Archivo de la categoría: Sin clasificar

Nota 16. Los números naturales.

Por Julio César Soria Ramírez

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

En esta nota iniciaremos el estudio de los números naturales. Hasta ahora sabemos trabajar con conjuntos, podemos considerar su complemento, unirlos, intersecarlos, considerar subconjuntos de ellos, considerar particiones y relaciones de equivalencia, etc. Con estas herramientas vamos a dar una definición de los números naturales basada en el sucesor, esta definición implicará los llamados axiomas de Peano, en honor al matemático Giuseppe Peano quien en el siglo XIX, los estableció para definir los números naturales. Así nuestro primer objetivo es dar una definición conjuntista de los números naturales y ver que implica los axiomas de Peano. Puedes consultar el siguiente enlace para conocer más a profundidad la historia de cómo se formalizó la aritmética: Los axiomas de Peano.

Empecemos definiendo lo que es el sucesor de un conjunto $x.$

Definición

Sea $x$ un conjunto, el sucesor de $x$ es:

$x^+=x\cup\set{x}.$

Observa que si definimos al cero como el conjunto vacío tenemos que:

$0=\emptyset$

y entonces su sucesor $0^+$ es:

$0^+=\emptyset^+ =\emptyset\cup \set{ \emptyset}= \set{ \emptyset} =\set{ 0}$

Ese sucesor $0^+$ será por definición el $1$, entonces:

$1^+=1\cup\set{1}=\set{0}\cup \set{1}=\set{0,1}$

que es por definición el número 2, y así sucesivamente:

$2^+=2\cup \set{2}= \set{0,1}\cup \set{2}=\set{0,1,2}=3$

$3^+=3\cup \set{3}= \set{0,1,2}\cup \set{3}=\set{0,1,2,3}=4$

$\vdots$

$n^+=n\cup \set{n}= \set{0,\dotsc,n-1}\cup \set{n}=\set{0,\dotsc,n}=n+1$

Aceptaremos que esta construcción puede ser llevada a infinito, y lo postularemos como un axioma.

Axioma del infinito

Existe un conjunto que tiene al cero y al sucesor de cada uno de sus elementos.

Démosle ahora nombre a este tipo especial de conjuntos, aquellos que tienen al cero y todos sus sucesores.

Definición

Sea $A$ un conjunto. Decimos que $A$ es un conjunto de sucesores si tiene como elemento al cero y al sucesor de cada uno de sus elementos.

El la Teoría de Conjuntos a los conjuntos de sucesores también se les llama conjuntos inductivos.

Observemos que el Axioma del infinito asegura la existencia de al menos un conjunto de sucesores. Tiene sentido entonces considerar la intersección de cualquier familia no vacía de conjuntos sucesores y veremos que la intersección también es un conjunto de sucesores.

Lema

Sea $\mathscr F$ una familia no vacía formada por conjuntos de sucesores, entonces $\bigcap\mathscr F$ es un conjunto de sucesores.

Demostración

Sea $\mathscr F$ una familia no vacía formada por conjuntos de sucesores. Como $\mathscr F$ es no vacía, sabemos por la nota nota 14 que podemos considerar el conjunto $\bigcap \mathscr F$ que es la intersección de la colección $\mathscr F$.

Como $A$ es un conjunto de sucesores para todo $A\in \mathscr F$, entonces $0\in A$, para todo $A\in \mathscr F$, así $0\in \bigcap \mathscr F$.

Veamos ahora que $\bigcap \mathscr F$ tiene al sucesor de cada uno de sus elementos.

Sea $x\in \bigcap \mathscr F$ entonces $x\in A$ para todo $A\in \mathscr F$. Como cada $A$ es un conjunto de sucesores, se tiene que $x^+\in A$ para todo $A\in \mathscr F$, así $x^+\in \bigcap \mathscr F$.

Concluimos finalmente que $\bigcap \mathscr F$ es un conjunto de sucesores.

$\square$

Con esta definición de conjunto de sucesores y el lema anterior vamos a definir a los números naturales siguiendo las ideas del libro de José Alfredo Amor mencionado en la bibliografía y las notas de clase de la Dra. Avella. Por el lema anterior, existe un conjunto de sucesores, digamos $T$, por lo que podemos considerar a todos los conjuntos de sucesores contenidos en $T$. La familia $$\{S\subseteq T\,|\,S\text{ es un conjunto de sucesores}\}$$ es no vacía ya que al menos $T$ es uno de sus elementos y, de acuerdo a lo estudiado en la nota 14, podemos considerar su intersección. Así, definiremos a los números naturales como la intersección de esta familia.

Definición

Dado $T$ un conjunto de sucesores fijo sea $\mathscr{F}=\{S\subseteq T\,|\,S\text{ es un conjunto de sucesores}\}$ la colección formada por todos los conjuntos de sucesores contenidos en $T$. El conjunto de los números naturales, denotado por $\mathbb N$ es:

$\mathbb N= \mathop{\displaystyle \bigcap}\mathscr{F}$.

Observación 1

Por el lema anterior, $\mathbb N$ es un conjunto de sucesores, así $0\in \mathbb N$ y si $x\in \mathbb N$, entonces $x^+\in \mathbb N$.

Observación 2

Sea $A$ un conjunto de sucesores cualquiera, entonces, por el lema anterior, $A\cap T$ es un conjunto de sucesores, y como $A\cap T\subseteq T$, entonces $A\cap T$ pertenece a la familia $\mathscr{F}=\{S\subseteq T\,|\,S\text{ es un conjunto de sucesores}\}$. En consecuencia, por las propiedades de la intersección, sabemos que $\mathop{\displaystyle \bigcap}\mathscr{F}\subseteq A\cap T$ y que $A\cap T\subseteq A$. Por lo tanto $\mathop{\displaystyle \bigcap}\mathscr{F}\subseteq A$, es decir, $\mathbb N\subseteq A$.

Esto nos dice que $\mathbb N$ está contenido en cada conjunto de sucesores. Es decir, $\mathbb N$ es el conjunto de sucesores «más pequeño» posible.

Proposición

Si $A\subseteq \mathbb N$ es tal que:

$i)$ $0\in A$, y

$ii)$ para toda $n$, si $n\in A$, entonces $n^+\in A$,

se tiene que $\mathbb N\subseteq A$ y así $A=\mathbb N$.

