Cálculo Diferencial e Integral I: Rectas tangente y normal a una curva

Por Karen González Cárdenas

Introducción

En la unidad anterior vimos la teoría relacionada a las funciones derivables. A lo largo de esta última parte del curso, veremos una serie de aplicaciones de la derivada en distintos ámbitos. Esperamos que te parezcan interesantes los ejemplos que aquí expondremos y la relación del Cálculo en problemáticas de otras áreas. Comenzaremos con obtener la recta tangente y normal de una función en un punto dado.

¿Qué dice la geometría?

Recordemos algunos conceptos geométricos para entrar en contexto:
Decimos que una recta $T$ es tangente si toca a una curva en un sólo punto. Y que una recta $N$ es normal si es perpendicular a la recta tangente en el punto de tangencia.

  • $T$ es la recta tangente en el punto $p$
  • $N$ es la recta normal en $p$

En los cursos de geometría probablemente te encontraste con la siguiente ecuación para definir a una recta:
$$y-y_1= m(x-x_1) $$
ésta es conocida como la forma punto-pendiente.


Vemos que gráficamente estamos considerando un punto $(x_1,y_1)$ sobre la recta y decimos que un punto cualquiera $(x,y)$ se encuentra también sobre la recta si cumple la igualdad anterior.

Recordando…

A principios de la unidad pasada vimos que una función $f$ es derivable en un punto $x_{0}$ si existe el siguiente límite:
$$\lim_{x \to x_0} \frac{f(x)-f(x_0)}{x-x_0}=f'(x_0).$$

Y que además la interpretación geométrica de dicho límite es justo la pendiente de la recta tangente a la gráfica de nuestra función $f$ en un $ (x_{0},f(x_{0}))$.
Con ayuda de este concepto y la definición vista en la sección anterior, vemos que la recta que pasa por el punto $ (x_{0},f(x_{0}))$ y que es tangente a la gráfica sería:
\begin{align*}
y-y_1&= m(x-x_1)\\
y-f(x_0)&=f'(x_0)(x-x_0)\\
y&=f'(x_0) (x-x_0) +f(x_0)
\end{align*}
donde $m=f'(x_0)$ y consideramos $(x_1,y_1)= (x_{0},f(x_{0})) $.

Definición de la recta tangente

Motivados por lo anterior tenemos la siguiente definición:
Definición (recta tangente): Sea $f$ una función derivable en un punto $x_0$. Definimos a la recta tangente a la gráfica de $f$ en el punto $(x_{0},f(x_{0}))$ como:
$$T(x)= f'(x_0) (x-x_0) +f(x_0).$$

Esta definición es la que estaremos usando en todos los ejercicios de esta entrada por lo que recomendamos tenerla presente. Pasaremos ahora a definir la recta normal a la gráfica de $f$ en el punto $(x_{0},f(x_{0}))$.

Definición de la recta normal

Como ya vimos que geométricamente la recta normal es perpendicular a la recta tangente, modificaremos la pendiente a la definición anterior tomando $m=-\frac{1}{f'(x_0)}$ con $f'(x_0) \neq 0$ :
Definición (recta normal): Tomando $f$ una función derivable en un punto $x_0$. Definimos a la recta normal a la gráfica de $f$ en el punto $(x_{0},f(x_{0}))$ con la ecuación:
$$N(x)= -\frac{1}{f'(x_0)}(x-x_0) +f(x_0).$$

Con ambas rectas definidas pasaremos a resolver algunos ejercicios.

Ejemplo 1

Encuentra la recta tangente y normal de la función:
$$f(x)=x^{3}+2x^{2}-x+2$$
en el punto $(4,94)$.
Solución:
Comenzaremos por obtener la derivada de $f(x)$ haciendo uso de las reglas de derivación:
$$f'(x)=3x^{2}+4x-1.$$

Para obtener la pendiente en el punto indicado debemos sustituir $x=4$, así:
\begin{align*}
f'(4)&= 3(4)^{2}+4(4)-1\\
&=48+16-1\\
&=63
\end{align*}

