Archivo de la etiqueta: probabilidad

Probabilidad I: Variables Aleatorias

Por Octavio Daniel Ríos García

Introducción

En la entrada pasada concluimos la primera unidad del curso. Con esto finaliza nuestro estudio general de las medidas de probabilidad. Por otro lado, el contenido de la segunda unidad está enfocado el estudio de las variables aleatorias y sus propiedades.

En esta entrada abordaremos el concepto de variable aleatoria. A grandes rasgos, una variable aleatoria es una función que actúa sobre un espacio de probabilidad $(\Omega, \mathscr{F}, \mathbb{P})$ y devuelve valores numéricos. Sin embargo, no cualquier función puede considerarse una variable aleatoria. Básicamente, una función será una variable aleatoria si algunas de sus imágenes inversas son eventos de $\Omega$. Esto garantizará que se puede calcular la probabilidad de sus valores, y por tanto, podremos calcular la probabilidad de que la variable aleatoria tome valores específicos.

Ideas preliminares

Sea $(\Omega, \mathscr{F}, \mathbb{P})$ un espacio de probabilidad. Es posible que nos interese algún valor numérico asociado a los resultados del experimento en cuestión. Por ejemplo, considerando el experimento de lanzar una moneda $4$ veces de manera equiprobable, sabemos que su espacio muestral es

\[ \Omega = \begin{Bmatrix} \mathrm{AAAA}, & \mathrm{AAAS}, & \mathrm{AASA}, & \mathrm{ASAA}, \\ \mathrm{SAAA}, & \mathrm{AASS}, & \mathrm{ASAS}, & \mathrm{SAAS}, \\ \mathrm{ASSA}, & \mathrm{SASA}, & \mathrm{SSAA}, & \mathrm{SSSA}, \\ \mathrm{SSAS}, & \mathrm{SASS}, & \mathrm{ASSS}, & \mathrm{SSSS} \end{Bmatrix}. \]

y tomamos a $\mathscr{P}(\Omega)$ como σ-álgebra, y como medida a la medida de probabilidad clásica. Una variable asociada a este experimento es la cantidad de águilas que salieron en los $4$ lanzamientos. Esto podríamos definirlo como una función $X\colon \Omega \rightarrow \RR$, tal que para cada $\omega \in \Omega$ se define

\[ X(\omega) = \text{# de $\mathrm{A}$’s en $\omega$}. \]

De este modo, se tiene que

\begin{align*} &X(\mathrm{AAAS}) = 3, \\ &X(\mathrm{ASAS}) = 2, \end{align*}

\begin{align*} &X(\mathrm{ASSS}) = 1, \\ &X(\mathrm{AAAA}) = 4, \end{align*}

etcétera. Al ser una función, $X$ tiene todas las cualidades y propiedades de una función que viste en álgebra superior. En particular, hay un concepto que nos interesa mucho: la imagen inversa de cada uno de los valores que toma $X$. Como recordatorio, dado $B \subseteq \RR$, la imagen inversa de $B$ bajo $X$ es el conjunto

\[ X^{-1}[B] = \{ \, \omega \in \Omega \mid X(\omega) \in B \, \}. \]

Cuando $B$ es un conjunto de la forma $B = \{ x \}$, con $x \in \RR$, se tiene que

\[ X^{-1}[\{x \}] = \{ \, \omega \in \Omega \mid X(\omega) = x \, \}. \]

Por ejemplo, para la función $X$ como la definimos, podemos observar que

\[ X^{-1}[\{ 2 \}] = \{ \, \omega \in \Omega \mid X(\omega) = 2 \, \} = \{ \mathrm{AASS}, \mathrm{ASAS}, \mathrm{SAAS}, \mathrm{ASSA}, \mathrm{SASA}, \mathrm{SSAA} \}. \]

Ahora, observa que $X^{-1}[{ 2 }] \in \mathscr{P}(\Omega)$, por lo que le podemos asignar una probabilidad. En consecuencia, se tiene que

\begin{align*} \Prob{X^{-1}[\{ 2 \}]} = \Prob{\{ \, \omega \in \Omega \mid X(\omega) = 2 \, \}} &= \frac{|\{ \mathrm{AASS}, \mathrm{ASAS}, \mathrm{SAAS}, \mathrm{ASSA}, \mathrm{SASA}, \mathrm{SSAA} \}|}{|\Omega|} \\ &= \frac{6}{16} \\[1.15em] &= 0.375. \end{align*}

Gracias a esto, podemos decir que «la probabilidad de que $X$ tome el valor $2$ es $\frac{6}{16} = 0.375$». Es decir, le podemos asignar probabilidad a los posibles resultados de $X$. Una notación muy frecuente en el contexto de la probabilidad es la siguiente: usaremos $(X \in B)$ para denotar a $\{ \, \omega \in \Omega \mid X(\omega) \in B \,\} = X^{-1}[B]$, de tal forma que

\[ \Prob{\{ \, \omega \in \Omega \mid X(\omega) \in B \,\}} = \Prob{X \in B}. \]

Del mismo modo, cuando $B = \{x\}$, con $x \in \RR$, se adopta la notación $( X = x )$ para denotar al conjunto $\{ \, \omega \in \Omega \mid X(\omega) = x \,\} = X^{-1}{\left[\{ x \}\right]}$, de tal forma que

\[ \Prob{\{ \, \omega \in \Omega \mid X(\omega) = x \,\}} = \Prob{X = x}. \]

De este modo, en este ejemplo tenemos que $\Prob{X = 2} = 0.375$. Del mismo modo, se utilizará la notación $(X \leq x)$ para denotar a $\{ \, \omega \in \Omega \mid X(\omega) \leq x \, \} = X^{-1}[(-\infty, x]]$. Sin embargo, ¡ten cuidado! Esta es una NOTACIÓN para facilitar la escritura de muchas de las expresiones matemáticas que involucran variables aleatorias. Aunque resulte práctica, no olvides lo que representa realmente.

Definición de variable aleatoria

De acuerdo con la motivación anterior, presentamos la definición de variable aleatoria.


Definición. Sea $(\Omega, \mathscr{F}, \mathbb{P})$ un espacio de probabilidad. Diremos que una función $X\colon\Omega \to \RR$ es una variable aleatoria si para cada $B \in \mathscr{B}(\RR)$ se cumple que $X^{-1}[B] \in \mathscr{F}$.

Es decir, $X$ es una variable aleatoria si la imagen inversa bajo $X$ de cualquier evento del σ-álgebra de Borel, es un evento de $\mathscr{F}$.


En algunos contextos se usa la notación $X\colon(\Omega, \mathscr{F})\to(\RR, \mathscr{B}(\RR))$ para denotar a una variable aleatoria. Usando esta notación, se escribe explícitamente el σ-álgebra del dominio y del codominio de $X$.

Intuitivamente, una variable aleatoria es un valor numérico asociado al resultado de un experimento aleatorio. Por ejemplo, cuando hicimos el experimento de lanzar una moneda $4$ veces, el valor numérico asociado a cada uno de los posibles resultados del experimento es la cantidad de águilas que salieron en los $4$ lanzamientos.

Además, previamente acordamos que los elementos de un σ-álgebra son aquellos que se pueden medir, pues el dominio de la medida $\mathbb{P}$ es el σ-álgebra. Esencialmente, la definición de variable aleatoria pide que la función preserve la medibilidad. Es decir, que si $A$ es un subconjunto medible del codominio de $X$ (esto es, $A \in \mathscr{B}(\RR)$), entonces $X^{-1}[A]$ debe de ser un subconjunto medible del dominio de $X$; es decir, $X^{-1}[A] \in \mathscr{F}$. De este modo,

\[ \Prob{X \in A} = \Prob{X^{-1}[A]} = \Prob{\{\, \omega\in\Omega\mid X(\omega) \in A \,\}}, \]

es un valor que está bien definido, pues $X^{-1}[A] \in \mathscr{F}$ y $\mathrm{Dom}(\mathbb{P}) = \mathscr{F}$.

Una propiedad muy importante de las variables aleatorias

Hay libros introductorios a la probabilidad que prefieren no tocar con mucho detalle la definición de variable aleatoria, o darla de manera distinta. Por ejemplo, tal es el caso de A First Course In Probability de Sheldon M. Ross, o Introducción a la Probabilidad de Luis Rincón. En particular, el caso del libro del Dr. Rincón es importante, pues es el libro al que muchos estudiantes recurren al cursar esta materia. Dicho libro ofrece una definición de variable aleatoria distinta; con el siguiente teorema veremos que es equivalente a la que hemos dado aquí.


Teorema. Sean $(\Omega, \mathscr{F}, \mathbb{P})$ un espacio de probabilidad y $X\colon\Omega\to\RR$ una función. Si $\mathcal{G} \subseteq \RR$ es un conjunto tal que $\sigma(\mathcal{G}) = \mathscr{B}(\RR)$, entonces las siguientes proposiciones son equivalentes:

  1. $X\colon\Omega\to\RR$ es una variable aleatoria.
  2. Para todo $A \in \mathcal{G}$ se cumple que $X^{-1}[A] \in \mathscr{F}$.

Demostración. $(1 \implies 2)$ Verificar que 1. implica a 2. no es complicado. Supongamos que $X$ es una variable aleatoria. Por definición, esto asegura que para cada $E \in \mathscr{B}(\RR)$ se cumple que $X^{-1}[E] \in \mathscr{F}$.

Ahora, hay que demostrar que 2. es cierto. Sea $A \in \mathcal{G}$. Sabemos que $\sigma(\mathcal{G}) = \mathscr{B}(\RR)$, es decir, el σ-álgebra generado por $\mathcal{G}$ es el σ-álgebra de Borel sobre $\RR$. Además, sabemos que $\sigma(\mathcal{G})$ satisface $\mathcal{G} \subseteq \sigma(\mathcal{G})$, por lo que $\mathcal{G} \subseteq \mathscr{B}(\RR)$. En consecuencia, $A \in \mathscr{B}(\RR)$, que implica $X^{-1}[A] \in \mathscr{F}$, pues $X$ es una variable aleatoria, garantizando que 2. es verdadero.

$(2 \implies 1)$ Lo interesante es demostrar que 2. implica a 1., pues 2. parece una condición más débil. Así pues, supongamos que $X$ es una función que satisface 2.; que para cada $A \in \mathcal{G}$ se cumple que $X^{-1}[A] \in \mathscr{F}$. Ahora queremos demostrar que $X$ es una variable aleatoria. Es decir, queremos demostrar que para cada $B \in \mathscr{B}(\RR)$ se cumple que $X^{-1}[B] \in \mathscr{F}$.

Ahora, hay algunas propiedades importantes de la imagen inversa de una función. Por tus clases de álgebra superior, sabes que para cualquier colección $\{ B_{i} \}_{i \in \mathbb{N}^{+}}$ de subconjuntos de $\RR$ se cumple que

la imagen inversa «abre» la unión: \begin{align*} X^{-1}{\left[ \bigcup_{i=1}^{\infty} B_{i} \right]} = \bigcup_{i=1}^{\infty} X^{-1}{\left[ B_{i} \right]}, \end{align*}

la imagen inversa «abre» la intersección: \begin{align*} X^{-1}{\left[ \bigcap_{i=1}^{\infty} B_{i} \right]} = \bigcap_{i=1}^{\infty} X^{-1}{\left[ B_{i} \right]}. \end{align*}

y además, para cada $B \subseteq \RR$ se cumple que $X^{-1}[\RR \setminus B] = \Omega \setminus X^{-1}[B]$. Defínase ahora $\mathcal{M}$ como sigue:

\begin{align*} \mathcal{M} = \{\, B \subseteq \RR \mid X^{-1}[B] \in \mathscr{F} \,\}. \end{align*}

Es decir, los elementos de $\mathcal{M}$ son los subconjuntos de $\RR$ tales que $X^{-1}[B] \in \mathscr{F}$. Usando las propiedades de la imagen inversa bajo $X$, es posibe demostrar que $\mathcal{M}$ es un σ-álgebra. Más aún, sabemos que para cada $A \in \mathcal{G}$ se cumple que $X^{-1}[A] \in \mathscr{F}$. Por ende, $\mathcal{G} \subseteq \mathcal{M}$. Pero $\mathcal{M}$ es un σ-álgebra, y lo anterior demuestra que es un σ-álgebra que contiene a $\mathcal{G}$. En consecuencia, $\sigma(\mathcal{G}) \subseteq \mathcal{M}$.

