Introducción
En esta parte del curso estamos abordando los resultados principales de campos vectoriales y su diferenciabilidad. Hemos hablado de cómo la derivada de una composición se calcula con regla de la cadena. También, enunciamos el teorema de la función inversa, lo demostramos, y vimos un ejemplo de cómo se usa. Ahora pasaremos a otro de los resultados fundamentales en el tema: el teorema de la función implícita. Vamos a motivarlo a partir del problema de resolver sistemas de ecuaciones no lineales. Luego, lo enunciaremos formalmente y lo demostraremos. La discusión y los ejemplos los dejaremos para la siguiente entrada.
Una motivación: resolver sistemas de ecuaciones no lineales
Con lo que repasamos sobre sistemas de ecuaciones lineales, y con lo que se ve en un curso de Álgebra Lineal I, se puede entender completamente cómo resolver sistemas de eccuaciones lineales. Recordemos un poco de esto. Tomemos el siguiente sistema de ecuaciones lineales en las variables $x_1,\ldots,x_n$:
\begin{align*}
\left\{ \begin{matrix}
a_{11}x_1+a_{12}x_2+\ldots+a_{1n}x_n = b_1\\
a_{21}x_1+a_{22}x_2+\ldots+a_{2n}x_n = b_2\\
\vdots\\
a_{m1}x_1+a_{m2}x_2+\ldots+a_{mn}x_n = b_m.\\
\end{matrix} \right.
\end{align*}
Para resolverlo, se podría utilizar el proceso de reducción gaussiana. Tras hacer esto, podíamos clasificar a las variables en libres (que podían valer lo que sea) y pivote (que dependían afinmente de las libres). Esto daba todas las soluciones. Si, por decir algo, las variables pivote son $x_1,x_2,\ldots,x_m$ y las libre son $x_{m+1},\ldots,x_n$, entonces podemos reescribir lo anterior de la siguiente manera: «podemos despejar a las primeras en función de las segundas», algo así como
\begin{align*}
x_1 &= T_1(x_{m+1},\ldots,x_n)\\
x_2 &= T_2(x_{m+1},\ldots,x_n)\\
\vdots \\
x_m&=T_m(x_{m+1},\ldots,x_n).
\end{align*}
Elegimos a $x_{m+1},\ldots,x_n$ como queramos. De ahí $x_1,\ldots,x_m$ quedan definidos afinmente con las $T_1,\ldots,T_m$. Y esto da todas las soluciones. Pero, ¿qué sucedería si tenemos un sistema de ecuaciones mucho más general?
Para plantear esto, imaginemos que ahora tenemos cualesquiera funciones $f_1,\ldots,f_m:\mathbb{R}^n\to \mathbb{R}$ y que queremos encontrar todas las soluciones $x_1,\ldots,x_n$ al siguiente sistema de ecuaciones:
\begin{equation}
\label{eq:sistemadificil}
\left\{ \begin{matrix}
f_{1}(x_{1},\dots ,x_{n})=0 \\
\vdots \\
f_{m}(x_{1},\dots ,x_{n})=0.
\end{matrix}\right.
\end{equation}
Esto es tan general como pudiéramos esperar. A la izquierda hay ceros, pero es porque si hubiera otras cosas, podríamos pasarlas a la izquierda para dejar ceros a la derecha.
