Archivo de la etiqueta: aleph

Álgebra Superior I: Varios tamaños de conjuntos infinitos

Por Guillermo Oswaldo Cota Martínez

Introducción

En la entrada pasada revisamos el concepto de cardinalidad de conjuntos finitos. Esto es la forma de «contar» los elementos en un conjunto que sabemos que «termina». Ahora veremos un primer acercamiento a la idea del infinito en el aspecto matemático.

Pensando en número grandes

¿Cuál es el número más grande que se te ocurre? Siempre que pienses en alguno, existe uno más grande, pues con solo sumarle a cualquier número $1$, resulta en uno más grande. Y es que en el caso finito, hablábamos de cómo un conjunto tenía un número definido de elementos. Ahora cuando estemos hablando de infinito, lo primero que se nos vendría a la mente es que no podremos «contar» cuántos elementos hay y acabar, pues siempre habrán más y más elementos. Así haremos el intento por primero definir una forma qué es el infinito.

Definición Diremos que un conjunto es infinito si no es finito, es decir, un conjunto $X$ será infinito si no existe algún $n$ número natural tal que sea biyectivo con $X$.

Para ver un ejemplo de esto, veremos los números naturales.

Proposición. Los números naturales son infinitos.

Demostración. Deberemos mostrar que para cualquier número $n$ y cualquier función $f:\mathbb{N} \rightarrow n$, no será biyectiva. Pero esto es resultado inmediato del principio de las casillas, pues $\{1,2,3,…,n,n+1\}$ es un subconjunto de $\mathbb{N}$ que tiene cardinalidad $|n+1|$ por lo tanto la función restringida solo a este conjunto no es inyectiva, y como este solo es un subconjunto de los números naturales, la función tampoco será inyectiva.

Como esto sucede para cualquier $f$ y cualquier $n$, no existirá una biyección entre $\mathbb{N}$ y algún número natural.

$\square$

Este es un conjunto infinito que es muy intuitivo, pues maneja la idea de que siempre podemos seguir pensando en números nuevos. Pero incluso este conjunto tiene subconjuntos infinitos, por ejemplo los números pares positivos (escrito en ocasiones como $2\mathbb{Z_+}$) y números impares positivos (escrito en ocasiones como $2\mathbb{Z_+}+1$), pues estos también son infinitos. Por ahora no te preocupes por la definición de $\mathbb{Z_+}$, pues simplemente nos estamos refiriendo a los números naturales, solo es convención escribir a los pares e impares en estos términos y en cursos siguientes tendrás más tiempo en ahondar en su significado.

Ahora para empezar a «comparar» los conjuntos infinitos, necesitaremos una definición de cuándo dos conjuntos tienen la misma cardinalidad infinita, y esta la definiremos muy similar a como lo hicimos en el caso finito.

Definición. Sean $X$ y $Y$ dos conjuntos. Diremos que tienen la misma cardinalidad si existe una biyección entre ellos y lo escribiremos como $|X|=|Y|$.

Verás que esa es una de las definiciones que manejamos en la entrada anterior. La única diferencia es que en el caso finito siempre decíamos que eran de cardinalidad $n$. Pero ahora como ya no manejamos el concepto en término de números naturales, por ahora solo lo escribiremos como en la definición.

Proposición $|\mathbb{N}| = |2\mathbb{Z_+}|$

Demostración. Para demostrar que estos dos conjuntos tienen la misma cardinalidad, deberemos de dar una biyección entre ellos. Propongamos la función $f: \mathbb{N} \rightarrow \mathbb{2Z_+}$ dada por $f(n)=2n$.

Es inyectiva pues si $n,m$ son números naturales distintos, alguno de los dos es mayor al otro, digamos que $n = m+k$ donde $k$ es un número natural distinto al cero. Entonces es claro que $f(n) = 2n = 2m+2k$ mientras que $f(m) = 2m$. Como $k$ no es cero, entonces $2m+2k \neq 2m$, por lo tanto es inyectica.

Además es suprayectiva, pues cualquier número par $m$ es de la forma «$2$ multiplicado por otro número». Es decir, $m$ es de la forma $2n$ para algún número $n$. Así, $f(n)=2n = m$.

Por lo tanto, la función es biyectiva.

$\square$

Así, hemos demostrado que «existe» la misma cantidad de número pares positivos que de números. Así que sin importar que nos hayamos «saltado» números, siguen teniendo la misma cantidad de números. De manera similar podemos demostrar que existe la misma cantidad de números impares positivos. Esto es posible considerando la función $f(n) = 2n+1$. Además también podríamos dar una biyección entre números pares e impares con la función $f(n)=n-1$. Es decir, los tres conjuntos comparten cardinalidad.

