15 Material en revisión: Una sucesión que converge a $(\sqrt{2}, \sqrt{2})$

Por Mariana Perez

Recordemos el método de los babilonios para calcular la raíz cuadrada de un número $A$.

Construir una sucesión.

Dar una primera pareja de números $(x_0, y_0)$ tal que $A=x_0 y_0$ sea el área de un rectángulo de base $x_0$ y altura $y_0$.

dibujo 1

Dada $(x_n, y_n)$ construir $(x_{n+1}, y_{n+1})$ como sigue: $$x_{n+1}=\frac{x_n+y_n}{2} \hspace{1cm} y_{n+1}=\frac{A}{x_{n+1}}$$

Dibujo 2

$A=x_{n+1}y_{n+1}$ queda garantizado por elegir $y_n=\frac{A}{x_{n+1}}$, y $x_{n+1}$ es el promedio de $x_n$ y $y_n$ por eso con el rectángulo inicial va quedando «más cuadrado», por lo que luego de varios pasos $A=L^2$.

Sea $A=2$ un rectángulo donde $x_1=2$ y $y_1=1$.

dinujo 3

Luego, $y_{n+1}=\frac{2}{x_n+1} \iff y_{n+1}=\frac{2}{\frac{x_n+y_n}{2}} \iff y_{n+1}=\frac{4}{x_n+y_n}$

De esta manera, definimos $(x_{n+1}, y_{n+1}) := f(x_n, y_n)$ donde $x_{n+1}=\frac{x_n+y_n}{2}$ y $y_{n+1}=\frac{4}{x_n+y_n}$.

Afirmación: la sucesión $\{(x_n, y_n)\}$ converge a $(\sqrt{2}, \sqrt{2}) \iff \text{las sucesiones}$ $$\{x_n\} \longrightarrow \sqrt{2}$$ $$\{y_n\} \longrightarrow \sqrt{2}$$

Observemos que podemos expresar $x_{n+1}$ en términos de $x_n$ como sigue:

$x_{n+1}=\frac{x_n + y_n}{2}$ pero $y_n=\frac{2}{x_n}$ entonces $$x_{n+1} = \frac{x_n+\frac{2}{x_n}}{2}$$ $$x_{n+1} =\frac{1}{2} \left(x_n + \frac{2}{x_n} \right)$$ $$x_{n+1} = f(x_n)$$

Tomando límites llegamos a la ecuación $ L = f(L)$

Es decir, tenemos que $$L = \frac{1}{2}\left(L+\frac{2}{L}\right)$$ $$2L = L + \frac{2}{L} \Longrightarrow L = \frac{2}{L} \Longrightarrow L^2 = 2$$ $$\therefore L=\sqrt{2}$$

Ahora vamos a argumentar porque la sucesión de $\{x_n\}$ converge. $$f(x) = \frac{1}{2} \left(x+\frac{2}{x}\right) = \frac{1}{2}x + \frac{1}{x}$$

dibujo 4

Lema: si tenemos una sucesión $\{x_n\}$ definida por un término inicial $x_0$ y una fórmula de recurrencia $x_{n+1} = f(x)$ los puntos de la forma $(x_n, f(x_n))$ los puedo determinar dibujando una escalera usando la gráfica de $y=f(x)$ y la gráfica $y=x$.

Sea $f(x) =\frac{1}{2}\left(x+\frac{2}{x}\right)$ y $x_{n+1}=f(x_n)$.

Afirmación:

  1. Si $x_n > \sqrt{2} \text{ entonces } f(x_n) > \sqrt{2}.$
  2. Si $x_n > \sqrt{2}\text{ entonces } f(x_n) < x_n \text{ en consecuencia } x_{n+1} < x_n$

Consideremos la imagen de $(\sqrt{2}, \infty)$ bajo la función $f(x) = \left( x + \frac{2}{x}\right)$.

¿Es $f(x)$ creciente en $(\sqrt{2}, \infty)$? Si.

Basta ver que $f'(x) > 0 \, \forall \, x \in (\sqrt{2}, \infty)$ $$f(\sqrt{2}) = \sqrt{2}$$ $$f'(x) = \frac{1}{2} \left(1-\frac{2}{x^2} \right)$$ $$x > \sqrt{2} \iff x^2 > 2 \iff 1 > \frac{2}{x^2} \iff 1-\frac{2}{x^2} > 0$$

Por lo que queda probada la afirmación 1.

Si $x_n > \sqrt{2}$ entonces ${x_n}^2 > 2$

$$ {x_n}^2 + {x_n}^2 > 2 + {x_n}^2$$ $$2{x_n}^2 > 2 + {x_n}^2$$ $$x_n > \frac{2 + {x_n}^2}{2}$$ $$x_n > \frac{2 + {x_n}^2}{2 x_n}=\frac{1}{2} \left( \frac{2}{x_n} + \frac{{x_n}^2}{x_n} \right) = \frac{1}{2} \left( \frac{2}{x_n} + x_n \right) = f(x_n) = x_{n+1}$$

$x_n > \sqrt{2} \Rightarrow x_{n+1} < x_n$

Hemos visto que $\{ x_n\}$ es acotada y decreciente. Ahora podemos concluir que $\{x_n\} \longrightarrow \sqrt{2}$.

Por otra parte $y_n = \frac{2}{x_n} \longrightarrow \frac{2}{\sqrt{2}} = \sqrt{2}$ entonces $\{y_n \} \longrightarrow \sqrt{2}$ $$\therefore \{ (x_n, y_n) \} \longrightarrow (\sqrt{2}, \sqrt{2}) \; _{\blacksquare}$$

En el siguiente enlace, puedes ver una animación tanto de la sucesión de puntos, como de la sucesión de «cuadrados».

https://www.geogebra.org/classic/tcxk2zdh

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.