Este sistema \eqref{eq:sistemadificil} parece imposible de resolver: no tenemos idea de quiénes son las funciones $f_1,\ldots, f_n$, no hay reducción gaussiana, no hay variables libres, etc. Pero imaginemos que el campo vectorial $(f_1,\ldots,f_m)$ es de clase $C^1$ alrededor de algún punto $\bar{v}_0=(x_{1}^{0},\dots,x_{n}^{0})$ en donde queremos despejar. Esto nos diría que cerca de $\bar{v}_0$ cada expresión $f_i(\bar{v})$ con $\bar{v}=(x_{1},\dots,x_{n})$ se parece muchísimo a su mejor aproximación lineal:
\[f_i(\bar{v}_0)+\triangledown f_i(\bar{v}_0)\bullet (\bar{v}-\bar{v}_0)\]
donde, tenemos:
\begin{align*}
f_i(\bar{v}_0)+\triangledown f_i(\bar{v}_0)\bullet (\bar{v}-\bar{v}_0)
&=f_i(\bar{v}_0)+\left(\frac{\partial f_i}{\partial x_1}(\bar{v}_0),\dots ,\frac{\partial f_i}{\partial x_n}(\bar{v}_0)\right)\bullet\left(x_1 -x_{1}^{0},\dots , x_n -x_{n}^{0}\right)\\ &=f_i(\bar{v}_0)+\sum_{j=1}^n \frac{\partial f_{i}}{\partial x_{j}}(\bar{v}_0)(x_j -x_{j}^{0})\\ &=f_i(\bar{v}_0)+\sum_{j=1}^n \frac{\partial f_{i}}{\partial x_{j}}(\bar{v}_0)x_j -\sum_{j=1}^n \frac{\partial f_{i}}{\partial x_{j}}(\bar{v}_0)x_{j}^{0}\\ &=\triangledown f_i(\bar{v}_0)\bullet (\bar{v})+f_i(\bar{v}_0) -\sum_{j=1}^n \frac{\partial f_{i}}{\partial x_{j}} (\bar{v}_0)x_{j}^{0}\\ &=\triangledown f_i(\bar{v}_0)\bullet (\bar{v}) + \bar{b}_i,
\end{align*}
donde $\bar{b}_i=f_i(\bar{v}_0)-\sum_{j=1}^n \frac{\partial f_{i}}{\partial x_{j}}(\bar{v}_0)x_{j}^0$. Pero entonces el sistema es prácticamente el mismo sistema que
\begin{equation}\label{eq:sistemafacil}\left \{\begin{matrix}\frac{\partial f_{1}}{\partial x_{1}}(\bar{v}_{0})x_{1}\hspace{0.1cm}+ & \dots & +\hspace{0.1cm}\frac{\partial f_{1}}{\partial x_{n}}(\bar{v}_{0})x_{n}\hspace{0.1cm}+\hspace{0.1cm}b_{1}\hspace{0.1cm}=\hspace{0.1cm}0 \\
\frac{\partial f_{2}}{\partial x_{1}}(\bar{v}_{0})x_{1}\hspace{0.1cm}+ & \dots & +\hspace{0.1cm}\frac{\partial f_{2}}{\partial x_{n}}(\bar{v}_{0})x_{n}\hspace{0.1cm}+\hspace{0.1cm}b_{2}\hspace{0.1cm}=\hspace{0.1cm}0 \\ \vdots & \vdots & \vdots \\ \frac{\partial f_{m}}{\partial x_{1}}(\bar{v}_{0})x_{1}\hspace{0.1cm}+ & \dots & +\hspace{0.1cm}\frac{\partial f_{m}}{\partial x_{n}}(\bar{v}_{0})x_{n}\hspace{0.1cm}+\hspace{0.1cm}b_{m}\hspace{0.1cm}=\hspace{0.1cm}0 \end{matrix}\right.\end{equation}
Esto se ve un poco complicado, pero cada $\frac{\partial f_{i}}{\partial x_{j}}(\bar{v}_{0})x_{j}$ es simplemente un número real. ¡Cerquita de $\bar{v}_0$ el sistema de ecuaciones \eqref{eq:sistemadificil} es prácticamente un sistema lineal! Sería entonces de esperarse que las soluciones el sistema \eqref{eq:sistemadificil} original sean muy cercanas a las del sistema lineal \eqref{eq:sistemafacil} que sale y de nuevo recuperamos los trucos usuales: reducción gaussiana, variables libres, variables pivote, etc.
Pensando en que en el sistema \eqref{eq:sistemafacil} las variables pivote son $x_1,\ldots, x_m$ y las libres son $x_{m+1},\ldots,x_n$, entonces podemos encontrar transformaciones afines $T_1,\ldots,T_m:\mathbb{R}^n\to \mathbb{R}$ tales que las soluiones de \eqref{eq:sistemafacil} consisten en elegir $x_{m+1},\ldots,x_n$ arbitrariamente, y tomar
\begin{align*}
x_1 &= T_1(x_{m+1},\ldots,x_n)\\
x_2 &= T_2(x_{m+1},\ldots,x_n)\\
\vdots \\
x_m&=T_m(x_{m+1},\ldots,x_n).