¡Ajá! Pero $\sigma(\mathcal{G}) = \mathscr{B}(\RR)$; por lo que $\mathscr{B}(\RR) \subseteq \mathcal{M}$. Para concluir, sea $B \in \mathscr{B}(\RR)$. Por lo anterior, se sigue que $B \in \mathcal{M}$, que por la definición de $\mathcal{M}$ significa que $X^{-1}[B] \in \mathscr{F}$, que es justamente lo que queríamos demostrar.

$\square$

Este teorema es de mucha utilidad, ya que dada una función $X\colon\Omega\to\RR$, demostrar que $X$ es una variable aleatoria es equivalente a demostrar que $X$ preserva la medibilidad sobre una familia de conjuntos que genera a $\mathscr{B}(\RR)$, una tarea mucho más sencilla que hacerlo para todos los elementos del σ-álgebra de Borel.

Definición alternativa de variable aleatoria

Previamente establecimos que $\mathscr{B}(\RR)$ es el σ-álgebra generado por varias familias de subconjuntos de $\RR$. En particular, $\mathscr{B}(\RR)$ puede generarse a partir de la familia de intervalos de la forma $(-\infty, x]$, con $x \in \RR$. Por ello, gracias al teorema que demostramos, podemos caracterizar a una variable aleatoria como sigue:


Definición (alternativa). Sea $(\Omega, \mathscr{F}, \mathbb{P})$ un espacio de probabilidad. Diremos que una función $X\colon\Omega\to\RR$ es una variable aleatoria si para cada $x \in \RR$ se cumple que $X^{-1}[(-\infty, x]] \in \mathscr{F}$. Esto es,

\[ \{ \, \omega \in \Omega \mid X(\omega) \leq x \, \} \in \mathscr{F}. \]


La definición anterior es la que presentan algunos libros como la definición de variable aleatoria (por ejemplo, así la encontrarás el libro del Dr. Luis Rincón, si es que decides consultarlo). No temas, ambas maneras de definir el concepto de variable aleatoria son equivalentes, todo gracias al teorema que vimos en esta entrada.

Medida de probabilidad inducida por una variable aleatoria

Dados $(\Omega, \mathscr{F}, \mathbb{P})$ un espacio de probabilidad y $X\colon\Omega\to\RR$ una variable aleatoria, vimos que podíamos usar la medida de probabilidad $\mathbb{P}$ para medir la probabilidad de los subconjuntos de la forma $(-\infty, x]$ a través de sus imágenes inversas bajo $X$. De hecho, gracias a lo que discutimos al final de la sección pasada, resulta que esto se puede hacer para cualquier evento de $\RR$, es decir, para todos los elementos de $\mathscr{B}(\RR)$. A la medida resultante para los eventos de $\RR$ se le conoce como la medida de probabilidad inducida por $X$, y se define como sigue.


Definición. Sean $(\Omega, \mathscr{F}, \mathbb{P})$ un espacio de probabilidad y $X\colon\Omega\to\RR$ una variable aleatoria. La medida de probabilidad inducida por $X$ es la medida de probabilidad $P_{X}: \mathscr{B}(\RR) \to \RR$ dada por

\begin{align*} P_{X}(B) &= \Prob{\{\, \omega \in \Omega \mid X(\omega) \in B \,\}}, & \text{para cada $B \in \mathscr{B}(\RR)$. } \end{align*}

Equivalentemente, usando la notación probabilista para imágenes inversas, $P_{X}: \mathscr{B}(\RR) \to \RR$ es la función dada por

\begin{align*} P_{X}(B) &= \Prob{X \in B}, & \text{para cada $B \in \mathscr{B}(\RR)$}. \end{align*}


De este modo, si $(\Omega, \mathscr{F}, \mathbb{P})$ es un espacio de probabilidad y $X\colon\Omega\to\RR$ es una variable aleatoria, entonces $(\RR, \mathscr{B}(\RR), P_{X})$ es un espacio de probabilidad.

Ejemplos básicos de variables aleatorias

Ejemplo 1. Hay una gran cantidad de experimentos aleatorios cuyos resultados se reducen a «éxito» o «fracaso». Por ejemplo, en el lanzamiento de una moneda, el «águila» y el «sol» podrían verse como «éxito» y «fracaso», respectivamente. Comenzamos con el espacio muestral $\Omega = \{ \mathrm{«Exito», «Fracaso»} \}$. Definimos la variable aleatoria $X\colon\Omega\to\RR$ como sigue

\begin{array}{rcl} X(\mathrm{«Exito»}) & = & 1, \\ X(\mathrm{«Fracaso»}) & = & 0. \end{array}

La elección de estos dos números es un poco arbitraria, aunque obedece a la noción de que, en ciertos contextos, el $1$ es un «acierto» y el $0$ un «error». Esto pasa incluso en la lógica, en donde a veces se denota al «verdadero» como $1$ y al «falso» como $0$, sobre todo en contextos computacionales.

Como σ-álgebra tomaremos a $\mathscr{P}(\Omega)$ y como medida de probabilidad tomaremos la siguiente: sea $p \in \RR$ tal que $p \in [0,1]$. Definimos $\mathbb{P}\colon\mathscr{P}(\Omega)\to\RR$ como sigue:

\begin{array}{rcl} \Prob{\{\mathrm{«Exito»}\}} & = &p, \\ \Prob{\{\mathrm{«Fracaso»}\}} & = & 1 − p, \end{array}

\begin{array}{rcl} \Prob{\emptyset} & = & 0, \\ \Prob{\Omega} & = & p + (1 − p) = 1. \end{array}

En consecuencia, se tendrá que $\Prob{X = 1} = p$ y $\Prob{X = 0} = 1 − p$. De este modo, podemos ver que

\[ \Prob{X = x} = \begin{cases} p & \text{si $x = 1$}, \\ 1 − p & \text{si $x = 0$}, \\ 0 & \text{en otro caso}. \end{cases} \]

Esta es una variable aleatoria muy sencilla, pero muy poderosa. Más adelante, cuando ya hayamos visto más conceptos relacionados con variables aleatorias, la veremos con más detalle.


Ejemplo 2. Considera el experimento de lanzar un dado $2$ veces. El espacio muestral de este experimento es

\begin{align*} \Omega = \begin{Bmatrix} (1,1), & (1,2), & (1,3), & (1,4), & (1,5), & (1,6) \\ (2,1), & (2,2), & (2,3), & (2,4), & (2,5), & (2,6) \\ (3,1), & (3,2), & (3,3), & (3,4), & (3,5), & (3,6) \\ (4,1), & (4,2), & (4,3), & (4,4), & (4,5), & (4,6) \\ (5,1), & (5,2), & (5,3), & (5,4), & (5,5), & (5,6) \\ (6,1), & (6,2), & (6,3), & (6,4), & (6,5), & (6,6) \end{Bmatrix}, \end{align*}

tomando como σ-álgebra a $\mathscr{P}(\Omega)$ y con la medida de probabilidad clásica, $\Prob{A} = \frac{|A|}{|\Omega|}$, para cada $A \in \mathscr{P}(\Omega)$. Definimos la variable aleatoria $S\colon\Omega\to\RR$ de la siguiente manera: para cada $(\omega_{1}, \omega_{2}) \in \Omega$,

\[ S(\omega_{1}, \omega_{2}) = \omega_{1} + \omega_{2}. \]

Primero, observa que esto es algo que ya habíamos hecho antes, pero sin variables aleatorias: $S$ corresponde a la suma de los resultados de los dos lanzamientos de dado. Observa que los posibles valores que puede tomar esta variable aleatoria son los números naturales del $2$ al $12$. Por ejemplo, ¿cuál sera la probabilidad de $(S = 6)$? Para ello, veamos cuáles son los elementos de este evento.

\begin{align*} (S = 6) = \{\, (\omega_{1}, \omega_{2}) \in \Omega \mid S(\omega_{1}, \omega_{2}) = 6 \,\} &= \{\, (\omega_{1}, \omega_{2}) \in \Omega \mid \omega_{1} + \omega_{2} = 6 \,\} \\[0.5em] &= \{ (1,5), (2,4), (3,3), (4,2), (5,1) \}. \end{align*}

En consecuencia, tenemos que

\[ \Prob{S = 6} = \Prob{\{ (1,5), (2,4), (3,3), (4,2), (5,1) \}} = \frac{5}{36}. \]

Entonces la probabilidad de que la variable aleatoria tome el valor $6$ es de $\frac{5}{36} \approx 0.1389$.

De hecho, es posible establecer una fórmula para la probabilidad de cada resultado de este experimento. Nos quedaría como sigue:

\[ \Prob{S = s} = \begin{cases} \frac{6 – |s – 5|}{36} & \text{si $s \in \{2,3,4,5,6,7,8,9,10,11,12\}$}, \\[0.25em] 0 & \text{en otro caso}. \end{cases} \]

Observa que es necesario definir a $\Prob{S = s}$ como $0$ incluso cuando $s$ no es uno de los valores que puede tomar la variable aleatoria. Esto pasa porque los eventos de la forma $(S = s)$ están definidos para todos los $s \in \RR$, así que la probabilidad de estos eventos debe de definirse, incluso si es $0$. Por ejemplo, la probabilidad de que $(S = 7.34)$ es $0$, pues no es uno de los valores que puede tomar $S$.

Por otro lado, ¿cuál es la probabilidad de que $(S \leq 4)$? Hay que ver cuáles son los pares de lanzamientos que hacen que $S$ sea menor o igual que $4$:

\begin{align*} (S \leq 4) = \{\, (\omega_{1}, \omega_{2}) \in \Omega \mid S(\omega_{1}, \omega_{2}) \leq 4 \,\} &= \{\, (\omega_{1}, \omega_{2}) \in \Omega \mid \omega_{1} + \omega_{2} \leq 4 \,\} \\[0.5em] &= \{ (1,1), (1,2), (1,3), (2,1), (2,2), (3,1) \}. \end{align*}

En consecuencia se tiene que $\Prob{S \leq 4} = \frac{6}{36} = \frac{1}{6} \approx 0.1667$. Otra manera de hacerlo es sumar las probabilidades de que $S$ tome los valores menores o iguales a $4$, sobre aquellos valores que puede tomar. Esto es,

\begin{align*} \Prob{S \leq 4} = \sum_{k=2}^{4} \Prob{S = k} &= \Prob{S = 2} + \Prob{S = 3} + \Prob{S = 4} \\ &= \frac{1}{36} + \frac{2}{36} + \frac{3}{36} \\ &= \frac{6}{36} \\ &= \frac{1}{6} \end{align*}

Esto es algo que se cumple para aquellas variables aleatorias que pueden tomar a lo más una cantidad numerable de valores, como es el caso de $S$. Lo mismo pasa aún cuando el evento que nos interesa involucra a un valor que $S$ no puede tomar. Por ejemplo, $\Prob{S \leq 3.76}$ se puede calcular como

\[ \Prob{S \leq 3.76} = \Prob{S = 2} + \Prob{S = 3} = \frac{1}{36} + \frac{2}{36} = \frac{3}{36} = \frac{1}{12}, \]

pues los valores que puede tomar $S$ que son menores o iguales a $3.76$ son $2$ y $3$.