Demostración

Sea $A\subseteq \mathbb N$ que cumple las condiciones $i$ y $ii$, entonces por definición $A$ es un conjunto de sucesores y de acuerdo a la observación previa sabemos que $\mathbb N$ está contenido en cada conjunto de sucesores, en particular $\mathbb N$ está contenido en $A$, es decir $ \mathbb N\subseteq A$. Así, $A\subseteq \mathbb N$ y $ \mathbb N\subseteq A$ , por lo tanto $A=\mathbb N$.

$\square$

Veremos que la definición que dimos de los números naturales anteriormente implica los axiomas de Peano. Enunciemos dichos axiomas y notemos cómo se derivan de nuestra definición.

Axiomas de Peano

1. $0\in \mathbb N$.

2. Si $n\in \mathbb N$, entonces $n^+\in \mathbb N$.

3. $\forall n\in \mathbb N$, $n^+\neq 0$.

4. $\forall n,m\in \mathbb N$ si $n^+=m^+$, entonces $n=m$.

5. Si $A\subseteq \mathbb N$ es tal que:

$i)$ $0\in A$, y

$ii)$ para todo $n$, si $n\in A$, entonces $n^+\in A$,

se tiene que $\mathbb N\subseteq A$ y así $A=\mathbb N$.

El quinto axioma de Peano se conoce como el Principio de inducción, lo estudiaremos con detalle ya que se usa mucho para hacer pruebas referentes a afirmaciones de los números naturales.

Observa que en nuestro caso los axiomas de Peano no se usarán como axiomas, es decir no partiremos de que se cumplen, pues hemos construido los números naturales a partir de conjuntos, así que se tomarán como una proposición y se demostrará que con esta construcción de los naturales se cumplen las condiciones enunciadas. Sin embargo, les llamaremos axiomas de Peano porque inicialmente se establecieron como axiomas que describían a la colección de los números naturales.

Demostración

Observa que por la observación 1, consecuencia del lema previo que afirma que $\mathbb N$ es un conjunto de sucesores, se tiene que $0\in \mathbb N$, y además si $x\in \mathbb N$, entonces $x^+\in \mathbb N$, por lo que se cumplen los incisos 1 y 2 que se querían demostrar. Por otro lado el inciso $5$ se cumple por la proposición antes demostrada.

Demostración de 3

Queremos demostrar que: $\forall n\in \mathbb N$, $n^+\neq 0$.

Sea $n\in \mathbb N$, por definición $n^+=n\cup\set{n}$. Como $n\in\{n\}$ tenemos que , $n\in n\cup\set{n}$. Así, $n\in n^+$ y entonces $n^+\neq \emptyset=0$.

Para probar $4$ requerimos un resultado.

Lema

Todo elemento de un número natural es también subconjunto de éste.

La prueba de este lema será la primera que realizaremos mediante la técnica de inducción que se basa en el quinto axioma de Peano. La idea esencial es probar que cierta propiedad se cumple para todos los naturales formando un subconjunto $A$ de naturales con todos los naturales que sí cumplen la propiedad, y luego verificando que es igual a $\mathbb N$. Para ello probaremos que

$i)\, 0\in A$ (llamada la base de inducción), y que

$ii)$ si $n\in A$, entonces $n^+\in A$ (llamado paso Inductivo (PI), para ello supondremos que $n\in A$, hipótesis que se conoce comúnmente como la hipótesis de inducción (HI), y probaremos que $n^+\in A$.

Con estas dos condiciones satisfechas podemos asegurar que $A=\mathbb N$ en virtud del quinto Axioma de Peano, y, por lo tanto, que la propiedad se cumple para todo número natural.

En la nota 18 estudiaremos con más detalle este tipo de demostraciones.

Demostración

Esta prueba se hará por inducción usando el quinto axioma de Peano.

Sea $A=\set{n\in \mathbb N\mid si\,\,x\in n \,\, entonces \,\, x\subseteq n}\subseteq \mathbb N$. Probaremos que $A$ cumple $i$ y $ii$ del inciso 5 de la proposición anterior y concluiremos con ello que $A=\mathbb N.$

i) Base de inducción. Primero vamos a probar que el $0\in A$. Como $0=\emptyset$, $0$ no tiene elementos y por vacuidad se cumple entonces que si $x\in 0$, entonces $x\subseteq 0$ (ya que no existen elementos de $0$ y por lo tanto no podríamos exhibir ninguno que no sea subconjunto de $0$). Así, $0\in A$ y se cumple el inciso $i$.

ii) Paso Inductivo. (PI). Ahora, veamos que si $n\in A$, entonces $n^+\in A$.

Sea $n\in A$.

Ésta es nuestra hipótesis de inducción.

Demostración de que $n^+\in A$ usando la HI.

Observa que al estar $n$ en $A$, $n$ cumple la propiedad que caracteriza a los elementos de $A$, es decir, si $x\in n, \,\, entonces \,\, x\subseteq n$. Demostremos con ello que $n^+\in A,$ es decir que todo elemento de $n^+$ es un subconjunto de $n^+$. Consideremos $x\in n^+=n\cup \set{n}$ y verifiquemos que $x\subseteq n^+$.

Caso $1$, $x\in n$

Como $n\in A$ y $x\in n$, entonces $x\subseteq n$, además $n\subseteq n\cup \set{n}= n^+$. Así, $x\subseteq n$ y $n\subseteq n^+$, entonces $x\subseteq n^+$.

Caso $2$, $x\in \set{n}$

En este caso $x=n$ y como $x=n\subseteq n\cup \set{n}=n^+$ tenemos que $x\subseteq n^+.$

En ambos casos, suponiendo que $n\in A$, se tiene que $x\in n^+\,\, implica\,\, que \,\,x\subseteq n^+,$ probando así que $n^+$ es un elemento de $A$.

El conjunto $A$ cumple entonces las condiciones del quinto axioma de Peano (que ya hemos demostrado), y por lo tanto $A=\mathbb N$.

$\square$

Demostración de 4

Sea $n,m\in \mathbb N$ tales que $n^+=m^+$, entonces $n\cup \set{n}= m\cup \set{m}$. Así, $n\in n\cup \set{n}= m\cup \set{m}$, lo que implica que $n\in m$ o $n=m$. Por otro lado $m\in m\cup \set{m}= n\cup \set{n}$, entonces $m\in n$ o $m=n$.

Supongamos por reducción al absurdo que $n\neq m$, entonces se concluye de lo anterior que $n\in m$ y $m\in n$. Por el lema previo $n\subseteq m$ y $m\subseteq n$, así $n=m$, lo cual es una contradicción y por lo tanto $n=m$.

Hemos verificado que la construcción que dimos de los números naturales cumple los axiomas de Peano.

