7 Material de prueba: Ley del paralelogramo en $\mathbb{R}^n$

Por Mariana Perez

Sean $x, y \in \mathbb{R}^n$ entonces $$2\big\|x \big\|^2+2 \big\|y \big\|^2 = \big\|x+y \big\|^2 + \big\|x-y \big\|^2$$

Donde $\big\| \; \big\|$ es la norma Euclidiana, $\big\|x \big\|=\sqrt{x\cdot x \, }$

En el siguiente enlace puedes observar que se cumple esta ley. Puedes mover los vectores $v_1$ y $v_2$, haciéndolos del tamaño que prefieras y observar que los valores de la igualdad representados en la ley se mantiene.

https://www.geogebra.org/classic/t4y4evhn

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.