Las variables aleatorias de estos ejemplos son conocidas como discretas porque la cardinalidad del conjunto de valores que pueden tomar es finito. Más adelante veremos con propiedad lo que es una variable aleatoria discreta. Sin embargo, a pesar de que podemos definir muchos ejemplos de variables aleatorias con su regla de correspondencia, veremos más adelante que podemos prescindir por completo de esto. Así, lo único que importará es la probabilidad de los eventos de la forma $(X \leq x)$, sin necesidad de mencionar explícitamente a $\Omega$.

Tarea moral

Los siguientes ejercicios son opcionales. Es decir, no formarán parte de tu calificación. Sin embargo, te recomiendo resolverlos para que desarrolles tu dominio de los conceptos abordados en esta entrada.

  1. De acuerdo con la notación probabilista adoptada en esta entrada, ¿cómo se escribe el evento $( X = 4 )$ sin usar la notación? ¿Y cómo se escribe $\{ \, \omega \in \Omega \mid X(\omega) = 3 \, \}$ utilizando la notación?
  2. De acuerdo con la notación probabilista para eventos, ¿cómo se escribe el evento $(X < x)$ explícitamente (sin usar la notación)?
  3. Verifica que $\mathcal{M}$, visto en la demostración del teorema de esta entrada, es un σ-álgebra.
  4. En el Ejemplo 2:
    1. Verifica que la fórmula que dimos para $\Prob{S = s}$ es correcta.
    2. Calcula las probabilidades de que $(S < 6)$ y $(S \leq 5)$. ¿Qué puedes observar?

Más adelante…

Más adelante veremos que las variables aleatorias se pueden dividir en distintos tipos, dependiendo del tipo de conjunto de valores que pueden tomar. Además, en la siguiente entrada veremos que existen funciones que permiten capturar la probabilidad de cualquier evento asociado a una variable aleatoria $X$. De hecho, esto incluso nos permitirá omitir casi por completo al espacio muestral $\Omega$, y lo que importará será únicamente la probabilidad de los eventos asociados a $X$.

Por otro lado, en el contexto más general de la teoría de la medida, el concepto que definimos como variable aleatoria es conocido como función medible.

Entradas relacionadas

Probabilidad I: Teorema de Continuidad de la Probabilidad

Por Octavio Daniel Ríos García

Introducción

En la entrada previa a esta vimos el importantísimo teorema de Bayes. Por ahora dejaremos de lado las propiedades de la probabilidad condicional. En contraste, el teorema que veremos en esta entrada es un resultado teórico que será de utilidad mucho más adelante.

El tema de esta entrada es el teorema de continuidad de las medidas de probabilidad. Esencialmente, se trata de una propiedad que satisface toda medida de probabilidad. En particular, se relaciona con la noción que tienes de continuidad en funciones. Sin embargo, se trata de una propiedad más básica de continuidad para límites de eventos, que son conjuntos.

Conceptos previos

En el contexto de cálculo y análisis, una propiedad de las funciones continuas es su capacidad de «meter» el límite. Esto es, que si $\{ a_{n} \}_{n \in \mathbb{N}^{+}} \subseteq \RR$ es una sucesión de números reales tal que existe $a \in \RR$ que satisface $\lim_{n \to \infty} a_{n} = a$, y $f\colon\RR\to\RR$ es una función continua, entonces

\[ \lim_{n\to\infty} f(a_{n}) = f{\left( \lim_{n\to\infty} a_{n} \right)} = f(a). \]

Nosotros queremos ver que cualquier medida de probabilidad satisface una propiedad similar. Sin embargo, dado un espacio de probabilidad $(\Omega, \mathscr{F}, \mathbb{P})$, el dominio de $\mathbb{P}$ no es $\RR$, ¡es $\mathscr{F}$! Es decir, ¡el argumento de una medida de probabilidad es un conjunto! Por ello, es necesario presentar una noción de límite de eventos. La manera en que lo haremos será a través de las llamadas sucesiones crecientes.


Definición. Sea $(\Omega, \mathscr{F}, \mathbb{P})$ un espacio de probabilidad, y sea $\{A_{n}\}_{n\in\mathbb{N}^{+}} \subseteq \mathscr{F}$ una sucesión de eventos. Diremos que es una sucesión creciente de eventos si

\[ \forall n \in \mathbb{N}^{+}\colon A_{n} \subseteq A_{n+1}. \]

Esto es, que cada $A_{n}$ es un subconjunto del evento que le sigue, $A_{n+1}$. A veces esto se denota como $A_{1} \subseteq A_{2} \subseteq \ldots$ Por su parte, la unión

\[ A = \bigcup_{n=1}^{\infty} A_{n} \]

de una sucesión de este tipo es llamada el límite de la sucesión. Este hecho suele denotarse por $A_{n} \uparrow A$.


En la definición anterior, la unión $A = \bigcup_{n=1}^{\infty} A_{n}$ de una sucesión creciente de eventos es, nuevamente, un evento. Esto pasa gracias a las propiedades de un σ-álgebra y a que $\{A_{n}\}_{n\in\mathbb{N}^{+}}$ es una familia numerable de eventos.

Por otro lado, también se define la noción de sucesión decreciente de eventos como sigue.


Definición. Sea $(\Omega, \mathscr{F}, \mathbb{P})$ un espacio de probabilidad, y sea $\{A_{n}\}_{n\in\mathbb{N}^{+}} \subseteq \mathscr{F}$ una sucesión de eventos. Diremos que es una sucesión decreciente de eventos si

\[ \forall n \in \mathbb{N}^{+}\colon A_{n} \supseteq A_{n+1}. \]

Es decir, cada $A_{n}$ contiene (como subconjunto) al evento que le sigue, $A_{n+1}$. En ocasiones, esto se denota como $A_{1} \supseteq A_{2} \supseteq \cdots$ Además, la intersección

\[ A = \bigcap_{n=1}^{\infty} A_{n} \]

de una sucesión de este tipo es llamada el límite de la sucesión. Este hecho suele denotarse por $A_{n} \downarrow A$.


De la misma manera que con una sucesión creciente, la intersección $A = \bigcap_{n=1}^{\infty} A_{n}$ de una sucesión decreciente de eventos también es un evento.

La continuidad de una medida de probabilidad

A continuación presentamos el teorema de continuidad de una medida de probabilidad.


Teorema. Sea $(\Omega, \mathscr{F}, \mathbb{P})$ un espacio de probabilidad. Entonces se cumplen las siguientes propiedades.

  1. Si $\{ A_{n} \}_{n\in\mathbb{N}^{+}}$ es una sucesión creciente de eventos, entonces\[ \lim_{n\to\infty} \Prob{A_{n}} = \Prob{\bigcup_{n=1}^{\infty} A_{n}}. \]
  2. Si $\{ A_{n} \}_{n\in\mathbb{N}^{+}}$ es una sucesión decreciente de eventos, entonces\[ \lim_{n\to\infty} \Prob{A_{n}} = \Prob{\bigcap_{n=1}^{\infty} A_{n}}. \]

Demostración. Para demostrar 1, podemos utilizar un truco que usamos hace ya varias entradas. Esto es, que

\[ \bigcup_{n=1}^{\infty} A_{n} = A_{1} \cup (A_{2} \smallsetminus A_{1}) \cup (A_{3} \smallsetminus A_{2}) \cup \cdots \]

Es decir, si para cada $i \in \mathbb{N}^{+}$ definimos $B_{i} = A_{i} \smallsetminus A_{i−1}$, con $A_{0} = \emptyset$, se tiene que

\[ \bigcup_{n=1}^{\infty} A_{n} = \bigcup_{n=1}^{\infty} B_{n}. \]

Además, observa que los conjuntos $B_{i}$ son ajenos dos a dos, por construcción. Entonces podemos aplicar la σ-aditividad de $\mathbb{P}$ para obtener que

\begin{align*} \Prob{\bigcup_{n=1}^{\infty} A_{n}} &= \Prob{B_{1}} + \Prob{B_{2}} + \Prob{B_{3}} + \cdots \\ &= \lim_{n\to\infty} \sum_{k=1}^{n} \Prob{B_{k}}. \end{align*}

Sin embargo, sabemos que para cada $i \in \mathbb{N}^{+}$ se cumple que $A_{i} \subseteq A_{i+1}$ y $B_{i} = A_{i} \smallsetminus A_{i−1}$, así que para cada $i \in \mathbb{N}^{+}$ se tiene que

\[ \Prob{B_{i}} = \Prob{A_{i} \smallsetminus A_{i−1}} = \Prob{A_{i}} − \Prob{A_{i−1}}. \]

Por lo tanto,

\begin{align*} \Prob{ \cup_{n=1}^{\infty} A_{n}} &= \lim_{n\to\infty} \sum_{k=1}^{n} [\Prob{A_{k}} − \Prob{A_{k−1}}] \\ &= \lim_{n\to\infty} [\Prob{A_{n}} − \Prob{A_{0}}] \\ &= \lim_{n\to\infty} [\Prob{A_{n}} − \Prob{\emptyset}] \\ &= \lim_{n\to\infty} \Prob{A_{n}}, \end{align*}

que es justamente lo que queríamos demostrar.

$\square$

Para demostrar la parte 2 del teorema puede usarse la parte 1 de manera conveniente. La manera de hacerlo viene detallada (a manera de instrucciones) en la tarea moral.

Una aplicación del teorema de continuidad

A pesar de que, de momento, no utilizaremos con profundidad el teorema que acabamos de ver, es posible hacer un ejemplo donde se aplica de manera no teórica.

Ejemplo. Es intuitivamente claro que la probabilidad de nunca obtener un «águila» en una infinidad de lanzamientos de una moneda equiprobable es $0$. Podemos demostrarlo usando el teorema anterior. En primer lugar, el espacio muestral de este experimento es

\[ \Omega = {\left\lbrace (x_{n} )_{n\in\mathbb{N}^{+}} \mid \forall i \in \mathbb{N}^{+}\colon x_{i} \in \{ \mathrm{A, B} \} \right\rbrace} \]

el conjunto de todas las sucesiones infinitas de $\mathrm{A}$’s y $\mathrm{S}$’s. Para cada $i \in \mathbb{N}^{+}$, definimos los conjuntos

\begin{align*} A_{i} &= {\left\lbrace (x_{n})_{n\in\mathbb{N}^{+}} \in \Omega \mid x_{i} = \mathrm{A} \right\rbrace}, \\ S_{i} &= {\left\lbrace (x_{n})_{n\in\mathbb{N}^{+}} \in \Omega \mid x_{i} = \mathrm{S} \right\rbrace} \end{align*}

Es decir, $A_{i}$ es el conjunto de todas las sucesiones infinitas de $\mathrm{A}$’s y $\mathrm{S}$’s tales que su $i$-ésima entrada es una $\mathrm{A}$. Por ejemplo, para $A_{1}$, se tiene que

\begin{align*} (\mathrm{A, S, S, A, A, A, A, A, \ldots}) &\in A_{1}, \\ (\mathrm{A, S, S, S, S, S, S, S, \ldots}) &\in A_{1}, \\ (\mathrm{A, S, A, S, A, S, A, S, \ldots}) &\in A_{1}, \end{align*}

etcétera. El subíndice de $A_{i}$ indica que la $i$-ésima entrada de todos sus elementos es $\mathrm{A}$. Análogamente, $S_{i}$ es el conjunto de todas las sucesiones infinitas de $\mathrm{A}$’s y $\mathrm{S}$’s tales que su $i$-ésima entrada es una $\mathrm{S}$. Ahora, considera la siguiente familia de subconjuntos de $\Omega$:

\[ \mathscr{C} = \{ A_{i} \mid i \in \mathbb{N}^{+} \} \cup \{ S_{i} \mid i \in \mathbb{N}^{+} \} \]

Esto es, $\mathscr{C} \subseteq \mathscr{P}(\Omega)$ es el conjunto cuyos elementos son todos los $A_{i}$’s y todos los $B_{i}$’s. De este modo, tomaremos a $\sigma(\mathscr{C})$ como σ-álgebra.