$\square$

Para concluir esta nota, mencionaremos las definiciones y propiedades de la suma y el producto de los números naturales que acabamos de definir. Aunque se presentan las definiciones y se enuncian las propiedades, cabe destacar que las pruebas de las mismas, realizadas por inducción, se desarrollarán en la nota 18b con el fin de estudiar primero la inducción matemática en casos menos abstractos.

Definición. Suma en $\mathbb N$

Dado $n\in \mathbb N$ definimos:

$n+0=n,$

para todo $m\in \mathbb N$, $n+m^+=(n+m)^+.$

Propiedades de la suma

Sean $n,m,l\in \mathbb N.$

  1. $n+0=n$. Neutro aditivo.
  2. $(n+m)+l=n+(m+l)$. Asociatividad.
  3. Si $n+l=m+l$, entonces $n=m$. Cancelación.
  4. $n+m=m+n$. Conmutatividad.
  5. Si $n\neq 0$ o $m\neq 0$, entonces $n+m\neq 0$

Observación 3

Hay que observar que una vez se tiene definida la suma en $\mathbb N$ se puede ver que $n^+=n+1$, donde $1$ es el sucesor de $0$.

Demostración

Sea $m=0$, por definición de la suma en $\mathbb N$ se tiene que $n+0^+=(n+0)^+$. Pero $0^+=1$ y por la definición de suma se tiene que $n+0=n$, por lo que sustituyendo tenemos que $n+1=n^+$.

Definición. Producto en $\mathbb N$

Dado $n\in \mathbb N$ definimos:

$n\cdot 0=0,$

para todo $m\in\mathbb N$, $n\cdot m^+=n \cdot m+n.$

Propiedades del producto

Sean $n,m,l\in \mathbb N.$

  1. $1\cdot n=n$. Neutro multiplicativo.
  2. $(n+m)\cdot l=n\cdot l+m\cdot l$. Distributividad.
  3. $n\cdot m=m\cdot n$. Conmutatividad.
  4. $(n\cdot m)\cdot l=n\cdot (m\cdot l)$. Asociatividad.
  5. Si $n\neq 0$ y $m\neq 0$, entonces $n\cdot m\neq 0$
  6. Si $l\neq 0$ y $n\cdot l=m\cdot l$ entonces $n=m$. Cancelación.

Tarea Moral

1. Describe a los números naturales $3$, $5$ y $7$ como conjuntos, usando la definición conjuntista.

2. Determina si las siguientes afirmaciones se cumplen o no.

  • $3\subseteq 5$
  • $7\subseteq 5$
  • $3\in 5$
  • $7\in 3$

3. Prueba que si $n\in \mathbb N$, entonces $n=0$ o $n=m^+$ con $m\in \mathbb N$. Sugerencia: define $A=\{0\}\cup\{m^+|m\in\mathbb{N}\}$ y usa el principio de inducción para demostrar que $A=\mathbb{N}$.

Más adelante

En la siguiente nota definiremos el orden en los números naturales y veremos distintos ejemplos donde aplicaremos el principio de inducción matemática para hacer demostraciones.

Enlaces relacionados

Página principal del curso.

Nota anterior. Nota 15. Relaciones de equivalencia y particiones.

Nota siguiente. Nota 17. El orden en los números naturales.

Nota 15. Relaciones de equivalencia y particiones.

Por Julio César Soria Ramírez

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

En esta nota veremos cómo las relaciones de equivalencia dan lugar a particiones y finalmente concluiremos que toda relación de equivalencia tiene asociada una partición y viceversa, mostrando que dicha correspondencia es una biyección. Con esta nota concluiremos la primera unidad del presente trabajo.

Teorema

Sea $A$ un conjunto, $\mathcal R$ una relación de equivalencia en $A$, entonces $\set{\overline{x}\mid x\in A}$ es una partición de $A$.

Demostración

Sea $A$ un conjunto, $\mathcal R$ una relación de equivalencia en $A$

Por demostrar que:

$\set{\overline{x}\mid x\in A}$ es una partición de $A$.

Vamos a mostrar que el conjunto $\set{\overline{x}\mid x\in A}$ cumple la definición de partición.

i) Por demostrar que $\overline{x}\neq \emptyset$, $\forall x\in A$.

Sea $x\in A$, como $\mathcal R$ es reflexiva $x\sim x$, así $x\in \overline{x}$ y entonces $\overline{x}\neq \emptyset$.

ii) Por demostrar que si $x,y\in A$ son tales que $\overline{x}\neq \overline{y} $, entonces $\overline{x}\cap \overline{y}=\emptyset$.

En la nota anterior mostramos que: $x\sim y\Longrightarrow \overline{x}=\overline{y}$, que es equivalente a: $\overline{x}\neq \overline{y} \Longrightarrow x\nsim y $ (llamada la contrapositiva de la implicación). También mostramos que $x\nsim y \Longrightarrow \overline{x}\cap \overline{y}=\emptyset$. Así, tenemos que:

$ \overline{x}\neq \overline{y} \Longrightarrow x\nsim y $

y

$x\nsim y \Longrightarrow \overline{x}\cap \overline{y}=\emptyset$

Por lo tanto se sigue que:

$\overline{x}\neq \overline{y} \Longrightarrow \overline{x}\cap \overline{y}=\emptyset $.

Así, tenemos lo que queríamos mostrar.

iii) Por demostrar que $\bigcup\limits_{x\in A} \overline{x}=A$

Prueba por doble contención.

$\subseteq$ primera contención.

Sea $z\in \bigcup\limits_{x\in A} \overline{x}$, entonces $z\in \overline{x}=\set{y\in A\mid y\sim x}$ para alguna $x\in A$, en particular $z\in A$. Por lo tanto $ \bigcup\limits_{x\in A} \overline{x}\subseteq A$.

$\supseteq$ segunda contención.

Sea $z\in A$, como $\mathcal R$ es reflexiva $z\sim z$ así $z\in \overline{z}$, concluimos que $z\in \bigcup\limits_{x\in A} \overline{x}$. Por lo tanto $A \subseteq \bigcup\limits_{x\in A} \overline{x}$.

Como se cumplen las tres condiciones para que sea una partición entonces $\set{\overline{x}\mid x\in A}$ es una partición de $A$.

Ejemplos

1. $A=\set{1,2,3,4,5}$

$\mathcal R=\set{(1,1), (2,2), (3,3), (4,4), (5,5), (1,2), (2,1), (1,5), (5,1) (2,5), (5,2) , (3,4),(4,3)}$

$\overline{1}=\set{1,2,5}$

$\overline{3}=\set{3,4}$

$\set{ \overline{1}, \overline{3}}=\set{ \set{1,2,5}, \set{3,4}} $ es la partición inducida por $\mathcal R$.