\end{align*}
Muy probablemente $(x_1,\ldots,x_n)$ no será una solución de \eqref{eq:sistemadificil}, pues son sistemas diferentes entre sí. Pero suena a que son tan tan cercanos, que con tantita maniobra podremos encontrar funciones $S_1,\ldots, S_m: \mathbb{R}^n\to \mathbb{R}$ tales que cualquier solución a \eqref{eq:sistemadificil} similarmente está dada por elegir $x_{m+1},\ldots, x_n$ arbitrariamente y tomar
\begin{align*}
x_1 &= S_1(x_{m+1},\ldots,x_n)\\
x_2 &= S_2(x_{m+1},\ldots,x_n)\\
\vdots \\
x_m&=S_m(x_{m+1},\ldots,x_n).
\end{align*}
Gracias a que pudimos poner a todos los $x_1,\ldots x_m$ en función de los $x_{m+1},\ldots,x_n$, hemos logrado encontrar todas las soluciones a \eqref{eq:sistemadificil} cerca de $\bar{v}_0$. El teorema de la función inversa nos ayuda a volver precisas muchas de las cosas discutidas en esta sección.
Enunciado del teorema de la función implícita
Pensemos que tenemos algunas restricciones dadas por ecuaciones como las del sistema \eqref{eq:sistemadificil}. Lo que el teorema de la función implícita nos dirá es que bajo suficiente regularidad y algunas condiciones de invertibilidad, en una vecindad de un punto $\bar{v}_{0}$ las incógnitas $x_{1},\dots ,x_{m}$ se pueden poner en función de las incógnitas $x_{m+1},\dots ,x_{n}$, es decir, que se puede despejar como lo mencionamos al final de la sección anterior. El enunciado es el siguiente.
Teorema (de la función implícita). Sea $f:S\subseteq\mathbb{R}^{m}\times \mathbb{R}^{l}\rightarrow \mathbb{R}^m$ un campo vectorial de clase $C^1$ en $S$ con funciones componentes $f_i: S\subseteq\mathbb{R}^{m}\times \mathbb{R}^{l}\rightarrow \mathbb{R}$, para $i=1,\ldots,m$.
Pensemos en el conjunto $A$ de soluciones $(y_1,\ldots,y_m,x_1,\ldots,x_l)$ del siguiente sistema de ecuaciones:
\begin{equation}
\label{eq:sistemaimplicita}
\left\{ \begin{matrix}
f_{1}(y_{1},\dots ,y_m,x_1,\ldots,x_l)=0 \\
\vdots \\
f_{m}(y_{1},\dots ,y_m,x_1,\ldots,x_l)=0.
\end{matrix}\right.
\end{equation}
Supongamos además que para el punto $$(\bar{y}_0,\bar{x}_0)=\left(y_{1}^{0},\dots ,y_{m}^{0},x_{1}^{0},\dots ,x_{l}^{0}\right)\in S\cup A$$ la matriz
\[ \begin{pmatrix} \frac{\partial f_{1}}{\partial y_{1}}(\bar{y}_{0},\bar{x}_{0}) & \dots & \frac{\partial f_{i}}{\partial y_{m}}(\bar{y}_{0},\bar{x}_{0}) \\ \vdots & \ddots & \vdots \\ \frac{\partial f_{m}}{\partial y_{1}}(\bar{y}_{0},\bar{x}_{0}) & \dots & \frac{\partial f_{m}}{\partial y_{m}}(\bar{y}_{0},\bar{x}_{0}) \end{pmatrix} \]
es invertible. Entonces existen abiertos $V\subset \mathbb{R}^{m}$ y $U\subset \mathbb{R}^l$ con $\bar{y}_0\in V$, $\bar{x}_0\in U$, para los cuales hay una única función $h:U\to V$ de clase $C^{1}$ en $V$, tal que $f(\bar{y},\bar{x})=\bar{0}$ si y sólo si $\bar{y}=h(\bar{x})$.
Sólo para aclarar algunas diferencias con lo discutido anteriormente, aquí ya estamos separando en lo que esperaremos que serán las variables libres $x_1,\ldots,x_m$ y las variables pivote $y_1,\ldots,y_l$. Estamos además estudiando el caso en el que tenemos tantas variables libres como ecuaciones, pues este caso es fácil de enunciar en términos de la invertibilidad de una matriz. El caso más general se trata con reducción gaussiana como platicamos en la sección anterior. La igualdad $\bar{y}=h(\bar{x})$ es lo que entendemos como «despejar» a los $y_i$’s en función de los $x_j$’s.
Demostración del teorema de la función implícita
Veamos la demostración del teorema.
