1-\cos~(x+y)}{(x^{2}+y^{2})^{2}}=\lim_{(x,y)\rightarrow(0,0)}\frac{1-(1-\frac{x^{2}}{2}-xy-\frac{y^{2}}{2})}{(x^{2}+y^{2})^{2}}$$
$$=\lim_{(x,y)\rightarrow(0,0)}\frac{1}{2}\frac{(x^{2}+y^{2})^{2}}{(x^{2}+y^{2})^{2}}=\frac{1}{2}$$

Mas adelante

Tarea Moral

Determina la expansión de Taylor de segundo orden en $(x_0, y_0)=(0,0)$ para las siguientes funciones:

1.- $f(x,y)=sen(x+2y)$

2.-$f(x,y)=\frac{1}{x^2+y^2+1}$

3.-$f(x,y)=e^{-x^{2}-y^{2}}$

4.-$f(x,y)=sen(xy)+cos(xy)$

5.- $f(x,y)=e^{(x-1)^{2}}$

Enlaces

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.