2. $A=\set{1,2,3,4,5}$

$\mathcal R$ una relación de equivalencia en $A$. Si la partición en $A$ inducida por $\mathcal R$ es:

$ \set{ \set{3}, \set{2,4}, \set{1,5} } $

¿Quién es $\mathcal R$?

Observemos que

$\mathcal R=\set{ (3,3), (2,2), (2,4), (4,4), (4,2), (1,1), (1,5), (5,5), (5,1) }$

es una relación de equivalencia que induce la partición $\set{ \overline{3}, \overline{2}, \overline{1} }=\set{ \set{3}, \set{2,4}, \set{1,5} } $.

Teorema

Sea $A$ un conjunto, consideremos:

$\mathcal R_A=\set{r\mid r \, \,es \, \, una \, \, relación \, \, de \, \, equivalencia }$

$\mathcal P_A=\set{p\mid p \, \,es \, \, una \, \, partición \, \, de \, \, A }$

Existe una biyección entre $\mathcal R_A$ y $\mathcal P_A$.

Demostración

Sea $A$ un conjunto, consideremos:

$\mathcal R_A=\set{r\mid r \, \,es \, \, una \, \, relación \, \, de \, \, equivalencia }$

$\mathcal P_A=\set{p\mid p \, \,es \, \, una \, \, partición \, \, de \, \, A }$

Definimos:

$\psi: \mathcal R_A\to \mathcal P_A$ con

$\psi(r)=\set{\overline{x}^r\mid x\in A}\, \, \, \forall r\in \mathcal R_A$

donde $ \overline{x}^r =\set{y\in A\mid (y,x)\in r} $, es decir $\psi(r)$ es la colección de clases de equivalencia dadas por la relación $r$.

Veamos que $\psi$ es inyectiva.

Sean $r,\rho\in \mathcal R_A$ tales que $\psi(r)=\psi(\rho)$.

Por demostrar que $r=\rho$.

La prueba se hará por doble contención

$\subseteq$ primera contención.

Sea $(a,b)\in r$ entonces por simetría $(b,a)\in r$ y entonces $b\in \overline{a}^r$.

Por otro lado $ \overline{a}^r\in \set{ \overline{x}^r\mid x\in A }=\psi(r)$ que por hipótesis es igual $\psi(\rho)= \set{ \overline{x}^{\rho}\mid x\in A }$ , de manera que $ \overline{a}^r = \overline{c}^{\rho}$ para alguna $c\in A$. Como $b\in \overline{a}^r$, entonces $b\in \overline{c}^{\rho}$, así $(b,c)\in \rho$, y por simetría $(c,b)\in \rho$. También $a\in \overline{a}^r= \overline{c}^{\rho}$, así $(a,c)\in \rho$. Como $(a,c)\in \rho$ y $(c,b)\in \rho$, por transitividad $(a,b)\in \rho$. Por lo tanto $r\subseteq \rho$.

$\supseteq$ segunda contención. Es análoga y se deja como ejercicio al lector.

Concluimos finalmente que $r=\rho$ y así la función $\psi: \mathcal R_A\to \mathcal P_A$ es inyectiva.

Veamos ahora que $\psi$ es suprayectiva.

Sea $p=\set{A_i\mid i\in I}$ una partición de $A$.

Definimos $r$ una relación en $A$ como:

$(x,y)\in r$ si y sólo si existe $i\in I$ tal que $(x,y)\in A_i$.

Ésta es una relación de equivalencia (demuéstralo).

Por demostrar que $\psi(r)=p$, es decir que $\set{\overline{x}^r\mid x\in A}=p$

La prueba es por doble contención.

$\subseteq$ primera contención.

Sea $\overline{a}^r\in \set{ \overline{x}^r\mid x\in A }$.

Por demostrar que $\overline{a}^r\in p$.

Como $A= \bigcup\limits_{i\in I}A_i$ entonces $a\in A_j$ para alguna $j\in I$. De hecho como $p$ es una partición, $A_j$ es el único elemento de $p$ al que pertenece $a$.

Pero

$\overline{a}^r=\set{b\in A\mid (b,a)\in r}=\set{b\in A\mid \exists i\in I \,\, tal \,\, que \,\, b,a\in A_i}=\set{b\in A\mid b\in A_j}=A_j\in p,$ y por lo tanto $\overline{a}^r\in p,$ y así $\psi(r)\subseteq p$.

$\supseteq$ segunda contención.

Sea $A_j\in p$ con $j\in I$. Sabemos que $A_j\neq \emptyset$,entonces podemos considerar $a\in A_j$, y como acabamos de ver en la primera contención, $A_j=\overline{a}^r\in \set{\overline{x}^r\mid x\in A}=\psi(r)$. Así, $p\subseteq \psi(r)$.

Con estas dos contenciones hemos probado que $p=\psi(r)$. De esta forma, dada una partición $p$ existe una relación de equivalencia que bajo $\psi$ da por resultado $p$. Por lo tanto $\psi$ es suprayectiva.

Como $\psi$ es suprayectiva e inyectiva, entonces $\psi$ es biyectiva.

$\square$

Tarea Moral

  1. Encuentra todas las posibles particiones de $\set{3,6,7,9}$, y para cada una de ellas encuentra la relación de equivalencia asociada.
  2. Considera la relación $\mathcal R$ en $\mathbb Z$, dada por: $(a,b)\in \mathcal R$ si y sólo si $4$ divide a $b-a$. Verifica que las distintas clases de equivalencia forman una partición de $\mathbb Z$.
  3. Sea $A=\set{1,2,3,4,5}$ y considera la relación dada por:
    $R=\set{(1,1),(2,3),(3,3),(4,4),(5,5),(2,4),(4,2),(2,5),(5,2),(4,5),(5,4)}$
    Encuentra la partición asociada.

Más adelante

Con esta nota hemos terminado la unidad 1 del curso de Álgebra superior I. En las siguiente nota iniciaremos la unidad 2 donde haremos un estudio de los números naturales a partir de la definición conjuntista.

Enlaces relacionados

Página principal del curso.

Nota anterior. Nota 14 Familias de conjuntos y particiones.

Nota siguiente. Nota 16. Los números naturales.

Teoría de los Conjuntos I: Buenos órdenes

Por Gabriela Hernández Aguilar

Introducción.