Demostración. Definamos $F:S\subset \mathbb{R}^{m}\times \mathbb{R}^{l}\rightarrow \mathbb{R}^{m}\times \mathbb{R}^{l}$ como $F(\bar{y},\bar{x})=(f(\bar{y},\bar{x}),\bar{x})$. Dado que $f$ es de clase $C^1$, se tendrá que $F$ también (explica esto como tarea moral).
Notemos que
\begin{align*}
F(\bar{y}_{0},\bar{x}_{0})&=(f(\bar{y}_{0},\bar{x}_{0}),\bar{x}_{0})=(\bar{0},\bar{x}_0).\end{align*}
Por otro lado, notemos que la matriz jacobiana de $F$ en $(\bar{y}_0,\bar{x}_0)$ es
$$\begin{bmatrix} \frac{\partial f_{1}}{\partial \bar{y}_{1}}(\bar{y}_{0},\bar{x}_{0}) & \dots & \frac{\partial f_{1}}{\partial y_{m}}(\bar{y}_{0},\bar{x}_{0}) & \frac{\partial f_{1}}{\partial x_{1}}(\bar{y}_{0},\bar{x}_{0}) & \dots & \frac{\partial f_{1}}{\partial x_{l}}(\bar{y}_{0},\bar{x}_{0}) \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_{m}}{\partial y_{1}}(\bar{y}_{0},\bar{x}_{0}) & \dots & \frac{\partial f_{m}}{\partial y_{m}}(\bar{y}_{0},\bar{x}_{0}) & \frac{\partial f_{m}}{\partial x_{1}}(\bar{y}_{0},\bar{x}_{0}) & \dots & \frac{\partial f_{m}}{\partial y_{l}}(\bar{y}_{0},\bar{x}_{0}) \\ 0 & \dots & 0 & 1 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & 0 & \dots & 1 \end{bmatrix}$$
esta matriz además es invertible (también tendrás que explicar ambas cosas de tarea moral).
La idea clave es que entonces podemos usar el teorema de la función inversa en $F$. Aplícandolo en este contexto, obtenemos que existe $\delta >0$ tal que $F$ es inyectiva en una bola $B_{\delta}(\bar{y}_{0},\bar{x}_{0})\subset S$. Nos dice también que $F(B_{\delta}(\bar{y}_0,\bar{x}_{0}))$ es un conjunto abierto, y que $F ^{-1}:F(B_{\delta}(\bar{y}_0,\bar{x}_{0}))\subset \mathbb{R}^{m}\times \mathbb{R}^{l}\rightarrow \mathbb{R}^{m}\times \mathbb{R}^{l}$ es de clase $C^{1}$ en $F(B_{\delta}(\bar{y}_{0},\bar{x}_{0}))$. También dice algo de quién es la derivada explícitamente, pero eso no lo necesitaremos por ahora (de tarea moral tendrás que pensar qué nos dice esto).
Como $F$ manda $(\bar{y}_0,\bar{x}_0)$ a $(\bar{0},\bar{x}_0)$ y $F(B_{\delta}(\bar{y}_0,\bar{x}_{0}))$ es un abierto, entonces hay una bola abierta $W$ alrededor de $(\bar{0},\bar{x}_0)$ contenida en $F(B_{\delta}(\bar{y}_0,\bar{x}_{0}))$. El conjunto $U$ que propondremos será el abierto que se obtiene al intersectar $W$ con el espacio en donde la coordenada correspondiente a $f(\bar{y},\bar{x})$ es cero. En otras palabras, $U$ es un abierto y consiste de $\bar{x}$ para los cuales existe un $\bar{y}$ tal que $F(\bar{y},\bar{x})=(\bar{0},\bar{x})$ (es decir, $f(\bar{y},\bar{x})=\bar{0}$).
Tomemos ahora un $\bar{x}\in U$. Afirmamos que hay sólo un $\bar{y}$ tal que $(\bar{y},\bar{x})\in B_{\delta}(\bar{y}_{0},\bar{x}_{0})$ y $f(\bar{y},\bar{x})=\bar{0}$. Si hubiera $\bar{y}$ y $\bar{y}’$ que satisfacen eso, tendríamos
$$F(\bar{y},\bar{x})=(f(\bar{y},\bar{x}),\bar{x})=(\bar{0},\bar{x})=(f(\bar{y}’,\bar{x}),\bar{x})=F(\bar{y}’,\bar{x}),$$
que por la inyectividad de $F$ implica $\bar{y}=\bar{y}’$. De hecho, dicho único $\bar{y}$ está en función de $F^{-1}$, que es de clase $C^1$ de modo que el conjunto de los $\bar{y}$ asignados a los $\bar{x}$ en $U$ es un abierto $V$.
