Conjuntos Convexos

Por Angélica Amellali Mercado Aguilar

Introducción

En esta sección estudiaremos los conjuntos convexos del espacio $\mathbb{R}^n$. Intuitivamente decimos que un conjunto convexo es aquel que dados dos puntos del conjunto, el segmento de linea que los une también pertenece a ese conjunto.

Definición. Dados $\overline{x},~\overline{y}~\in\mathbb{R}^{n}$, al segmento rectilineo que une dichos puntos lo denotamos
$$[\overline{x},\overline{y}]=\{t\overline{y}+(1-t)\overline{x}~|~t\in[0,1]\}$$

Definición. Sea $k\subset \mathbb{R}^{n}$. Se dice que $k$ es convexo si dados dos puntos de k, el segmento que los une está contenido en $k$ es decir
$$[\overline{x},\overline{y}]\subset k~~~~\forall~\overline{x},~\overline{y}\in k$$

Ejemplo. Una bola abierta es un conjunto convexo
Demostración. Sea $\overline{x}_{0}\in \mathbb{R}^{n}$ y consideremos $\overline{x},~\overline{y}~\in~B(\overline{x}_{0},\epsilon)$ vamos a ver que $[\overline{x},\overline{y}]\in~B(\overline{x}_{0}\epsilon)$ tenemos que

$$\overline{x} \in B(\overline{x}_{0},\epsilon)~\Rightarrow~|\overline{x}-\overline{x}_{0}|<\epsilon$$ y $$\overline{y}\in B(\overline{x}_{0},\epsilon) ~\Rightarrow~|\overline{y}- \overline{x}_{0} | <\epsilon$$ por lo tanto

$$|[\overline{x},\overline{y}]-\overline{x}_{0}|=|t\overline{y}+(1-t)\overline{x}-\overline{x}_{0}|=|t(\overline{y}-\overline{x}_{0})+(1-t)(\overline{x}-\overline{x}_{0})|\leq t|\overline{y}-\overline{x}_{0}|+(1-t)|\overline{x}-\overline{x}_{0}|<$$
$$t\epsilon+(1-t)\epsilon=\epsilon\therefore|[\overline{x},\overline{y}]-\overline{x}_{0}|<\epsilon$$ y de esta manera $$[\overline{x},\overline{y}]\in~B(\overline{x}_{0},\epsilon)$$

Ejemplo. El cuadrado $A=[-1,1]\times [-1,1]$ es un conjunto convexo
Demostración. Sean $\overline{x}=(x_{1},x_{2})$, $\overline{y}=(y_{1},y_{2})$ $\in A$ y $t\in [0,1]$ vamos a ver que $t\overline{y}+(1-t)\overline{x}\in A$, tenemos que
$$t\overline{y}+(1-t)\overline{x}=(ty_{1},ty_{2})+((1-t)x_{1},(1-t)x_{2})=(ty_{1}+(1-t)x_{1},ty_{2}+(1-t)x_{2})$$
como $x_{1},~x_{2},~y_{1},~y_{2}$ son tal que
$$-1\leq x_{1}\leq 1$$

$$-1\leq x_{2}\leq 1 $$

$$ -1\leq y_{1}\leq 1 $$

$$ -1\leq y_{2}\leq 1$$
entonces

$$-1\leq t(-1)+(1-t)(-1)\leq ty_{1}+(1-t)x_{1}\leq t(1)+(1-t)(1)\leq 1$$
$$1\leq t(-1)+(1-t)(-1)\leq ty_{2}+(1-t)x_{2}\leq t(1)+(1-t)(1)\leq 1$$
por lo que
$$(ty_{1}+(1-t)x_{1},ty_{2}+(1-t)x_{2})\in [-1,1]\times [-1,1]$$
por lo tanto
$$t\overline{y}+(1-t)\overline{x}\in A$$

Teorema. Si $\overline{x_{1}},\overline{x}{2},…,\overline{x}{n}\in \mathbb{R}^{n}$ son conjuntos convexos tales que $\displaystyle{\bigcap \overline{x_{i}}}\neq\emptyset~~\forall i=1,..,n$ entonces $\displaystyle{\bigcap \overline{x_{i}}}$ es un conjunto convexo.