En esta entrada trataremos con un tipo particular de conjuntos ordenados, en donde será de mucha importancia el concepto de mínimo. Puedes recordar la definición de mínimo en la entrada Teoría de los Conjuntos I: Mínimos, máximos, minimales y maximales.

Conjuntos bien ordenados

Definición. Sea $(A,\leq)$ un conjunto parcialmente ordenado. Decimos que $A$ es un conjunto bien ordenado si cada subconjunto no vacío de $A$ tiene elemento mínimo. En este caso al orden $\leq$ se le llama buen orden.

Ejemplo.

Consideremos el conjunto $A=\set{\emptyset,\set{\emptyset}}$ ordenado con la inclusión. Afirmamos que $(A,\subseteq)$ es un buen orden. En efecto: supongamos que $B\subseteq A$ es un conjunto no vacío. Tenemos distintas posibilidades para $B$ y son las siguientes: $B=\set{\emptyset}$ o bien $B=\set{\set{\emptyset}}$ o bien $B=\set{\emptyset,\set{\emptyset}}$.

Si $B=\set{\emptyset}$, entonces $B$ tiene mínimo y es $\emptyset$. Si $B=\set{\set{\emptyset}}$, entonces $B$ tiene mínimo y es $\set{\emptyset}$. Finalmente, si $B=\set{\emptyset,\set{\emptyset}}$, entones $B$ tiene mínimo y es $\emptyset$, pues $\emptyset\subseteq\emptyset$ y $\emptyset\subseteq\set{\emptyset}$.

Así, en cualquier caso $B$ tiene mínimo. Por lo tanto, $(A,\subseteq)$ es un conjunto bien ordenado.

$\square$

Agrandar un conjunto bien ordenado

El siguiente ejemplo nos dice cómo podríamos conseguir conjuntos bien ordenados paso a paso.

Ejemplo.

Consideremos $A=\set{\emptyset,\set{\emptyset,\set{\emptyset}}}$. Luego, $A$ es un conjunto bien ordenado por la relación de contención. Dado que $A\notin A$, el conjunto $W=A\cup\set{A}$ es un conjunto no vacío distinto de $A$. Definamos la relación de orden $\preceq$ en $W$ como sigue: $A\preceq A$, $a\preceq A$ para todo $a\in A$ y $a_1\preceq a_2$ si y sólo si $a_1\leq a_2$ para cualesquiera $a_1,a_2\in A$ (en este caso $\leq$ es la relación de contención en $A$).

Notemos que esta nueva relación de orden definida en $W$ coincide con la relación de orden de $A$ si nos restringimos únicamente a comparar elementos de $A$.

Afirmamos que $(W,\preceq)$ es un conjunto bien ordenado. Para mostrarlo supongamos que $B\subseteq W=A\cup\set{A}$ es un conjunto no vacío y veamos que tiene mínimo en el orden $\preceq$. Si $B=\set{A}$, entonces el mínimo de $B$ es $A$.

Podemos suponer ahora que $B\cap A\not=\emptyset$. Como $B\cap A\subseteq A$ es un conjunto no vacío, entonces tiene un elemento mínimo en el orden $\leq$. Sea $b\in B\cap A$ el mínimo de este conjunto en el orden $\leq$ y veamos que $b\preceq x$ para cualquier $x\in B$. Supongamos entonces que $x\in B$ es cualquier elemento. Si $x\in B\cap A$, entonces $b\leq x$ y en consecuencia, $b\preceq x$. Si ahora $x\notin B\cap A$ se sigue que $x=A$ y, por definición de la relación $\preceq$, sabemos que $b\preceq A$, por lo que $b\preceq x$. De esta manera, $b=\min(B)$ en el orden $\preceq$.

Esto demuestra que cualquier subconjunto no vacío de $W$ tiene mínimo y, por tanto, $(W,\preceq)$ es un conjunto bien ordenado.

$\square$

Si tenemos un conjunto $A$ cualquiera, ¿será posible siempre darle un buen orden? Uno podría intentar hacer algo similar al ejemplo anterior. Comenzar con un elemento $a\in A$ e incluir a la pareja $(a,a)$ en el orden. Luego, tomar otro elemento distinto $b\in A$ y ponerlo como el elemento más grande poniendo las parejas $(a,b)$ y $(b,b)$. Y luego se podría poner un tercer elemento $c$ como el más grande, poniendo las parejas $(a,c)$, $(b,c)$, $(c,c)$. Podríamos intentar decir que se puede seguir «así sucesivamente», pero esto es informal y no está justificado por los axiomas. Aparentemente, tenemos que elegir elementos de $A$ una y otra vez para declararlos el nuevo máximo. Si $A$ es infinito, esto implica algo así como hacer una infinidad de elecciones. ¿Esto te recuerda a otros problemas que hemos enfrentado? ¡Sí! Una vez más nos encontramos con una dificultad que se superará una vez que hablemos del axioma de elección.

Bien ordenado implica totalmente ordenado

Ahora, veamos una consecuencia directa de que un conjunto sea bien ordenado.

Proposición. Si $(A,\leq)$ es un conjunto bien ordenado, entonces, $(A,\leq)$ es un conjunto totalmente ordenado.

Demostración.

Como $(A,\leq)$ es un conjunto bien ordenado, entonces, todo subconjunto no vacío de $A$ tiene elemento mínimo. Así, si tomamos dos elementos cualesquiera $a_1,a_2\in A$ se sigue que $\set{a_1,a_2}$ es un subconjunto no vacío de $A$, por lo que tiene elemento mínimo. En consecuencia, $a_1\leq a_2$ o $a_2\leq a_1$.

Esto demuestra que cualesquiera dos elementos de $A$ son $\leq-$comparables, por lo que $(A,\leq)$ es un conjunto totalmente ordenado.

$\square$

Otros cuántos resultados de buenos órdenes

Veamos ahora algunos resultados relacionados con conjuntos acotados en un conjunto bien ordenado.

Proposición. Sea $(A,\leq)$ un conjunto bien ordenado. Se cumple lo siguiente:
Si $B\subseteq A$ es un conjunto acotado superiormente, entonces, $B$ tiene supremo.

Demostración.

Sea $(A,\leq)$ un conjunto bien ordenado.
Supongamos que $B\subseteq A$ es un conjunto acotado superiormente. Sea $C=\set{a\in A:(\forall b\in B)(b\leq a)}$, el cual es un subconjunto no vacío de $A$, pues por hipótesis $B$ está acotado superiormente, es decir, existe $a\in C$.