Ahora, definimos nuestra medida de probabilidad para los $A_{i}$’s y $B_{i}$’s como sigue: para cada $i \in \mathbb{N}^{+}$, la probabilidad de $A_{i}$ y $B_{i}$ se define como

\[ \Prob{A_{i}} = \frac{1}{2}, \]

\[ \Prob{B_{i}} = 1 − \frac{1}{2}, \]

La definimos de esta forma pues asumimos que la moneda es equiprobable, por lo que la probabilidades de que en la $i$-ésima posición salga «águila» o salga «sol» deben de ser iguales. Además, le pediremos a $\mathbb{P}$ que cualquier familia de $A_{i}$’s y $S_{i}$’s sean independientes. Esto es, que para todo $n \in \mathbb{N}^{+}$, los eventos $A_{1}$, $A_{2}$, …, $A_{n}$ son independientes. Esto asegura que también sus complementos, $S_{1}$, $S_{2}$, …, $S_{n}$ forman una familia de eventos independientes.

Ahora, para cada $n \in \mathbb{N}^{+}$, definamos el evento $C_{n}$ como el evento en el que, de los primeros $n$ lanzamientos, ninguno es un águila. Observa que, en términos de $A_{i}$’s y $S_{i}$’s, $C_{n}$ sería

\[ C_{n} = \bigcap_{k=1}^{n} S_{k}, \]

Pues $S_{1}$ son todas aquellas sucesiones cuya primera entrada está fija como un $\mathrm{S}$, $S_{2}$ son todas aquellas en donde la segunda entrada está fija como un $\mathrm{S}$, y así sucesivamente hasta llegar a $S_{n}$. Al intersecar esos eventos, el evento resultante es aquel en el que las primeras $n$ entradas están fijas como una $\mathrm{S}$, por lo que es el evento en el que ninguno de los primeros $n$ lanzamientos es un águila. Además, observa que para cada $n \in \mathbb{N}^{+}$, se cumple que $C_{n} \supseteq C_{n+1}$. Es decir, $\{ C_{n} \}_{n\in\mathbb{N}^{+}}$ es una sucesión decreciente de eventos. Entonces, por el teorema de continuidad de la medida de probabilidad, se tiene que

\[ \lim_{n\to\infty} \Prob{C_{n}} = \Prob{\bigcap_{n=1}^{\infty} C_{n}}, \]

Por un lado, observa que

\[ \lim_{n\to\infty} \Prob{C_{n}} = \lim_{n\to\infty} \Prob{\bigcap_{k=1}^{n} S_{k}} = \lim_{n\to\infty} [\Prob{S_{1}} \cdot \Prob{S_{2}} \cdots \Prob{S_{n}}] = \lim_{n\to\infty} {\left( \frac{1}{2} \right)}^{n} = 0\]

donde $\Prob{\bigcap_{k=1}^{n} S_{k}} = \Prob{S_{1}} \cdot \Prob{S_{2}} \cdots \Prob{S_{n}}$ ocurre gracias a que supusimos que para todo $n \in \mathbb{N}^{+}$ los eventos $A_{1}$, $A_{2}$, …, $A_{n}$ son independientes.

En consecuencia, tenemos que

\[ \Prob{\bigcap_{n=1}^{\infty} C_{n}} = 0. \]

En conclusión, la probabilidad del evento $\bigcap_{n=1}^{\infty} C_{n}$ es $0$. Pero, ¿qué evento es ese? Observa que $\bigcap_{n=1}^{\infty} C_{n}$ es precisamente el evento de que nunca haya un águila, pues es la intersección de todos los eventos en los que los primeros $n$ lanzamientos no hay un águila. Esto es justamente lo que dictaba la intuición al inicio de este ejemplo.


Tarea moral

Los siguientes ejercicios son opcionales. Es decir, no formarán parte de tu calificación. Sin embargo, te recomiendo resolverlos para que desarrolles tu dominio de los conceptos abordados en esta entrada.

  1. Demuestra la parte 2 del teorema de continuidad. Sugerencia: Puedes utilizar la parte 1 del teorema, pues ya la demostramos.
    1. Para hacerlo, toma $\{ B_{n} \}_{n\in\mathbb{N}^{+}}$ una sucesión decreciente de eventos. Para cada $i \in \mathbb{N}^{+}$, define $A_{i} = B_{i}^{\mathsf{c}}$, donde el complemento es relativo a $\Omega$. Demuestra que $\{ A_{n} \}_{n\in\mathbb{N}^{+}}$ es una sucesión creciente de eventos.
    2. Ahora, sabiendo que $\{ A_{n} \}_{n\in\mathbb{N}^{+}}$ es una sucesión creciente de eventos, aplica la parte 1 del teorema. ¿Qué se obtiene?
    3. Usando la parte 1 del teorema se llega a que\[ \Prob{\bigcup_{n=1}^{\infty} A_{n}} = \lim_{n\to\infty} \Prob{A_{n}}. \]Sabiendo que cada $A_{i} = B_{i}^{\mathsf{c}}$, sustituye en la expresión anterior.
    4. Finalmente, usa la regla de complementación para concluir.

Más adelante…

Con esta entrada concluye la primera unidad de este curso. Esto es, aquí concluye el tratamiento de propiedades generales de las medidas de probabilidad. En la siguiente entrada comenzaremos el estudio de las variables aleatorias−que no son otra cosa que funciones cuyo dominio es el espacio muestral−y la gran cantidad conceptos asociados a estas.

Un consejo… ¡No olvides lo que vimos en esta unidad! Todo lo que vimos en esta unidad será importante para el resto de este curso, y para las materias de probabilidad y estadística que cursarás más adelante.

Entradas relacionadas

Probabilidad I: Teorema de Bayes

Por Octavio Daniel Ríos García

Introducción

En la última entrada vimos un resultado muy importante para el cálculo de probabilidades: el teorema de probabilidad total. En particular, vimos cómo aplicarlo en algunos ejemplos prácticos. Además, puede que sea necesario para demostrar algunos resultados teóricos más adelante.

Por otro lado, en uno de los ejemplos calculamos una probabilidad que no parecía tan evidente calcular. No obstante, usando las propiedades vistas hasta el momento, obtuvimos esa probabilidad. Por ello, en esta entrada vamos a presentar el resultado que captura ese comportamiento.

El teorema de Bayes

El resultado que presentamos a continuación es conocido como el teorema de Bayes. En español, este nombre comúnmente se pronunciado como se lee, «bayes». No obstante, recibe su nombre en honor a Thomas Bayes, un notable ministro y matemático inglés.


Teorema. Sea $(\Omega, \mathscr{F}, \mathbb{P})$ un espacio de probabilidad. Entonces para cualesquiera $A$, $B$ eventos tales que $\Prob{A}$, $\Prob{B} > 0$ se cumple que

\[ \Prob{A \mid B} = \frac{\Prob{A} \Prob{B \mid A}}{\Prob{B}}. \]


Demostración. Sean $A$, $B$ eventos tales que $\Prob{A}$, $\Prob{B} > 0$. Por la definición de la probabilidad condicional de $A$ dado $B$, sabemos que

\begin{equation} \label{eq:cond} \Prob{A \mid B} = \frac{\Prob{A \cap B}}{\Prob{B}}. \end{equation}

Por otro lado, gracias a la regla multiplicativa y como $\Prob{A} > 0$, sabemos que se cumple que $\Prob{A \cap B} = \Prob{A} \Prob {B \mid A}$. En consecuencia, sustituyendo esta expresión en \eqref{eq:cond}, se tiene que

\[ \Prob{A \mid B} = \frac{\Prob{A \cap B}}{\Prob{B}} = \frac{\Prob{A} \Prob{B \mid A}}{\Prob{B}}, \]

que es justamente lo que queríamos demostrar.

$\square$

El resultado anterior es el teorema de Bayes en su forma más sencilla. Esencialmente, el teorema relaciona la probabilidad condicional de $A$ dado $B$ con la de $B$ dado $A$. Es decir, otorga una manera de voltear los conjuntos dentro de la probabilidad condicional. Sin embargo, para que sea efectivo, las probabilidades de $A$ y de $B$ deben de ser conocidas, o al menos, calculables.

Extensión del teorema de Bayes

Es posible extender el teorema de Bayes usando el teorema de probabilidad total. El resultado queda como sigue.


Corolario (Teorema de Bayes extendido). Sea $(\Omega, \mathscr{F}, \mathbb{P})$ un espacio de probabilidad y sea $n \in \mathbb{N}^{+}$.

  1. Sea $\{A_{1}, \ldots, A_{n} \} \subseteq \mathscr{F}$ una partición finita de $\Omega$ tal que para cada $i \in \{1, \ldots, n\}$ se cumple que $\Prob{A_{i}} > 0$ y sea $B$ un evento tal que $\Prob{B} > 0$. Entonces para cada $k \in \{1,\ldots, n\}$ se cumple que \[ \Prob{A_{k} \mid B} = \frac{\Prob{B \mid A_{k}} \Prob{A_{k}}}{\sum_{i = 1}^{n} \Prob{B \mid A_{i}} \Prob{A_{i}} }. \]
  2. Sea $\{ A_{i} \}_{i \in \mathbb{N}^{+}} \subseteq \mathscr{F}$ una partición numerable de $\Omega$ tal que para cada $i \in \mathbb{N}^{+}$ se cumple que $\Prob{A_{i}} > 0$, y sea $B$ un evento tal que $\Prob{B} > 0$. Entonces para cada $k \in \mathbb{N}^{+}$ se cumple que \[ \Prob{A_{k} \mid B} = \frac{\Prob{B \mid A_{k}} \Prob{A_{k}}}{\sum_{i = 1}^{\infty} \Prob{B \mid A_{i}} \Prob{A_{i}} }. \]

Demostración. La demostración de este resultado no es complicada, y te la dejamos como tarea moral.

$\square$

Con este último corolario es posible atacar a aquellos problemas en los que $\Prob{B}$ no es conocida directamente, pero puede calcularse usando el teorema de probabilidad total.

En particular, dado un evento $A \in \mathscr{F}$ tal que $\Prob{A}$, $\Prob{A^{\mathsf{c}}} > 0$, resulta que $A$ y $A^{\mathsf{c}}$ forman una partición de $\Omega$. En tal caso, para cualquier evento $B \in \mathscr{F}$ que satisface $\Prob{B} > 0$ se cumple que

\[ \Prob{A \mid B} = \frac{\Prob{B \mid A} \Prob{A} }{ \Prob{B \mid A} \Prob{A} + \Prob{B \mid A^{\mathsf{c}} } \Prob{A^{\mathsf{c}} } }. \]

Ejemplos

Así como el teorema de probabilidad total, el teorema de Bayes puede aplicarse para dar solución a diversos ejercicios y problemas. A continuación, presentamos algunos ejemplos de su uso.

Ejemplos. En una compañía manufacturera de componentes electrónicos, los componentes fabricados reciben una calificación de acuerdo a su calidad: $\mathrm{A}$ para la mejor calidad, $\mathrm{B}$ para calidad media y $\mathrm{C}$ para calidad baja. De acuerdo con el registro de esta compañía, se encontró que $70\%$ de los componentes recibieron una calificación de $\mathrm{A}$, $18\%$ una calificación de $\mathrm{B}$, y $12\%$ una calificación de $\mathrm{C}$. Además, se encontró que un $2\%$ de los calificados con $\mathrm{A}$, $10\%$ de los calificados con $\mathrm{B}$ y $18\%$ de los calificados con $\mathrm{C}$ salieron defectuosos. Ahora, si un componente falla, ¿cuál es la probabilidad de que haya recibido una calificación de $\mathrm{B}$?

