32.En revisión: La imagen inversa de abiertos es abierta bajo una función continua.

Por Mariana Perez

Proposición 1:

Sea $f : A \subseteq \mathbb{R}^n \rightarrow \mathbb{R}^m $ una función continua en $A$ y $A$ un conjunto abierto.

Entonces para todo abierto $\mathcal{V} \subseteq \mathbb{R}^m $ la imagen inversa de $\mathcal{V}$, $f^{-1}(\mathcal{V})$ es un abierto de $\mathbb{R}^n.$

Demostración:

Sea $\mathcal{V}$ abierto de $\mathbb{R}^n.$

Supongamos que $f^{-1}(\mathcal{V}) \neq \emptyset.$

Si $f^{-1}(\mathcal{V}) = \emptyset $ , es un abierto entonces, terminó la demostración.

Ahora bien, sea $\vec{x_0} \in f^{-1}(\mathcal{V})$ entonces $f(\vec{x_0}) \in \mathcal{V}$ luego, $f(\vec{x_0})$ es punto interior de $\mathcal{V}.$

[ por demostrar: $\vec{x_0}$ es punto interior de $f^{-1}(\mathcal{V}$ ]

Por hipótesis, $f$ es continua.

Sea $\epsilon > 0 $ tal que $B_{\epsilon}(f(\vec{x_0})) \subseteq \mathcal{V}$. Dicha $\epsilon$ existe porque $\mathcal{V}$ es abierto y $f(\vec{x_0}) \in \mathcal{V}.$

Entonces, existe $\delta > 0$ tal que si $\vec{x} \in B_{\delta}(\vec{x_0})$ entonces $f(\vec{x}) \in B_{\epsilon}(f(\vec{x_0})) \subseteq \mathcal{V}.$

$\vec{x_0}$ es punto interior de $f^{-1}(\mathcal{V})$ ya que $B_{\delta}(\vec{x_0}) \subseteq f^{-1}(\mathcal{V})$

Razón: $\vec{x} \in B_{\delta}(\vec{x_0})$ entonces $f(\vec{x}) \in B_{\epsilon}(f(\vec{x_0}))$ entonces $f(\vec{x}) \in \mathcal{V}$ implica $\vec{x} \in f^{-1}(\mathcal{V})._{\blacksquare}$

Proposición 2:

Sea $A \subseteq \mathbb{R}^n$ un abierto.

Sea $f : A \subseteq \mathbb{R}^n \rightarrow \mathbb{R}^m.$

Si la imagen inversa de abiertos en $\mathbb{R}^m$ es un abierto en $\mathbb{R}^n$, entonces la función $f$ es continua en $A.$

Demostración:

Sea $\vec{x_0} \in A.$

[ por demostrar: $f$ es continua en $\vec{x_0}$ ]

Sea $\epsilon > 0.$

[ por demostrar: existe $\delta > 0$ tal que si $x \in B_{\delta}(\vec{x_0})$ entonces $f(\vec{x}) \in B_{\epsilon} (f(\vec{x_0}))$ ]

Sea $\mathcal{V} = B_{\epsilon} (f(\vec{x_0}))$ es un abierto de $\mathbb{R}^m$.

Por hipótesis, $f^{-1}(\mathcal{V}) \subseteq \mathbb{R}^n$ es abierto.

Existe $\delta_1 > 0 $ tal que $B_{\delta} (\vec{x_0}) \subseteq f^{-1}(\mathcal{V}).$

$A$ es abierto, existe $\delta_2 > 0 $ tal que $B_{\delta_2}(\vec{x_0}) \subseteq A.$

Sea $\delta = mín\{ \delta_1 , \delta_2\}$ es la $\delta$ que necesitamos. $_{\blacksquare}$

Teorema:

Sea $f : \mathcal{K} \subset \mathbb{R}^n \longrightarrow \mathbb{R}^m.$

Si $f$ es continua en $\mathcal{K}$ y $\mathcal{K}$ es compacto, entonces $f$ es uniformemente continua en $\mathcal{K}.$

Demostración:

Sea $\epsilon > 0.$

Como $f$ es continua, para cada $x \in \mathcal{K}$ existe $\delta_x > 0$ tal que si $ \| x-y \| < \delta_x $ entonces $\|f(x) – f(y) \| < \frac{\epsilon}{2}$

Como $\mathcal{K}$ es compacto, $\mathcal{K} \subseteq \bigcup\limits_{x \in \mathcal{K}} B_{\frac{\delta_x}{2}}(x)$ es una cubierta abierta de $\mathcal{K}.$

Entonces, existe una subcubierta finita $B_{\frac{\delta_1}{2}}(x_1), \dots , B_{\frac{\delta_l}{2}}(x_l).$

Tomemos $ \delta = mín \{ \frac{\delta_1}{2} , \dots , \frac{\delta_l}{2} \}.$

Si $\| x – y \| < \delta $ entonces $ y \in B_{\delta}(x)$ pero $ x \in B_{\frac{\delta_j}{2}}(x_j) $ para alguna $j$

$$\| x – x_j \| < \frac{\delta_j}{2} \Rightarrow x_j \in B_{\frac{\delta_j}{2}}(x)$$

$$\| f(x) – f(x_j)\| < \frac{\epsilon}{2} $$

Luego, si $\| y – x_j\| = \| y – x + x – x_j \| \leq \| y – x \| + \|x – x_j \| < \delta + \frac{\delta_j}{2} \leq \frac{\delta_j}{2} + \frac{\delta_j}{2} = \delta $

$y \in B_{\delta_j}(x_j) \Rightarrow \| f(y) – f(x_j) \| < \frac{\epsilon}{2}$

En consecuencia,

$$\| f(x) – f(y)\| \leq \| f(x) – f(x_j) \| + \| f(x_j) – f(y) \| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon \; _{\blacksquare}$$

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.