Como $A$ está bien ordenado por $\leq$, entonces, existe el mínimo de $C$ en el orden $\leq$, es decir, existe $c\in A$ tal que $c=\min(C)$. Luego, como $c$ es el mínimo del conjunto de cotas superiores de $B$, concluimos por lo que vimos en la entrada anterior que $c=\sup(B)$.

Esto demuestra que todo subconjunto de $A$ que esté acotado superiormente tiene supremo, lo cual concluye la prueba.

Por la proposición anterior y el hecho de que todo subconjunto no vacío de un conjunto bien ordenado tiene mínimo, podemos concluir lo siguiente:

Si $(A,\leq)$ es un conjunto bien ordenado y $B\subseteq A$ es no vacío y acotado superiormente (inferiormente), entonces, $B$ tiene una mínima cota superior (máxima cota inferior).

$\square$

Tarea moral

La siguiente lista de ejercicios te ayudará a reforzar lo aprendido en esta sección:

  1. Sean $(A, \leq_A)$ y $(B, \leq_B)$ conjuntos bien ordenados. Demuestra que el orden lexicográfico horizontal en $A\times B$ es un buen orden.
  2. Sea $(A,\leq)$ un conjunto bien ordenado. Muestra que cualquier subconjunto no vacío $B$ tiene ínfimo.
  3. Demuestra que si $A$ admite un buen orden, entonces $\mathcal{P}(A)$ admite un orden total.

Más adelante…

En la siguiente entrada comenzaremos una nueva unidad: Números naturales. Aquí comenzaremos la construcción de los números naturales.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Teoría de los Conjuntos I: Axiomas débiles

Por Gabriela Hernández Aguilar

Introducción

A continuación hablaremos acerca de los axiomas débiles de la teoría de los conjuntos. Veremos que a partir de dichos axiomas y el esquema de comprensión, podemos deducir los axiomas de existencia, del par, de unión y de conjunto potencia. Esto resulta ser de interés pues en los sistemas axiomáticos a veces tiene ventajas considerar los axiomas más debiles que siguen dando una teoría equivalente.

Axiomas débiles

Veamos qué nos dicen los axiomas débiles de la teoría de conjuntos:

  • Axioma débil de existencia. Existe un conjunto.
  • Axioma débil del par. Para cualesquiera $a,b$ existe un conjunto $c$ tal que $a\in c$ y $b\in c$.
  • Axioma débil de unión. Para cualquier conjunto $s$ existe un conjunto $U$ tal que si $x\in a$ y $a\in s$, entonces $x\in U$.
  • Axioma débil del conjunto potencia. Para cualquier conjunto $a$ existe un conjunto $p$ tal que si $x\subseteq a$ entonces $x\in p$.

Diferencias entre axiomas débiles y los axiomas

El axioma débil de existencia nos asegura que existe al menos un conjunto, sin embargo, no necesariamente será el conjunto vacío.

Por su parte, para $a$ y $b$ conjuntos el axioma débil del par nos otorga un conjunto cuyos elementos serán $a$ y $b$, pero no necesariamente serán sus únicos elementos como en el caso del axioma del par.

Ejemplo.

Sean $a$ y $b$ conjuntos distintos y no vacíos. El axioma débil del par podría garantizarnos la existencia de, digamos, $c=\set{a, b, \emptyset}$. Tenemos que en efecto $a\in c$ y $b\in c$, sin embargo, $\emptyset\in c$. Por lo que, el conjunto que nos otorga el axioma débil del par no necesariamente resultar ser un par no ordenado que tiene exactamente a $a$ y $b$.

$\square$

El axioma débil de unión nos asegura que para cualquier conjunto $s$ existe un conjunto $U$ cuyos elementos serán los elementos de los elementos de $s$, sin embargo, $U$ puede tener elementos $x$ que no cumplan que $x\in a$ y $a\in s$.

Ejemplo.

Si $s=\set{\emptyset, \set{\emptyset}}$, el axioma débil del par podría garantizarnos la existencia de, digamos, $U=\set{\emptyset, b}$ con $b\not=\emptyset$. Pero esto no es lo mismo que la unión como la platicamos. Por un lado, $\emptyset\in \set{\emptyset}$ y $\set{\emptyset}\in s$, lo cual coincide con lo que hemos platicado, pero también $b\in s$, que podría darnos un elemento adicional que no teníamos.

$\square$

Finalmente, para el axioma débil del conjunto potencia pasa algo parecido. Si $a$ es un conjunto, el axioma nos otorga un conjunto $p$ cuyos elementos son aquellos que están contenidos en $a$, pero no necesariamente serán los únicos elementos del conjunto $p$.

Ejemplo.

Sea $a=\set{\emptyset}$. Quizás el conjunto garantizado por el axioma débil del conjunto potencia es $p=\set{\emptyset, \set{\emptyset}, \set{\set{\emptyset}}}$. Notemos que $\emptyset\subseteq a=\set{\emptyset}$ y $\set{\emptyset}\subseteq a=\set{\emptyset}$. Sin embargo, $\set{\set{\emptyset}}\not\subseteq a$ pues $\set{\emptyset}\in \set{\set{\emptyset}}$ pero $\set{\emptyset}\notin \set{\emptyset}$.

$\square$

Axioma débil de existencia, junto con el esquema de comprensión implican axioma de existencia.

Demostración.

Sea $A$ el conjunto que existe por axioma débil de existencia. Luego, por el esquema de comprensión tenemos que

$\set{x\in A: x\not=x}$

es conjunto.

Veamos que $\set{x\in A: x\not=x}$ no tiene elementos. Supongamos por contradicción que $\set{x\in A:x\not=x}$ tiene al menos un elemento, denotado como $y$. Entonces $y\in A$ y $y\not=y$, lo que es un absurdo pues para cualquier conjunto $z$, $z=z$. Así, $\set{x\in A:x\not=x}$ no tiene elementos, es decir, es el conjunto vacío.

$\square$

Axioma débil del par, junto con el esquema de comprensión, implican axioma del par.

Demostración.

Sean $a$ y $b$ conjuntos. Sea $c$ el conjunto que existe por axioma débil del par. Luego, por el esquema de comprensión tenemos que

$\set{x\in c: x=a\vee x=b}$

es conjunto. Resulta que los únicos elementos de $\set{x\in c:x=a\vee x=b}$ son $a$ y $b$, pues si $z\in \set{x\in c:x=a\vee x=b}$, $z$ es tal que $z\in c$ y $z=a$ o $z=b$.

Observa que al añadir la propiedad de que $x=a$ o $x=b$, eliminamos todos aquellos conjuntos en $c$ que no son $a$ y no son $b$, de esta forma a partir del axioma débil del par obtenemos al conjunto que solo tiene a $a$ y $b$.