Primero, hay que organizar la información disponible. Sea $\Omega$ el espacio muestral de este experimento. $\Omega$ sería el conjunto de todos los componentes fabricados. Definamos los siguientes $4$ eventos:

  • $A$: el evento de escoger un componente con calificación $\mathrm{A}$.
  • $B$: el evento de escoger un componente con calificación $\mathrm{B}$.
  • $C$: el evento de escoger un componente con calificación $\mathrm{C}$.
  • $D$: el evento de escoger un componente defectuoso.

De acuerdo con la información dada, y asumiendo equiprobabilidad, se tiene que

\begin{align*}&\Prob{A} = 0.7 \\ &\Prob{D \mid A} = 0.02\end{align*}

\begin{align*}&\Prob{B} = 0.18 \\ &\Prob{D \mid B} = 0.1\end{align*}

\begin{align*}&\Prob{C} = 0.12 \\ &\Prob{D \mid C} = 0.18,\end{align*}

Lo que se nos pide es la probabilidad de que un componente haya recibido una calificación de $\mathrm{B}$ dado que salió defectuoso. Es decir, queremos obtener $\Prob{B \mid D}$. Observa que los eventos $A$, $B$ y $C$ constituyen una partición de $\Omega$. Por lo tanto, usando el teorema de Bayes tenemos que

\begin{align*} \Prob{B \mid D} = \frac{\Prob{D \mid B} \Prob{B}}{\Prob{D}} &= \frac{\Prob{D \mid B} \Prob{B}}{\Prob{D \mid A}\Prob{A} + \Prob{D \mid B}\Prob{B} + \Prob{D \mid C}\Prob{C}} \\ &= \frac{(0.1)(0.18)}{(0.02)(0.7) + (0.1)(0.18) + (0.18)(0.12)} \\ &\approx 0.3358 \end{align*}

por lo que si un componente falla, la probabilidad de que haya recibido una calificación de $\mathrm{B}$ es aproximadamente $0.3358 = 33.58\%$.


Ejemplo. Un paciente acude a una cita con su médico. El médico le realiza una prueba que tiene un $99\%$ de fiabilidad. Es decir, un $99\%$ de las personas que están enfermas salen positivas, y un $99\%$ de las personas sanas salen negativas. El doctor sabe que sólamente el $1\%$ de la gente en su país tienen esa enfermedad. Si el paciente sale positivo, ¿cuál es la probabilidad de que esté enfermo?

Antes de exponer la solución, de acuerdo con la información que tenemos, aparentemente la prueba es muy buena, ya que la fiabilidad parece ser suficientemente buena como para determinar con certeza si el paciente está enfermo o no.

Como es costumbre, desglosemos la información que nos están dando. Primero, definimos los siguientes eventos:

  • $E$: el evento de que el paciente esté enfermo.
  • $P$: el evento de que la prueba salga positiva.

Considerando la información dada, sabemos que

  • La probabilidad de que la prueba salga positiva dado que el paciente está enfermo es de $0.99$. Es decir, $\Prob{P \mid E} = 0.99$.
  • De igual forma, la probabilidad de que la prueba salga negativa dado que el paciente está sano es de $0.99$. Por ello, $\Prob{P^{\mathsf{c}} \mid E^{\mathsf{c}}} = 0.99$. Además, $\Prob{P \mid E^{\mathsf{c}} } = 1 − \Prob{P^{\mathsf{c}} \mid E^{\mathsf{c}}}$, por lo que $\Prob{P \mid E^{\mathsf{c}} } = 0.01$.
  • Sólamente el $1\%$ de la población tiene esa enfermedad, por lo que $\Prob{E} = 0.01$. En consecuencia, $\Prob{E^{\mathsf{c}}} = 1 − \Prob{E} = 0.99$.

Nos interesa calcular la probabilidad de que el paciente esté enfermo dado que la prueba salió positiva. Por ello, queremos $\Prob{E \mid P}$. Observa que los conjuntos $E$ y $E^{\mathsf{c}}$ forman una partición del espacio muestral. Aplicando el teorema de Bayes tenemos que

\begin{align*} \Prob{E \mid P} = \frac{\Prob{P \mid E} \Prob{E}}{\Prob{P}} &= \frac{\Prob{P \mid E} \Prob{E}}{\Prob{P \mid E} \Prob{E} + \Prob{P \mid E^{\mathsf{c}} } \Prob{E^{\mathsf{c}}} } \\ &= \frac{(0.99)(0.01)}{(0.99)(0.01) + (0.01)(0.99)} \\ &= 0.5 \end{align*}

En conclusión, la probabilidad de que el paciente esté enfermo dado que la prueba salió positiva es de $0.5 = 50\%$. Como dirían por ahí, ¡resulta que es un volado! Contrario a lo que indica la información sobre la fiabilidad de la prueba, este valor es para nada satisfactorio.


Tarea moral

Los siguientes ejercicios son opcionales. Es decir, no formarán parte de tu calificación. Sin embargo, te recomiendo resolverlos para que desarrolles tu dominio de los conceptos abordados en esta entrada.

  1. Demuestra el teorema de Bayes extendido. Para ello, utiliza el teorema de Bayes en conjunto con el teorema de probabilidad total.
  2. En el ejemplo de los componentes electrónicos calculamos $\Prob{B \mid D}$. Retoma este ejemplo y haz lo siguiente:
    1. Calcula $\Prob{A \mid D}$ y $\Prob{C \mid D}$, e interprétalas.
    2. Calcula la suma de las tres probabilidades. ¿Cuánto te da? ¿Por qué?
  3. Retoma el ejemplo de las pruebas para enfermedad.
    1. Calcula $\Prob{E \mid P^{\mathsf{c}} }$. Esta es la probabilidad condicional de $E$ dado $P^{\mathsf{c}}$, ¿esto qué significa?
    2. Supón que el médico viaja a otro país en el que sólamente el $0.5\%$ de la población padece la enfermedad. Es decir, $\Prob{E} = 0.005$. Calcula $\Prob{E \mid P}$ bajo este nuevo supuesto. ¿Cómo cambia con respecto al valor obtenido en el ejemplo?

Más adelante…

Así como el teorema de probabilidad total, el teorema de Bayes es una herramienta muy útil en el cálculo de probabilidades. También hay situaciones teóricas en las que puede resultar de utilidad. Además, si decides cursar la materia de Estadística Bayesiana, el teorema de Bayes es uno de sus fundamentos. En esta materia se le da una interpretación especial a lo que estipula este teorema, y permite el desarrollo de un enfoque estadístico distinto del frecuentista.

En la siguiente entrada veremos un resultado teórico conocido como el teorema de continuidad de la probabilidad. Es mucho más teórico, pero exhibe una propiedad importante que tienen todas las medidas de probabilidad.

Entradas relacionadas

Probabilidad I: Teorema de Probabilidad Total

Por Octavio Daniel Ríos García

Introducción

En las entradas dos entradas pasadas hemos abordado temas que corresponden a la interacción entre eventos. En particular, si existe «dependencia» entre ellos, y cómo esta «dependencia» afecta sus probabilidades.

Siguiendo con estas ideas, en esta entrada veremos un resultado muy útil al momento de calcular probabilidades, conocido como el teorema de probabilidad total. La idea de este teorema se basa en tener una partición del espacio muestral $\Omega$. Con base en esto, cualquier evento puede partirse en varios pedazos, uno por cada elemento de la partición, que serán pedazos ajenos. En consecuencia, la probabilidad de cada evento podrá ser calculada a partir de la suma de las probabilidades de estos pedazos. Esto nos dará una herramienta muy útil para calcular probabilidades de eventos cuya probabilidad no es evidente en principio.

Consideraciones previas

En la entrada de Probabilidad Condicional vimos un ejemplo sobre unas latas de refresco y de cerveza. Vimos que cuando tenemos un evento $B \subseteq \Omega$, dado cualquier otro evento $A$ podemos «partir» a $B$ de la siguiente manera:

\begin{align*} B &= B \cap \Omega \\ &= B \cap (A \cup A^{\mathsf{c}}) \\ &= (B \cap A) \cup (B \cap A^{\mathsf{c}}), \end{align*}

En consecuencia, $B$ puede descomponerse en dos pedazos ajenos: $B \cap A$ y $B \cap A^{\mathsf{c}}$. Lo que permitió hacer esta descomposición ajena es que $A$ y $A^{\mathsf{c}}$ son eventos ajenos y que satisfacen $A \cup A^{\mathsf{c}} = \Omega$. Es decir, $A$ y $A^{\mathsf{c}}$ forman una partición del espacio muestral $\Omega$.

No obstante, no siempre se utiliza un evento $A$ y su complemento $A^{\mathsf{c}}$ como partición, ¡cualquier partición de $\Omega$ funciona! En particular, las que nos serán de utilidad son dos tipos de particiones: las finitas y las infinitas numerables. Por si no recuerdas bien la definición de partición, la incluimos a continuación.


Definición. Sea $\Omega$ un conjunto y sea $n \in \mathbb{N}^{+}$. Diremos que una familia finita de conjuntos $\{ B_{1}, B_{2}, \ldots, B_{n} \}$ es una partición finita de $\Omega$ si se cumplen las siguientes condiciones:

  1. Para cada $i \in\{1, \ldots, n\}$ se cumple que $B_{i} \neq \emptyset$.
  2. Para cualesquiera $i$, $j \in \{1, \ldots, n\}$, si $i \neq j$ entonces $B_{i} \cap B_{j} = \emptyset$. Es decir, los elementos de la familia $\{ B_{1}, B_{2}, \ldots, B_{n} \}$ son ajenos dos a dos.
  3. La unión de todos los elementos de la familia $\{ B_{1}, B_{2}, \ldots, B_{n} \}$ es el conjunto $\Omega$: \[\bigcup_{i=1}^{n} B_{i} = \Omega.\]


Definición. Sea $\Omega$ un conjunto. Diremos que una familia numerable de conjuntos $\{ B_{n} \}_{n \in \mathbb{N}^{+}}$ es una partición numerable de $\Omega$ si se cumplen las siguientes condiciones:

  1. Para cada $i \in \mathbb{N}^{+}$ se cumple que $B_{i} \neq \emptyset$.
  2. Para cualesquiera $i$, $j \in \mathbb{N}^{+}$, si $i \neq j$ entonces $B_{i} \cap B_{j} = \emptyset$. Es decir, los elementos de la familia $\{ B_{n} \}_{n \in \mathbb{N}^{+}}$ son ajenos dos a dos.
  3. La unión de todos los elementos de la familia $\{ B_{n} \}_{n \in \mathbb{N}^{+}}$ es el conjunto $\Omega$: \[\bigcup_{i=1}^{\infty} B_{i} = \Omega.\]

El teorema de probabilidad total

A continuación, presentamos el teorema de probabilidad total, también conocido como ley de probabilidad total.


Teorema. Sea $(\Omega, \mathscr{F}, \mathbb{P})$ un espacio de probabilidad y sea $\mathscr{U} \subseteq \mathscr{F}$ una partición a lo más numerable de $\Omega$ (es decir, $\mathscr{U}$ es finita o numerable). Entonces para cualquier evento $A$ se cumple que

\begin{equation} \label{eq:tot} \Prob{A} = \sum_{B \in \mathscr{U}} \Prob{A \cap B}. \end{equation}

Más aún, si $\mathscr{U}^{+} = \{ B \in \mathscr{U} \mid \Prob{B} > 0 \}$, entonces se tiene que

\begin{equation} \label{eq:pos} \Prob{A} = \sum_{B \in \mathscr{U}^{+}} \Prob{A \mid B} \Prob{B}. \end{equation}

Esto es, la suma en \eqref{eq:pos} se hace sobre aquellos $B$’s que satisfacen $\Prob{B} > 0$.