Otros ejemplos de conjuntos con esta cardinalidad son:

  • El conjunto de los números enteros.
  • El conjunto de los números racionales.
  • $\mathbb{N} \times \mathbb{N}$
  • $\mathbb{N} \times \mathbb{N} \times … \times \mathbb{N}$

Este aspecto de el infinito llamó mucho la atención de los matemáticos del siglo XX, pero hubo uno en particular que desarrolló la teoría de los conjuntos y de paso formalizó el concepto del infinito y de distintos tamaños de infinitos. Uno de los aspectos que más sorprenden a las personas ajenas a la materia es este hecho, que existan distintos infinitos, y en pocos renglones daremos introducción a uno que ya conoces. Para poder distinguir este tipo de infinitos uno del otro, usó una clase especial de números a los que llamó transfinitos.

El primer número transfinito es el aleph $0$, escrito como $\aleph_0$. Y este representa la cardinalidad de los números naturales, es decir $$ |\mathbb{N}| = \aleph_0.$$ Que es la misma cardinalidad que los números pares, impares, e incluso los números primos.

El segundo número transfinito se define como aleph $1$, y a este lo escribimos como $\aleph_1$, este se define como el transfinito inmediatamente superior a $\aleph_0$. La propiedad de este número transfinito es que es estrictamente mayor a $\aleph_0$, lo que quiere decir que cualquier conjunto con esta cardinalidad no será biyectable con alguno que tenga cardinalidad aleph $0$.

Cuando dos conjuntos tengan distinta cardinalidad, lo escribiremos como $|X| \neq |Y|$ mientras que cuado sepamos que hay una función inyectiva de $X$ a $Y$ lo escribiremos como $|X|\leq |Y|$ mientras que si sabemos que hay una inyección pero no biyección entre los conjuntos lo escribiremos como $|X|<|Y|$. Con esto en mente, lo que se plantea con los alephs, es que $\aleph_0 < \aleph_1$. Sin embargo aún nos falta una herramienta más e hipótesis para pensar en este último.

Para hacerlo, será necesario el siguiente teorema que no probaremos en este curso:

Teorema (de Cantor). Sea $X$ un conjunto, entonces $|X|<|P(X)|$.

Con este teorema es que podemos hacer muchos conjuntos infinitos como por ejemplo la potencia de los naturales, pues $|\mathbb{N}|<|P(\mathbb{N})|$. De hecho al transfinito $|P(\mathbb{N})|$ en las matemáticas se ha propuesto la idea de que si $P(\mathbb{N})$ es el transfinito inmediatamente siguiente de $\aleph_0$, pues cae dentro de un área de las matemáticas en donde la teoría se vuelve inconsistente si se supone que sí pero también es inconsistente si se supone que no, por ahora se trata como una hipótesis el usarla o no usarla para llegar a distintos resultados matemáticos.

Hipótesis del continuo. $\aleph_1 = 2^{\aleph_0}$

Como mencionamos, esto no tiene una prueba y se supone o no según sea el caso de uso. Bajo esa suposición, podríamos considerar a $P(\mathbb{N})$ como un conjunto con cardinalidad $\aleph_1$. Más aún, otros conjuntos que tienen esta cardinalidad bajo esta hipótesis son:

  • El conjunto generado por puras secuencias de $1$ y $0$, como por ejemplo $00000…..$, $111111….$, $1010101….$, etc. es decir secuencias infinitas de números solo formadas de $0$ y $1$.
  • El conjunto de todos los números del 0 al 1.
  • El conjunto de números reales.
  • El producto cartesiano de los números reales consigo mismo, es decir $\mathbb{R}^2$.

Más adelante…

Una vez que hemos hablado de la cardinalidad de los conjuntos, podemos seguir hablando de los números naturales, de sus propiedades y la inducción. Después volveremos a encontrarnos la idea de contar conjuntos específicos y de técnicas para encontrar la cardinalidad de conjuntos finitos de algunos conjuntos.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Demuestra que $|\mathbb{N}| = |2\mathbb{Z_+}+1|$.
  2. Demuestra que el conjunto generado por puras secuencias de $1$ y $0$ tiene la misma cardinalidad que $|P(\mathbb{N})|$.
  3. Da un ejemplo de una función entre conjuntos infinitos cuya imagen no sea infinita.
  4. Encuentra la cardinalidad de la imagen de la función $f: \mathbb{N} \rightarrow \mathbb{N}$ dada por $f(n) = 5m + 3$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»