Ahora comenzamos sustituyendo lo anterior en la definición de recta tangente:
\begin{align*}
T(x)&= 63 \cdot (x-4)+94\\
&=63x-252+94\\
&=63x-158
\end{align*}
$$\therefore T(x)= 63x-158 .$$

Finalmente sustituyendo en la definición de la recta normal:
\begin{align*}
N(x)&= -\frac{1}{63} \cdot (x-4)+94\\
&=-\frac{x}{63}+\frac{4}{63}+94\\
&=-\frac{x}{63} + \frac{5926}{63}
\end{align*}
$$\therefore N(x)= -\frac{x}{63} + \frac{5926}{63}.$$

Ejemplo 2

Encuentra la recta tangente y normal con $x_0=2$ de la función:
$$f(x)=3x^{2}-5x+6.$$
Solución:
Comenzamos por sustituir $x_0=2$ para obtener el punto $p$ por donde pasarán ambas rectas:
\begin{align*}
f(2)&=3(2)^{2}-5(2)+6\\
&= 12-10+6\\
&=8
\end{align*}
$$\therefore p=(2,8).$$
Ahora pasemos a obtener la pendiente derivando la función y sustituyendo $x_0=2$:
$$f'(x)=6x-5 \Rightarrow f'(2)=6(2)-5=12-5=7.$$

Procedamos a sustituir en las definiciones para la tangente y la normal:
\begin{align*}
T(x)&= 7(x-2)+8 & N(x)&= -\frac{1}{7} (x-2)+8 \\
&= 7x-14+8 & &=-\frac{x}{7}+\frac{2}{7}+8\\
&= 7x-6 & &= -\frac{x}{7}+\frac{58}{7}
\end{align*}
Así concluimos que:
\begin{align*}
T(x)&= 7x-6 \\
N(x)&= -\frac{x}{7}+\frac{58}{7}
\end{align*}

Ejemplo 3

Hallar la recta tangente y normal de la función:
$$f(x)=\sqrt{-x}$$
en el punto $p=(-9,3)$.
Solución:
Procederemos a derivar la función haciendo uso de la Regla de la cadena:
\begin{align*}
f'(x)&= \frac{1}{2}(-x)^{\frac{1}{2}-1} \cdot (-1)\\
&=-\frac{1}{2}(-x)^{-\frac{1}{2}}\\
&=-\frac{1}{2\sqrt{-x}}
\end{align*}

Obtenemos la pendiente al sustituir $x_0=-9$:
\begin{align*}
f'(-9)&=-\frac{1}{2\sqrt{-(-9)}}\\
&=-\frac{1}{2\sqrt{9}}\\
&= -\frac{1}{6}
\end{align*}

Ahora hallamos la recta tangente y normal sustituyendo $f'(-9)= -\frac{1}{6}$:
\begin{align*}
T(x)&= -\frac{1}{6} (x-(-9))+3 & N(x)&=-\frac{1}{-\frac{1}{6}} (x-(-9))+3 \\
&= -\frac{1}{6}(x+9)+3 & &= 6 (x+9)+3 \\
&=-\frac{x}{6}-\frac{3}{2}+3 & &= 6x+54+3\\
&= -\frac{x}{6}+\frac{3}{2} & &=6x+57
\end{align*}

Por lo que finalmente tenemos:
\begin{align*}
T(x)&= -\frac{x}{6}+\frac{3}{2}\\
N(x) &=6x+57
\end{align*}

Más adelante

En la siguiente entrada veremos cómo encontrar máximos y mínimos de una función. Por lo tanto, definiremos dichos conceptos y probaremos algunos resultados que nos brindarán los criterios necesarios, haciendo uso de la derivada, para identificarlos.

Tarea moral

Encuentra la recta tangente y normal en cada uno de los incisos:

  • $f(x)=2x^{3}+3x^{2}+4x-2$ con $x_0=2$.
  • $f(x)=x^{3}-3x$ en $p=(2,2)$.
  • $f(x)=4x^{2}$ en $p=(2,16)$.
  • $f(x)=sen(\frac{\pi}{2}-x)$ en $p=\left(\frac{\pi}{3},\frac{1}{2} \right)$.
  • $f(x)=\frac{x+1}{x-1}$ en $p=(2,3)$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.