Demostración. Sea $A \in \mathscr{F}$ un evento. Para demostrar la validez de \eqref{eq:tot}, primero hay que observar que

\begin{align*} A &= A \cap \Omega \\ &= A \cap {\left( \bigcup_{B \in \mathscr{U}} B \right)} \\ &= \bigcup_{B \in \mathscr{U}} (A \cap B), \end{align*}

pues $\mathscr{U}$ es una partición de $\Omega$. Además, por el mismo motivo, para cualesquiera $B$, $C \in \mathscr{U}$ se cumple que si $B \neq C$, entonces $(A \cap B) \cap (A \cap C) = \emptyset$. Por su parte, sabemos que $\mathbb{P}$ es una medida de probabilidad, así que $\mathbb{P}$ es σ-aditiva y finitamente aditiva, por lo que

\begin{align*} \Prob{A} &= \Prob{\bigcup_{B \in \mathscr{U}} (A \cap B)} \\ &= \sum_{B \in \mathscr{U}} \Prob{A \cap B}, \end{align*}

lo cual demuestra la validez de \eqref{eq:tot}. Para verificar la validez de \eqref{eq:pos}, observa que para cada evento $B \in \mathscr{U}$ tal que $\Prob{B} = 0$ se cumple que $\Prob{A \cap B} = 0$, pues $A \cap B \subseteq B$. En consecuencia, la suma en \eqref{eq:tot} puede tener algunos términos que son $0$.

Por lo tanto, si $\mathscr{U}^{+} = \{ B \in \mathscr{U} \mid \Prob{B} > 0 \}$, se tiene que

\[ \sum_{B \in \mathscr{U}} \Prob{A \cap B} = \sum_{B \in \mathscr{U}^{+}} \Prob{A \cap B} \]

Ahora, para aquellos $B \in \mathscr{U}$ para los cuales $\Prob{B} > 0$, vimos en la entrada de Probabilidad Condicional que $\Prob{A \cap B} = \Prob{A \mid B} \Prob{B}$. Entonces se cumple que

\[ \Prob{A} = \sum_{B \in \mathscr{U}^{+}} \Prob{A \cap B} = \sum_{B \in \mathscr{U}^{+}} \Prob{A \mid B} \Prob{B}, \]

y así queda demostrada la validez de la ecuación \eqref{eq:pos}.

$\square$

Las fórmulas de la ley de probabilidad total

Para la demostración anterior utilizamos una escritura no muy común al momento de presentar la ley de probabilidad total (denotando a la partición como $\mathscr{U}$). No obstante, el teorema cubre los casos para particiones finitas y numerables. Además, también contempla aquellos casos en los que algunos de los eventos de la partición tienen probabilidad $0$.

A continuación, presentaremos dos fórmulas de la ley de probabilidad total como se usan cotidianamente.


Resultados. Sea $(\Omega, \mathscr{F}, \mathbb{P})$ un espacio de probabilidad y sea $n \in \mathbb{N}^{+}$.

  1. Sea $\{B_{1}, \ldots, B_{n}\} \subseteq \mathscr{F}$ una partición de $\Omega$ tal que para cada $i \in \{1, \ldots, n\}$ se cumple que $\Prob{B_{i}} > 0$. Entonces para cualquier evento $A$ se cumple que\[ \Prob{A} = \sum_{i = 1}^{n} \Prob{A \mid B_{i}} \Prob{B_{i}}. \]
  2. Sea $\{B_{i}\}_{i\in \mathbb{N}^{+}} \subseteq \mathscr{F}$ una partición numerable de $\Omega$ tal que para cada $i \in \mathbb{N}^{+}$ se cumple que $\Prob{B_{i}} > 0$. Entonces para cualquier evento $A$ se tiene que\[ \Prob{A} = \sum_{i=1}^{\infty} \Prob{A \mid B_{i}} \Prob{B_{i}}. \]

Ejemplo 1. En una empresa de tecnología se compran teclados para los trabajadores. Dichos teclados provienen de $3$ compañías distintas. La compañía $1$ provee el $60\%$ de los teclados, la compañía $2$ provee el $30\%$, y el $10\%$ restante proviene de la compañía $3$. La empresa de tecnología ha tenido experiencia previa con estas compañías y ha recaudado la siguiente información:

  • $2\%$ de los teclados de la compañía $1$ son defectuosos,
  • $3\%$ de los teclados de la compañía $2$ son defectuosos,
  • y $5\%$ de los teclados de la compañía $3$ son defectuosos.

Si una de las computadoras de los empleados de la empresa es elegida, al azar, ¿cuál es la probabilidad de que tenga un teclado defectuoso?

Denotemos por $\Omega$ al espacio muestral de este ejemplo. En este caso, $\Omega$ sería el conjunto de todos los teclados de las computadoras de la empresa. Para dar solución a este problema, considera los siguientes eventos:

  • $C_{1}$: el evento de que el teclado provenga de la compañía $1$, así que $\Prob{C_{1}} = 0.6$
  • $C_{2}$: el evento de que el teclado provenga de la compañía $2$, por lo que $\Prob{C_{2}} = 0.3$
  • y $C_{3}$: el evento de que el teclado provenga de la compañía $3$, y así, $\Prob{C_{3}} = 0.1$.

Por otro lado, define el evento $D$ como sigue:

  • $D$: el teclado elegido es defectuoso.

Aquí lo que nos interesa es obtener $\Prob{D}$. Por la información que nos dieron al inicio de este ejemplo, sabemos que

\begin{align*} &\Prob{C_{1}} = 0.6 \\ &\Prob{D \mid C_{1}} = 0.02 \end{align*}

\begin{align*} &\Prob{C_{2}} = 0.3 \\ &\Prob{D \mid C_{2}} = 0.03 \end{align*}

\begin{align*} &\Prob{C_{3}} = 0.1 \\ &\Prob{D \mid C_{3}} = 0.05. \end{align*}

Además, los eventos $C_{1}$, $C_{2}$ y $C_{3}$ forman una partición de $\Omega$, pues ninguno es vacío, son ajenos dos a dos y su unión es $\Omega$. En consecuencia, podemos aplicar la ley de probabilidad total para $n = 3$, que nos dice que

\[ \Prob{D} = \Prob{D \mid C_{1}} \Prob{C_{1}} + \Prob{D \mid C_{2}} \Prob{C_{2}} + \Prob{D \mid C_{3}} \Prob{C_{3}}, \]

y gracias a la información del ejercicio, esto significa que

\[ \Prob{D} = (0.02)(0.6) + (0.03)(0.3) + (0.05)(0.1) = 0.026, \]

así que la probabilidad de escoger un teclado defectuoso es $0.026 = 2.6\%$.


Con los resultados que tenemos hasta ahora, es posible calcular probabilidades más ambiciosas que aparentemente no podríamos calcular directamente. El siguiente ejemplo retoma lo visto en el anterior, pero calcularemos algo distinto.

Ejemplo 2. Retomando el ejemplo anterior, abordemos una pregunta distinta. Si al seleccionar una computadora se encuentra que esta tiene un teclado defectuoso, ¿cuál es la probabilidad de que este teclado provenga de la compañía $3$?

Observa que ahora la probabilidad que nos interesa es diferente. Por lo que dice la pregunta, el evento que está dado es $D$, así que nos interesa calcular $\Prob{C_{3} \mid D}$. Utilizando las definiciones y resultados vistos hasta ahora, podemos ver que

\[ \Prob{C_{3} \mid D} = \frac{\Prob{C_{3} \cap D}}{\Prob{D}} = \frac{\Prob{D \mid C_{3}}\Prob{C_{3}}}{\Prob{D \mid C_{1}}\Prob{C_{1}} + \Prob{D \mid C_{2}}\Prob{C_{2}} + \Prob{D \mid C_{3}}\Prob{C_{3}}}, \]

Los valores en la fracción anterior son todos conocidos, por lo que

\[ \Prob{C_{3} \mid D} = \frac{(0.05)(0.1)}{(0.02)(0.6) + (0.03)(0.3) + (0.05)(0.1)} = \frac{0.005}{0.026} = \frac{5}{26} \approx 0.1923,\]

así que la probabilidad de que el teclado elegido provenga de la compañía $3$ dado que es defectuoso es $0.1923 = 19.23\%$.


El desarrollo de la expresión para $\Prob{C_{3} \mid D}$ que hicimos en el último ejemplo corresponde a un resultado que veremos en la siguiente entrada: el teorema de Bayes. Antes de terminar esta entrada, veamos otro ejemplo utilizando la ley de probabilidad total.

Ejemplo 3. Supón que tenemos $2$ cajas llenas de pelotas. En la primera caja, hay $4$ pelotas blancas y $8$ pelotas negras, mientras que en la segunda hay $8$ blancas y $6$ negras. Si elegimos una caja al azar y luego, de esta caja, se extrae una pelota al azar, ¿cuál es la probabilidad de obtener una pelota negra?

Como es costumbre, hay que definir el espacio muestral y los eventos que nos interesan. Podemos pensar que el espacio muestral $\Omega$ es el conjunto de todas las pelotas disponibles. Estas pueden ser de alguno de dos tipos: provenientes de la caja $1$ o de la caja $2$. Definimos los siguientes eventos:

  • $C_{1}$: el evento de que se escoge una pelota de la caja $1$.
  • $C_{2}$: el evento de que se escoge una pelota de la caja $2$.
  • $B$: el evento de que se escoge una pelota blanca.
  • $N$: el evento de que se escoge una pelota negra.

De acuerdo con la información que nos proporciona el ejemplo, la elección de la caja es equiprobable, por lo que $\Prob{C_{1}} = \frac{1}{2}$ y $\Prob{C_{2}} = \frac{1}{2}$. Por su parte, la pregunta del ejemplo nos indica que hay que calcular $\Prob{N}$. Observa que los eventos $C_{1}$ y $C_{2}$ forman una partición de $\Omega$, pues son no vacíos (por construcción), son ajenos (pues una pelota no puede estar en ambas cajas) y $C_{1} \cup C_{2} = \Omega$, pues en las dos cajas se encuentran todas las pelotas de este ejemplo.

Ahora, la redacción del problema nos dice que una vez que se escogió la caja, se toma una pelota al azar. Es decir, de manera equiprobable. Por ello, tenemos que

\begin{align*} &\Prob{C_{1}} = \frac{1}{2} \\ &\Prob{N \mid C_{1}} = \frac{8}{12} = \frac{2}{3} \end{align*}

\begin{align*} &\Prob{C_{2}} = \frac{1}{2} \\ &\Prob{N \mid C_{2}} = \frac{6}{14} = \frac{3}{7} \end{align*}

Podemos aplicar la ley de probabilidad total para ver que

\begin{align*} \Prob{N} = \Prob{N \mid C_{1}} \Prob{C_{1}} + \Prob{N \mid C_{1}} \Prob{C_{1}} = {\left( \frac{2}{3} \right)} {\left( \frac{1}{2} \right)} + {\left( \frac{3}{7} \right)} {\left( \frac{1}{2} \right)} = \frac{23}{42}. \end{align*}

Por lo tanto, la probabilidad de extraer una bola negra es de $\Prob{N} = \frac{23}{42} \approx 0.547 = 54.7\%$.


Tarea moral

Los siguientes ejercicios son opcionales. Es decir, no formarán parte de tu calificación. Sin embargo, te recomiendo resolverlos para que desarrolles tu dominio de los conceptos abordados en esta entrada.

  1. ¿Por qué es necesario que la familia de conjuntos en la ley de probabilidad total sea una partición? ¿Es posible hacer lo mismo con una familia de conjuntos que no forman una partición? Explica qué pasa cuando cada una de las propiedades de una partición no se cumplen.
  2. En la demostración de la ley de probabilidad total, explica por qué es necesario construir el conjunto \(\mathscr{U}^{+}\).
  3. Utiliza el método del ejemplo 2 para encontrar la probabilidad del evento \(C_{2}\).
  4. En el ejemplo 3, verifica que $\Prob{B} = 1 − \Prob{N}$. Para ello, calcula $\Prob{B}$, la probabilidad de obtener una pelota blanca, usando la ley de probabilidad total.