Así, podemos definir $h:U\to V$ de la siguiente manera: $h(\bar{x})=\bar{y}$, donde $\bar{y}$ es el único elemento para el cual $f(\bar{y},\bar{x})=\bar{0}$ y $(\bar{y},\bar{x})\in B_{\delta}(\bar{y}_{0},\bar{x}_{0})$. De la discusión desarrollada, $h$ está bien definida y cumple con las propiedades buscadas.
Por último probemos que $h$ es de clase $C^{1}$ en $U$. Como $F^{-1}$ esta definida y, además es de clase $C^{1}$ sobre el conjunto $F(B_{\delta}(\bar{x}_{0},\bar{y}_{0}))$, si escribimos que $F^{-1}=\left( (F^{-1})_{1},\dots ,(F^{-1})_{m} \right)$, bastaría con demostrar:
\[ h(\bar{x})=\left( (F^{-1})_{1}(\bar{0},\bar{x}),\dots , (F^{-1})_{m}(\bar{0},\bar{x})\right) \]
para cada $\bar{x}\in V$. Esto se hace como sigue:
\begin{align*} (h(\bar{x}),\bar{x})&=F^{-1}(F(h(\bar{x}),\bar{x}))\\ &=F^{-1}(\bar{0},\bar{x}) \\ &=\left( (F^{-1})_{1}(\bar{0},\bar{x}),\dots ,(F^{-1})_{m}(\bar{0},\bar{x}),(F^{-1})_{m+1}(\bar{0},\bar{x}),\dots ,(F^{-1})_{m+l}(\bar{0},\bar{x}) \right). \end{align*}
Así queda terminada de la demostración de este importante teorema.
$\square$
Algunas reflexiones finales
Si quisiéramos usar de manera práctica la demostración para encontrar la función implícita $h$, necesitaríamos calcular la inversa $F^{-1}$. Sin embargo, las técnicas que tenemos hasta ahora no nos permiten hacer eso tan fácilmente. La versión del teorema de la función inversa que tenemos nos dice que hay una inversa, pero no nos dice quién es. La mayoría de las veces dar esta inversa es muy difícil, por no decir imposible.
Aunque esto parezca algo negativo, de cualquier forma tenemos un resultado muy importante. En algunos casos, sí podremos dar la función inversa con relativa facilidad. Y en otros contextos, aunque no podamos dar la inversa explícitamente, sí tendremos una base teórica robusta para demostrar otros resultados. El teorema de la función implícita es una palanca importante para otros resultados que brindan mucha luz acerca del comportamiento de los campos vectoriales.
Mas adelante…
La demostración y el desarrollo teórico tanto del teorema de la función inversa, como el de la función implícita, son muy técnicos. Dejaremos los aspectos técnicos hasta aquí y en la siguiente entrada procesaremos mejor lo que quiere decir este teorema hablando de varios ejemplos, y también de sus consecuencias.
Tarea moral
- Considérese la función $T:\mathbb{R}^{3}\rightarrow \mathbb{R}^{2}$ dada por $T(x,y,z)=(x+z,y+x)$ aplica el teorema de la función implícita para obtener una función $h:\mathbb{R}\rightarrow \mathbb{R}^{2}$ tal que $(h(\bar{a}),\bar{a})$ es solución de la ecuación $T(x,y,z)=(0,0)$.
- Explica con detalle por qué la función $F$ de la demostración del teorema de la función implícita es de clase $C^1$.
- Verifica que en efecto $DF(\bar{y}_0,\bar{x}_0)$ es la expresión dada en la demostración del teorema. Además, justifica por qué es invertible.
- Justifica con detalle por qué los conjuntos $U$ y $V$ de la demostración en efecto son conjuntos abiertos.
- El teorema de la función inversa también nos dice quién es la derivada de la inversa. ¿Eso qué quiere decir en el contexto del teorema de la función implícita?
Entradas relacionadas
- Ir a Cálculo Diferencial e Integral III
- Entrada anterior del curso: Demostración del teorema de la función inversa
- Entrada siguiente del curso: Ejemplos e intuición el teorema de la función implícita