Demostración. Sean $\overline{x},~\overline{y}\in \displaystyle{\bigcap \overline{x_{i}}}$ entonces para todo i se tiene que
$$\overline{x},~\overline{y}\in \overline{x}{i}$$ como $\overline{x}{i}$ es convexo entonces $[\overline{x},\overline{y}]\in \overline{x}{i}$ para todo i, por lo tanto $$[\overline{x},\overline{y}]\subset\displaystyle{\bigcap \overline{x{i}}}$$ por lo tanto $\displaystyle{\bigcap \overline{x_{i}}}$ es convexo.

Teorema. Un conjunto convexo es conexo

Demostración. Dado un conjnuto X convexo, si X no fuera conexo entonces existirian A,B conjnutos abiertos separados tales que $X=A\bigcup B$ y $A\bigcap B=\emptyset$ y si consideramos $\overline{x},~\overline{y}\in X$ entonces el segmento $[\overline{x},\overline{y}]$ se puede parametrizar
como $$f(t)=t\overline{y}+(1-t)\overline{x}~t\in [0,1]$$ y podríamos construir los abiertos $$\{t \in[0,1]~|~f(t)\in A \}$$ y $$\{t\in[0,1]~|~f(t)\in B \}$$
estos abiertos proporcionarían una disconexion para el segmento rectilineo $\underset{\circ}{\bigtriangledown}$ pues ya hemos probado que un segmento rectilineo es conexo, por lo tanto X es conexo.

Ejemplo. Un conjunto Conexo no es convexo, considere el conjunto
$$A=\mathbb{R}^{2}- \{(x,y)\in\mathbb{R}^{2}~|~x\leq 0,~y=0\}$$
Vamos a mostrar que A es conexo pero no convexo\
Dado $(x,y)\in~A$ tomamos tres casos\
Caso (1) y=0 y $x>0$\
Consideremos el segmento
$$[x,x_{0}]=[(x,x_{0}),(1,0)]$$
que esta dado por
$${(x+t(1-x),0)=((1-t)x+t,0)\in\mathbb{R}^{2}~|~t\in[0,1]}$$
y como $(1-t)x+t>0$ para todo $t\in[0,1]$. Se tiene que esta contenido en A.\
Caso (2) $y>0$ y $x\in\mathbb{R}$. En este caso el segmento
$$[x,x_{0}]=[(x,x_{0}),(1,0)]$$
que esta dado por
$${(x+t(1-x),y-ty)=((1-t)x+t,(1-t)y)\in\mathbb{R}^{2}~|~t\in[0,1]}$$
se tiene que
$$(1-t)y>0\forall~t\in[0,1)$$ para $t=1$ se tiene el punto $(1,0)=x_{0}$, entonces en este caso también dicho segmento esta contenido en A.\ Caso (3) $y<0$ y $x\in\mathbb{R}$. En este caso el segmento $$[x,x_{0}]=[(x,x_{0}),(1,0)]$$ que esta dado por $${(x+t(1-x),y-ty)=((1-t)x+t,(1-t)y)\in\mathbb{R}^{2}~|~t\in[0,1]}$$ se tiene que $$(1-t)y<0\forall~t\in[0,1)$$
para $t=1$ se tiene el punto $(1,0)=x_{0}$, entonces en este caso también dicho segmento esta contenido en A.
Solo falta ver que el conjnuto A no es convexo

Si consideramos el punto $x=(-1,1)$ y el punto $y=(-1,-1)$ se tiene que $x,y\in A$ y sin embargo el punto
$$(-1,0)=x+\left(\frac{1}{2}\right)(y-x)\in [x,y]$$
pero no pertenece a A, es decir $[x,y] \cancel{\subset}A$

Más adelante

Traea Moral

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.