Más adelante…

El teorema de probabilidad total (y las fórmulas resultates) constituye una herramienta muy útil en el cálculo de probabilidades. Además, hay ejercicios y resultados teóricos que hacen uso de este teorema. Por ello, es recomendable que lo atesores bien, sirve mucho en las materias posteriores que tienen que ver con probabilidad.

Por otro lado, en la entrada siguiente veremos un resultado que ya presagiamos en esta entrada: el teorema de Bayes.

Entradas relacionadas

Probabilidad I: Independencia de Eventos

Por Octavio Daniel Ríos García

Introducción

En la entrada anterior introdujimos un nuevo concepto: la probabilidad condicional. Vimos que dada una medida de probabilidad $\mathbb{P}$, para un evento $A$ tal que $\Prob{A} > 0$, podemos calcular la probabilidad de que ocurra otro evento $B$ condicionado a que ya ocurrió $A$. Este concepto es importante, pues también habrá veces en las que la probabilidad condicional $\Prob{B \mid A}$ es la única que se conoce.

Por otro lado, hay algo que también nos debe de interesar. Para dos eventos $A$, $B$ tales que $\Prob{A} > 0$, ¿será siempre cierto que condicionar a que $A$ ya ocurrió cambia la probabilidad de $B$? Es decir, ¿siempre es cierto que $\Prob{B} \neq \Prob{B \mid A}$? La respuesta es que no. Al definir eventos, encontraremos casos en los que la probabilidad de uno no afecta la del otro. Esta propiedad es conocida como independencia de eventos. En esta entrada veremos la definición de independencia de $2$ eventos. Después, veremos cómo se extiende para $3$ o más eventos, pues no es inmediato deducirla a partir de la independencia de $2$ eventos.

Independencia de dos eventos

Sea $(\Omega, \mathscr{F}, \mathbb{P})$ un espacio de probabilidad. Dados dos eventos $A$ y $B$, es posible que al condicionar a que $A$ ya ocurrió, la probabilidad de $B$ no cambie. Esto es, que $\Prob{B} = \Prob{B \mid A}$. De manera intuitiva, esto quiere decir que la ocurrencia o no-ocurrencia de $A$ no cambia la probabilidad de $B$ (y viceversa). Esta propiedad es conocida como independencia, y se define a continuación:


Definición. Sea $(\Omega, \mathscr{F}, \mathbb{P})$ un espacio de probabilidad. Diremos que dos eventos $A$ y $B$ son independientes si se cumple que

\[ \Prob{A \cap B} = \Prob{A} \Prob{B}. \]


Una consecuencia inmediata de la definición anterior es que si $A$ y $B$ son eventos independientes, entonces $\Prob{B \mid A} = \Prob{B}$ y $\Prob{A \mid B} = \Prob{A}$ siempre que $\Prob{A} > 0$ y $\Prob{B} > 0$.

Comentamos que cuando $A$ y $B$ son independientes, la ocurrencia o no-ocurrencia de $A$ no cambia la probabilidad de $B$. Por ejemplo, supón que $A$ y $B$ son eventos independientes tales que $\Prob{A} = 0.2$ y $\Prob{B} = 0.4$. Si realizaras el experimento aleatorio correspondiente muchas veces, se espera que en $20\%$ de esas realizaciones ocurra $A$, y en un $40\%$ ocurra $B$. Al ser independientes, de aquellas realizaciones en las que ocurrió $A$, $B$ ocurriría en un $40\%$ de ellas, pues su probabilidad no se ve afectada por la ocurrencia de $A$ (recuerda, son independientes). Así, $\Prob{A}\Prob{B} = (0.2)(0.4) = 0.08$, y en consecuencia, $\Prob{B \mid A} = \frac{0.08}{0.2} = 0.4$, que es precisamente $\Prob{B}$.

Ejemplo. Supón que realizas $3$ lanzamientos de moneda de manera equiprobable. Es decir, si $\mathrm{A}$ representa a «águila» y $\mathrm{S}$ representa a «sol», tenemos el siguiente espacio muestral equiprobable $\Omega$:

\[ \Omega = \begin{Bmatrix} \mathrm{(A, A, A)}, & \mathrm{(A, A, S)}, & \mathrm{(A, S, A)}, & \mathrm{(S, A, A)}, \\ \mathrm{(A, S, S)}, & \mathrm{(S, A, S)}, & \mathrm{(S, S, A)}, & \mathrm{(S, S, S)} \end{Bmatrix}, \]

donde cada resultado tiene probabilidad de ocurrencia de $\frac{1}{|\Omega|} = \frac{1}{8}$. Podemos acordar la siguiente convención para los distintos resultados de $\Omega$:

\[ \Omega = \{ \mathrm{AAA, AAS, ASA, SAA, ASS, SAS, SSA, SSS} \}, \]

simplificando un poco la escritura de los eventos que veremos a continuación. Sean $A$, $B$ y $C$ los siguientes eventos:

  • $A$: El primer lanzamiento es águila. En consecuencia, $A = \{ \mathrm{AAA, AAS, ASA, ASS} \}$. Además, $\Prob{A} = \frac{4}{8} = \frac{1}{2}$.
  • $B$: El segundo lanzamiento es águila. Así, $B = \{ \mathrm{AAA, AAS, SAA, SAS} \}$. También se tiene que $\Prob{B} = \frac{1}{2}$.
  • $C$: Hay al menos dos águilas. Esto es, $C = \{ \mathrm{AAA, AAS, ASA, SAA} \}$. A su vez, se tiene que $\Prob{C} = \frac{1}{2}$.

Las probabilidades de cada evento se obtuvieron considerando que el espacio muestral es equiprobable.

  1. Se tiene que $A \cap B = \{ \mathrm{AAA, AAS} \}$, por lo que \[ \Prob{A \cap B} = \frac{2}{8} = \frac{1}{4} = {\left(\frac{1}{2}\right)} {\left(\frac{1}{2}\right)} = \Prob{A}\Prob{B}. \]En consecuencia, se puede concluir que $A$ y $B$ son independientes.
  2. Por otro lado, $A \cap C = \{ \mathrm{AAA, AAS, ASA } \}$. Así, tenemos que \[ \Prob{A \cap C} = \frac{3}{8} \neq {\left(\frac{1}{2}\right)} {\left(\frac{1}{2}\right)} = \Prob{A}\Prob{C}.\]Como se tiene que $\Prob{A \cap C} \neq \Prob{A}\Prob{C}$, $A$ y $C$ no son independientes.
  3. De manera similar, $B \cap C = \{ \mathrm{AAA, AAS, SAA } \}$, por lo que \[ \Prob{B \cap C} = \frac{3}{8} \neq {\left(\frac{1}{2}\right)} {\left(\frac{1}{2}\right)} = \Prob{B}\Prob{C},\]y se concluye que $B$ y $C$ no son independientes.

Observa que los resultados en 2 y 3 tienen sentido con nuestra noción intuitiva de independencia y probabilidad condicional. Por ejemplo, si queremos la probabilidad condicional de $A$ dado $C$, $\Prob{A \mid C}$, obtenemos que esta es

\[ \Prob{A \mid C} = \frac{\Prob{A \cap C}}{\Prob{C}} = \frac{\frac{3}{8}}{\frac{1}{2}} = \frac{3}{4}, \]

que tiene sentido, pues $3$ de los $4$ resultados en $C$ cumplen lo que establece el evento $A$, «que el primer lanzamiento sea águila». Esto exhibe que condicionar a que $C$ ya ocurrió cambia la probabilidad de ocurrencia de $A$, poniendo en evidencia que no son independientes.

El evento $B^{\mathsf{c}} = \{ \mathrm{SSS, SSA, ASS, ASA} \}$ es tal que $\Prob{B^{\mathsf{c}}} = \frac{1}{2}$. Además, se tiene que $A \cap B^{\mathsf{c}} = \{ \mathrm{ASS, ASA} \}$, por lo que

\[ \Prob{A \cap B^{\mathsf{c}}} = \frac{1}{4} = {\left(\frac{1}{2}\right)} {\left(\frac{1}{2}\right)} = \Prob{A}\Prob{B^{\mathsf{c}}}. \]

Esto nos lleva a concluir que no sólo los eventos $A$ y $B$ son independientes: $A$ y $B^{\mathsf{c}}$ también lo son.


La última parte de este ejemplo revela una propiedad de la independencia de eventos que enunciamos a continuación.


Teorema. Sea $(\Omega, \mathscr{F}, \mathbb{P})$ un espacio de probabilidad y sean $A$ y $B \in \mathscr{F}$ eventos. Si $A$ y $B$ son independientes, entonces:

  1. $A$ y $B^{\mathsf{c}}$ son independientes,
  2. $A^{\mathsf{c}}$ y $B$ son independientes,
  3. $A^{\mathsf{c}}$ y $B^{\mathsf{c}}$ son independientes.

Este último teorema corresponde a la idea de que cuando dos eventos son indepenedientes, la no-ocurrencia de un evento no afecta la probabilidad de que ocurra (o no ocurra) el otro.

Independencia de tres eventos

La definición de independencia puede extenderse a más de dos eventos. Sin embargo, esta extensión se debe de hacer de manera delicada. Si tenemos $3$ eventos $A$, $B$ y $C$, ¿cómo podríamos decir que estos $3$ eventos son independientes? Claramente, queremos preservar esa noción de que la ocurrencia o no ocurrencia de uno o más de estos eventos no afecta la probabilidad de ocurrencia de los restantes.

Más concretamente, esto quiere decir que si $A$, $B$ y $C$ son independientes, entonces la ocurrencia o no ocurrencia de $A$ no debería de afectar la probabilidad de ocurrencia de $B$, ni la de $C$. Similarmente, la ocurrencia de $B$ no debería de afectar la probabilidad de $A$, ni la de $C$; y tampoco la ocurrencia de $C$ debería de afectar la probabilidad de $A$, ni la de $B$.

Además, también deberíamos de pedir que la ocurrencia de $A$ y de $B$ (al mismo tiempo) no debe de afectar la probabilidad de que ocurra $C$. Del mismo modo, la ocurrencia de $A$ y $C$ no debe de afectar la probabilidad de $B$; ni la ocurrencia de $B$ y $C$ debe de afectar la probabilidad de $A$.


Definición. Sea $(\Omega, \mathscr{F}, \mathbb{P})$ un espacio de probabilidad. Sean $A$, $B$ y $C$ eventos. Diermos que $A$, $B$ y $C$ son independientes si

  1. $\Prob{A \cap B} = \Prob{A} \Prob{B}$.
  2. $\Prob{A \cap C} = \Prob{A} \Prob{C}$.
  3. $\Prob{B \cap C} = \Prob{B} \Prob{C}$.
  4. $\Prob{A \cap B \cap C} = \Prob{A} \Prob{B} \Prob{C}$.

Las propiedades 1 a 3 corresponden a la independencia dos a dos que queremos entre los eventos. Además, en conjunto con la propiedad 4 de esta definición, capturan la idea de que la ocurrencia de dos de los eventos no debería de afectar la probabilidad del evento restante. Si $A$, $B$ y $C$ son eventos independientes, entonces

\[ \Prob{A \cap B \cap C} = \Prob{A} \Prob{B} \Prob{C} = \Prob{B} \Prob{A} \Prob{C}, \]

y como $\Prob{A \cap C} = \Prob{A} \Prob{C}$, entonces se tiene que

\[ \Prob{A \cap B \cap C} = \Prob{B} \Prob{A \cap C}, \]

que justamente corresponde a que la ocurrencia de $A$ y $C$ no afecta la probabilidad de $B$. Lo mismo puede hacerse análogamente para el resto de combinaciones de eventos posibles.