$\square$

Axioma débil de unión, junto con el esquema de comprensión, implican axioma de unión.

Demostración.

Sea $a$ un conjunto y sea $d$ el conjunto que nos otorga el axioma débil de unión.

Luego, por el esquema de comprensión tenemos que

$U=\set{x\in d: \exists y\in a(x\in y)}$

es conjunto.

Observemos que los elementos de $\set{x\in d: \exists y\in a(x\in y)}$ coinciden con los elementos del conjunto que nos otorga el axioma de unión. Para ello, debemos verificar que se cumple lo siguiente: $x\in U$ si y sólo si existe $y\in a$ tal que $x\in y$. Así pues, si $x\in U$, entonces, $x\in d$ y existe $y\in a$ tal que $x\in y$, en consecuencia, podemos concluir que si $x\in U$, existe $y\in a$ tal que $x\in y$. Ahora bien, si tenemos un conjunto $x$ tal que existe $y\in a$ tal que $x\in y$, entonces, $x\in d$ por la propiedad que tiene el conjunto $d$ otorgado por el axioma débil de unión. De esta manera, $x\in U$, ya que $x\in d$ y existe $y\in a$ con $x\in y$.

$\square$

Tarea moral

La siguiente lista de ejercicios te ayudará a poner en práctica lo que hemos visto en esta sección pues ahora tú tendrás que dar algunos ejemplos distintos a los de esta entrada que nos permitan diferenciar a los axiomas débiles de los axiomas que conocemos de la teoría de los conjuntos:

  • Demuestra que se puede inferir el axioma del conjunto potencia del axioma débil del conjunto potencia y el esquema de comprensión.
  • Da otros ejemplos que muestren la diferencia entre el axioma débil del par y el axioma del par.
  • Da otros ejemplos que muestren la diferencia entre el axioma débil de unión y el axioma de unión.
  • Da otros ejemplos que muestren la diferencia entre el axioma débil del conjunto potencia y el axioma del conjunto potencia.

Más adelante…

En este momento hemos sentado las bases para nuestro curso de teoría de conjuntos. En la siguiente entrada comenzaremos a hablar acerca del complemento de un conjunto. Este nuevo conjunto también se tratará de una operación entre conjuntos. Sus resultados como las leyes de De Morgan, nos serán de gran utilidad para hacer álgebra de conjuntos.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Teoría de los Conjuntos I: El axioma de buena fundación

Por Gabriela Hernández Aguilar

Introducción

En esta entrada hablaremos acerca del axioma de buena fundación. Este axioma nos permitirá mostrar que no existen conjuntos que se pertenezcan a sí mismos, y como una consecuencia, podremos dar otro argumento que muestra que la colección de todos los conjuntos no es un conjunto.

Acerca del axioma

Axioma de buena fundación. Para cualquier conjunto $X$ no vacío, existe $u\in X$ tal que $u\cap X=\emptyset$.

En los siguiente ejemplos no será necesario invocar al axioma de buena fundación pues tendremos a todos sus elementos escritos de manera explícita. Sin embargo, ayudarán a entender qué es lo que el axioma de buena fundación siempre garantiza que existe.

Ejemplos.

  • Sea $A=\set{\emptyset}$. El único elemento que tiene $A$ es $\emptyset$ y en efecto, $A\cap \emptyset=\emptyset$. Esto último ocurre pues no existe ningún conjunto $x$ tal que $x\in \set{\emptyset}$ y $x\in \emptyset$.
  • Consideremos al conjunto $B=\set{\emptyset, \set{\emptyset},\set{\set{\emptyset}}}$. Veamos que existe $u\in B$ tal que $u\cap B=\emptyset$. Sea $u=\emptyset\in B$. Luego, es cierto que $u\cap B=\emptyset$. Por lo tanto, existe $u=\emptyset\in B$ tal que $u$ y $B$ no tienen elementos en común.

$\square$

Observemos que en los ejemplos anteriores, el elemento mencionado por el axioma de buena fundación existe y además es único. Sin embargo, la unicidad de tal elemento no siempre es cierta, como lo demuestra el siguiente ejemplo.

Ejemplo.

Tomemos $C=\set{\set{\emptyset}, \{\emptyset,\set{\set{\emptyset}}\}}$. Haciendo un análisis de los elementos del conjunto $C$ tenemos lo siguiente:
– Para $\set{\emptyset}\in C$ tenemos que $\set{\emptyset}\cap \set{\set{\emptyset}, \set{\emptyset,\set{\set{\emptyset}}}}=\emptyset$ pues $\emptyset\in\set{\emptyset}$ pero $\emptyset\notin \set{\set{\emptyset}, \set{\emptyset,\set{\set{\emptyset}}}}$.
– Ahora, para $\set{\emptyset,\set{\set{\emptyset}}}\in C$ ocurre que $\set{\emptyset,\set{\set{\emptyset}}}\cap \set{\set{\emptyset}, \set{\emptyset,\set{\set{\emptyset}}}}=\emptyset$, pues $\emptyset$ y $\set{\set{\emptyset}}$ son los únicos elementos de $\{\emptyset,\{\{\emptyset\}\}\}$ y ninguno de ellos es elemento de $C$. Por lo tanto, todos los elementos de $C$ satisfacen lo mencionado en el axioma de buena fundación, lo que muestra que puede haber más de un elemento con tales propiedades dentro de un mismo conjunto.

$\square$

Conjuntos que no existen

El axioma de buena fundación juega un papel importante para determinar que ciertos conjuntos no pueden existir. Veamos los siguientes resultados:

Teorema. Para cualquier conjunto $x$, no es cierto que $x\in x$. Es decir, ningún conjunto puede pertenecer a sí mismo.

Demostración.
Supongamos que sí existe un conjunto $x$ tal que $x\in x$. Luego, $\set{x}$ es un conjunto por el axioma de par y su único elemento es $x$. Luego, $x\cap \set{x}\not=\emptyset$ pues $x\in x\cap\set{x}$. Esto último contradice al axioma de buena fundación. Dado que la contradicción vino de suponer que existe $x$ tal que $x\in x$, resulta que no existe un conjunto que haga tal cosa.

$\square$

Teorema. Sean $a$ y $b$ conjuntos no vacíos. No existen ciclos de la forma $a\in b\in a$.

Demostración.
Supongamos que sí existe algún ciclo de la forma $a\in b\in a$. Luego, por el axioma de par podemos considerar al conjunto $\set{a,b}$. Dado que $\set{a,b}$ es un conjunto pequeño podemos analizar qué pasa con cada uno de sus elementos:
– Para $a\in\set{a,b}$ tenemos que $a\cap\set{a,b}\not=\emptyset$ pues $b\in a$ y $b\in \set{a,b}$,
– Si tomamos a $b\in\set{a,b}$ tenemos que $b\cap\set{a,b}\not=\emptyset$ pues $a\in b$ y $a\in \set{a,b}$.

Por tanto, para cada $u\in\{a,b\}$, $u\cap\{a,b\}\not=\emptyset$, lo que contradice al axioma de buena fundación. Así, no existen ciclos de la forma $a\in b\in a$.

$\square$

Diferencias entre la pertencia y la contención

Vistos estos teoremas, nos tomaremos el tiempo para establecer las diferencias que hay entre la contención y la pertenencia.

Por un lado, $a\subseteq a$ siempre ocurre para cualquier conjunto $a$, mientras que $a\in a$ ya vimos que es imposible.

Vimos que la contención es transitiva (ver Teoría de los Conjuntos I: Axioma de conjunto potencia), es decir, si $a\subseteq b$ y $b\subseteq c$, entonces $a\subseteq c$. Resulta que si $a\in b$ y $b\in c$, entonces $a\in c$ no siempre ocurre, es decir, la pertenencia no es transitiva.

Ejemplo.

Consideremos $a=\set{\emptyset}$, $b= \set{\set{\emptyset}}$ y $c=\set{\emptyset, \set{\set{\emptyset}}}$. Tenemos que $a\in b$ y $b\in c$, sin embargo, $a\notin c$.

$\square$

La colección de todos los conjuntos

Anteriormente, probamos con ayuda de la paradoja de Rusell que la colección que tiene como elementos a todos los conjuntos no es un conjunto. En esta sección, reforzaremos esta afirmación utilizando el axioma de buena fundación para demostrar una vez más que está colección no es un conjunto.

Proposición. Para cualquier conjunto $x$, $\mathcal{P}(x)\not\subseteq x$.

Demostración.

Supongamos que $\mathcal{P}(x)\subseteq x$, entonces para cualquier $y\in \mathcal{P}(x)$, $y\in x$. Dado que $x\subseteq x$, entonces $x\in \mathcal{P}(x)$. Así, $x\in x$, lo cual contradice el primer teorema de la sección anterior. Por lo tanto, para cualquier conjunto $x$, $\mathcal{P}(x)\not\subseteq x$.

$\square$

Se puede dar otra prueba del enunciado anterior sin utilizar el axioma de buena fundación.

Proposición. Para cualquier conjunto $x$, $\mathcal{P}(x)\not\subseteq x$.

Demostración.

Sea $X$ un conjunto. Luego, $y=\set{x\in X: x\notin x}$ es un conjunto por esquema de comprensión y está contenido en $X$, por lo que $y\in \mathcal{P}(X)$. Sin embargo, $y\notin X$. En efecto, si $y\in X$ entonces $y\in y$ o $y\notin y$. Si $y\in y$, entonces $y\notin y$ y, si $y\notin y$ entonces $y\in y$. Así, $y\in y$ si y sólo si $y\notin y$, lo cuál es una contradicción. Por lo tanto, $\mathcal{P}(X)\not\subseteq X$.

$\square$

Teorema. La colección de todos los conjuntos no es conjunto.

Demostración.

Supongamos que existe un conjunto $V$ tal que para todo conjunto $x$, $x\in V$. Por axioma de conjunto potencia tenemos que $\mathcal{P}(V)$ es un conjunto. Veamos que $\mathcal{P}(V)\subseteq V$. Si $x\in\mathcal{P}(V)$, entonces, por definición del conjunto potencia, $x$ es un conjunto tal que $x\subseteq V$. En particular, $x$ es un conjunto y, por tanto, $x\in V$. Lo anterior muestra que $\mathcal{P}(V)\subseteq V$, lo cual contradice la proposición anterior.

Por lo tanto, la colección de todos los conjuntos no es un conjunto.

$\square$

La intersección del conjunto vacío

Si bien la definición de la intersección de un conjunto se hizo únicamente para conjuntos no vacíos, ocurre un hecho interesante sí aplicamos esta definición al conjunto vacío. Al contrario de un conjunto no vacío, la intersección del conjunto vacío no es un conjunto y en realidad describe a la colección de todos los conjuntos. Dejamos plasmado esto en la siguiente afirmación.

Afirmación. $\bigcap \emptyset$ no es un conjunto.1

Demostración.

Recordemos que $x\in \bigcap\emptyset$ si y sólo si para cualquier $y$ tal que $y\in \emptyset$, $x\in y$. Sea $x$ un conjunto. Luego, por vacuidad, para todo $y\in\emptyset$, $x\in y$. Consecuentemente, $x\in\bigcap\emptyset$. De acuerdo al último teorema que probamos en esta entrada podemos concluir que $\bigcap\emptyset$ no es un conjunto.

$\square$

Tarea moral

  • Prueba que para $A_0,A_1, A_2,\cdots A_n$ conjuntos, el ciclo $A_0\in A_1\in A_2\in\cdots\in A_n\in A_0$ no existe (Estrictamente hablando, esta demostración requerirá que formalicemos estos «puntos suspensivos». De cualquier forma, intenta dar una demostración inductiva con lo que sabes de este tipo de demostraciones.)
  • Sea $A=\set{\set{\emptyset}, \set{\emptyset,\set{\emptyset}}, \set{\emptyset, \set{\emptyset, \set{\emptyset}}}}$. Exhibe $u\in A$ tal que $u\cap A=\emptyset$.
  • Sea $B=\set{\emptyset, \set{\emptyset}, \set{\emptyset,\set{\emptyset}}, \set{\emptyset, \set{\emptyset, \set{\emptyset}}}}$. Exhibe $u\in B$ tal que $u\cap B=\emptyset$.
  • Da otro ejemplo de una propiedad que describa a la colección de todos los conjuntos.

Más adelante…

En la siguiente entrada hablaremos acerca de los axiomas débiles de la teoría de los conjuntos. Asimismo veremos cómo dichos axiomas junto con el esquema de comprensión implican los axiomas que hemos visto hasta ahora. De modo que la siguiente entrada nos servirá para hacer un recordatorio sobre todo lo que hemos visto hasta este momento.

Entradas relacionadas


Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

  1. Puedes encontrar una justificación similar de este hecho en: Gómez L. C, Introducción a la teoría intuitiva de conjuntos (cardinales y ordinales). Las prensas de ciencias, 2011, p. 4. ↩︎