En apariencia, la definición de independencia para $3$ eventos parece un poco excesiva. ¿No será posible deducir las propiedades 1, 2 y 3 a partir de la 4? ¿O quizás deducir la propiedad 4 a partir de las primeras 3? Veamos un par de ejemplos para ver que no es el caso.

Ejemplo. Considera nuevamente el experimento de lanzar una moneda $3$ veces de manera equiprobable. El espacio muestral $\Omega$ de este experimento es

\[ \Omega = \{ \mathrm{AAA, AAS, ASA, SAA, ASS, SAS, SSA, SSS} \}, \]

donde $\mathrm{A}$ es «águila» y $\mathrm{S}$ es «sol». Considera los siguientes $2$ eventos:

  1. $A$ el evento de que el primer lanzamiento es «águila»: $A = \{ \mathrm{AAA, AAS, ASA, ASS} \}$.
  2. $B$ el evento de que los primeros dos lanzamientos son «águilas», o los últimos dos lanzamientos son «soles». Esto es, $B = \{ \mathrm{AAA, AAS, ASS, SSS} \}$.

Puede observarse intuitivamente que los dos eventos no son independientes, pues ambos dependen del resultado del primer lanzamiento. Formalmente, basta con demostrar que no cumplen la definición de independencia. Para ello, nota que $A \cap B = \{ \mathrm{AAA, AAS, ASS} \}$, por lo que

\[ \Prob{A \cap B} = \frac{|A \cap B|}{|\Omega|} = \frac{3}{8}. \]

Por otro lado, se tiene que $\Prob{A} = \frac{1}{2}$ y $\Prob{B} = \frac{1}{2}$, así que

\[ \Prob{A} \Prob{B} = {\left( \frac{1}{2} \right)}{\left( \frac{1}{2} \right)} = \frac{1}{4}. \]

En conclusión, tenemos que $\Prob{A \cap B} \neq \Prob{A} \Prob{B}$, y en consecuencia, $A$ y $B$ no son independientes.

Ahora, consideremos un tercer evento:

  1. $C$ el evento de que los últimos dos lanzamientos son distintos. En este caso, se tiene que el evento es $C = \{ \mathrm{AAS, ASA, SAS, SSA} \}$.

Para $C$, tenemos que $\Prob{C} = \frac{1}{2}$. Además, tenemos que $A \cap B \cap C = \{ \mathrm{AAS} \}$, por lo que

\[ \Prob{A \cap B \cap C} = \frac{1}{8} = {\left( \frac{1}{2} \right)}{\left( \frac{1}{2} \right)}{\left( \frac{1}{2} \right)} = \Prob{A} \Prob{B} \Prob{C}, \]

así que $A$, $B$ y $C$ cumplen la propiedad 4 de la definición de independencia de $3$ eventos, a pesar de que no cumplen la propiedad 1. Esto quiere decir que cuando tú te encuentres con tres eventos $A$, $B$ y $C$ tales que $\Prob{A \cap B \cap C} = \Prob{A} \Prob{B} \Prob{C}$, no se puede deducir que son independientes dos a dos, ¡también tienes que comprobarlo para determinar si son independientes!


Ejemplo. Bueno, ¿y qué hay de la interacción opuesta? Si $A$, $B$ y $C$ son eventos tales que

  1. $\Prob{A \cap B} = \Prob{A} \Prob{B}$,
  2. $\Prob{A \cap C} = \Prob{A} \Prob{C}$,
  3. $\Prob{B \cap C} = \Prob{B} \Prob{C}$,

¿es eso suficiente para concluir que son independientes? Es decir, ¿de ahí podemos deducir que $\Prob{A \cap B \cap C} = \Prob{A} \Prob{B} \Prob{C}$? La respuesta es que no. Considera el experimento de lanzar una moneda $4$ veces de manera equiprobable. En este caso, podemos escribir al espacio muestral $\Omega$ como sigue.

\[ \Omega = \begin{Bmatrix} \mathrm{AAAA}, & \mathrm{AAAS}, & \mathrm{AASA}, & \mathrm{ASAA}, \\ \mathrm{SAAA}, & \mathrm{AASS}, & \mathrm{ASAS}, & \mathrm{SAAS}, \\ \mathrm{ASSA}, & \mathrm{SASA}, & \mathrm{SSAA}, & \mathrm{SSSA}, \\ \mathrm{SSAS}, & \mathrm{SASS}, & \mathrm{ASSS}, & \mathrm{SSSS} \end{Bmatrix}. \]

Considera los siguientes $3$ eventos:

  1. $A$ el evento de que el primer lanzamiento es «águila». Esto es, \[ A = \{ \mathrm{AAAA, AAAS, AASA, ASAA, AASS, ASAS, ASSA, ASSS}\}. \]
  2. $B$ el evento de que el último lanzamiento es «águila». Es decir,\[ B = \{ \mathrm{AAAA, AASA, ASAA, SAAA, ASSA, SASA, SSAA, SSSA} \}. \]
  3. $C$ el evento de que los cuatro lanzamientos resulten en $2$ «águilas» y $2$ «soles». Así,\[ C = \{ \mathrm{AASS, ASAS, SAAS, SASA, ASSA, SSAA} \}. \]

En consecuencia, encontramos que $\Prob{A} = \frac{8}{16} = \frac{1}{2}$, $\Prob{B} = \frac{8}{16} = \frac{1}{2}$, y $\Prob{C} = \frac{6}{16} = \frac{3}{8}$.

Al tomar las intersecciones de estos $3$ eventos, obtenemos lo siguiente:

  • $A \cap B = \{ \mathrm{AAAA, AASA, ASAA, ASSA} \}$, por lo que \[ \Prob{A \cap B} = \frac{4}{16} = \frac{1}{4} = {\left( \frac{1}{2} \right)}{\left( \frac{1}{2} \right)} = \Prob{A} \Prob{B}, \]y en consecuencia, $A$ y $B$ son independientes.
  • $A \cap C = \{ \mathrm{AASS, ASAS, ASSA} \}$, y por lo tanto, \[ \Prob{A \cap C} = \frac{3}{16} = {\left( \frac{1}{2} \right)}{\left( \frac{3}{8} \right)} = \Prob{A} \Prob{C}, \]así que $A$ y $C$ son independientes.
  • $B \cap C = \{ \mathrm{SASA, ASSA, SSAA} \}$, y así, \[ \Prob{B \cap C} = \frac{3}{16} = {\left( \frac{1}{2} \right)}{\left( \frac{3}{8} \right)} = \Prob{B} \Prob{C}, \]de donde se concluye que $B$ y $C$ son independientes.

No obstante, nota que $A \cap B \cap C = \{ \mathrm{ASSA} \}$. Por ello, se tiene que

\[ \Prob{A \cap B \cap C} = \frac{1}{16} \neq \frac{3}{32} = {\left( \frac{1}{2} \right)}{\left( \frac{1}{2} \right)}{\left( \frac{3}{8} \right)} = \Prob{A} \Prob{B} \Prob{C}. \]

Por lo tanto, $\Prob{A \cap B \cap C} \neq \Prob{A} \Prob{B} \Prob{C}$, así que $A$, $B$ y $C$ no son independientes. Este ejemplo exhibe que aún cuando tengas tres eventos $A$, $B$ y $C$ independientes dos a dos, esto no asegura que se cumple que $\Prob{A \cap B \cap C} = \Prob{A} \Prob{B} \Prob{C}$, ¡debes de comprobarlo para concluir que los $3$ eventos son independientes!


Independencia de más de 3 eventos

La definición de independencia puede generalizarse para $n \in \mathbb{N}^{+}$ eventos. La idea de la definición será la misma que usamos para definir la independencia de $3$ eventos, pero extendida a todas las combinaciones de tamaño $k$ posibles, con $2 \leq k \leq n$. Presentamos esta definición a continuación.


Definición. Sea $(\Omega, \mathscr{F}, \mathbb{P})$ un espacio de probabilidad, y sea $n \in \mathbb{N}^{+}$ tal que $n \geq 2$. Sean $A_{1}$, $A_{2}$, …, $A_{n}$ eventos. Diremos que son independientes si y sólamente si para toda colección finita $\{i_{1}, \ldots, i_{k}\}$ de índices distintos en $\{1,\ldots,n\}$ se cumple que

\[ \Prob{A_{i_{1}} \cap A_{i_{2}} \cap \cdots \cap A_{i_{k}}} = \Prob{A_{i_{1}}} \Prob{A_{i_{2}}} \cdots \Prob{A_{i_{k}}}. \]


La definición anterior puede apantallar un poco, pero observa que lo que significa es que se tiene una lista de propiedades que debe de cumplir la familia $A_{1}$, $A_{2}$, …, $A_{n}$ para poder decir que son independientes. De manera más explícita, estas serían:

  • $\Prob{A_{i_{1}} \cap A_{i_{2}}} = \Prob{A_{i_{1}}}\Prob{A_{i_{2}}}$ para cada $i_{1}$, $i_{2} \in \{1,\ldots,n\}$ tales que $i_{1} \neq i_{2}$.
  • $\Prob{A_{i_{1}} \cap A_{i_{2}} \cap A_{i_{3}}} = \Prob{A_{i_{1}}} \Prob{A_{i_{2}}} \Prob{A_{i_{3}}}$ para cada $i_{1}$, $i_{2}$, $i_{3} \in \{1,\ldots, n\}$ tales que $i_{1} \neq i_{2} \neq i_{3}$.

$\vdots$

  • $\Prob{A_{1} \cap A_{2} \cap \cdots \cap A_{n}} = \Prob{A_{1}}\Prob{A_{2}} \cdots \Prob{A_{n}}$.

Es decir, para verificar que $n$ eventos son independientes, hay que checar que la probabilidad «abre» la intersección como un producto primero con todas las combinaciones de eventos dos a dos, luego tres a tres, y así sucesivamente hasta llegar a la propiedad con todos los eventos.

Tarea moral

Los siguientes ejercicios son opcionales. Es decir, no formarán parte de tu calificación. Sin embargo, te recomiendo resolverlos para que desarrolles tu dominio de los conceptos abordados en esta entrada.

  1. Sean $A$ y $B$ eventos tales que $\Prob{A} > 0$ y $\Prob{B} > 0$. Demuestra que si $A$ y $B$ son independientes, entonces se cumple que $\Prob{B \mid A} = \Prob{B}$ y $\Prob{A \mid B} = \Prob{A}$.
  2. Demuestra que para cualesquiera $A$, $B$ eventos, si $A$ y $B$ son independientes, entonces $A^{\mathsf{c}}$ y $B$ son independientes.
  3. A partir de la definición de independencia de $n$ eventos, escribe las propiedades que deben de cumplir $4$ eventos $A$, $B$, $C$ y $D$ para ser llamados independientes. Sugerencia: Primero revisa cómo se llega a la definición para $3$ eventos a partir de la de $n$ eventos.

Más adelante…

La independencia de eventos es un concepto importantísimo en la probabilidad, pues en muchos ejercicios y aplicaciones, se hacen supuestos de independencia. A pesar de que demostrar que $n$ conjuntos son independientes puede resultar complicado, cuando asumes la independencia, tienes una gran cantidad de propiedades a tu disposición. Por ello, en muchos teoremas básicos, la independencia se toma como hipótesis.

Más adelante, cuando veamos el concepto de variable aleatoria, veremos lo que significa que dos variables aleatorias sean independientes, y será necesario utilizar las definiciones que hemos visto aquí.

El siguiente tema que abordaremos son dos fórmulas para el cálculo de probabilidades muy útiles y que se basan en la probabilidad condicional: el teorema de probabilidad total y el teorema de Bayes.

Entradas relacionadas