Geometría Analítica I: Grupos de transformaciones

Por Paola Berenice García Ramírez

Introducción

En la primera entrada de esta unidad [1a entrada] indicamos que serán muy importantes tanto las propiedades de los vectores como los lugares geométricos vistos en las primeras dos unidades, pues serán de vital apoyo para comprender los tipos de transformaciones que estaremos viendo.

En la entrada anterior [2a entrada] contemplamos los conceptos necesarios de las funciones que nos ayudaron a definir formalmente a una transformación. En ésta entrada vamos a comenzar por dos conjuntos: Δ2 y Δ3, las propiedades que cumplen y que nos ayudarán a comprender la definición de un grupo. Ambos conjuntos son los ejemplos más representativos de los grupos de transformaciones: los grupos simétricos de orden n. Pretendemos dar a conocer el tema en éste primer curso de Geometría Analítica de forma introductoria; pero puede profundizarse en asignaturas más avanzadas de la carrera universitaria, una de ellas es Álgebra Moderna en la Teoría de Grupos.

El conjunto Δ2

Antes que nada nos pondremos de acuerdo en la notación que vamos a usar: xy nos indicará que al elemento x le corresponde el elemento y bajo la función correspondiente.

El primero conjunto que conoceremos tiene dos elementos {0,1}, a quien identificaremos por Δ2 y se lee «delta-dos». ¿Cuáles son las funciones de Δ2 en sí mismas? Primero tenemos a

0id011

a quien llamaremos por id (identidad de Δ2); porque al elemento 0 le corresponde él mismo y al elemento 1 le corresponde él mismo. La siguiente función es

0ρ110

que denotamos por ρ. ¿Qué ocurre si recurrimos a la función composición ρρ? Si comenzamos con 0 sabemos bajo ρ que ρ(0)=1, por ello

(ρρ)(0)=ρ[ρ(0)]=ρ(1)=0.

Y si comenzamos con ρ(1), en forma análoga obtendremos (ρρ)(1)=1. Podemos darnos cuenta que ρ es su propio inverso, pues (ρρ=id).

Otra forma en que podemos trabajar la composición de funciones es siguiendo los elementos mediante una tablita. Vamos a ver que ρρ=id como sigue:

0p1p0101

donde colocamos la función correspondiente sobre cada flecha entre los elementos y nos damos cuenta que los elementos iniciales coinciden con las imágenes finales bajo la composición. Entonces concluimos que se cumple ρρ=id.

Tenemos otras dos funciones:

0C000C111011

e independientemente del elemento inicial, bajo C0 corresponde el elemento 0 y bajo C1 corresponde el elemento 1. Tanto C0 como C1 se consideran funciones constantes; mientras que las únicas transformaciones que contemplaremos de Δ2 son id y ρ.

El conjunto Δ3

Ahora consideremos al conjunto Δ3:={0,1,2} e indicaremos las funciones de Δ3 en sí mismo bajo la notación

0x1y2z

donde x,y,zΔ3. Como x,y,zΔ3 son imágenes arbitrarias, habrán 33=27 funciones, pero sólo 6 serán transformaciones. Vamos a explicar porqué sólo 6 transformaciones: puesto que queremos biyectividad, al elegir a 0 y corresponderle su imagen, entonces al 1 le podrán corresponder sólo 2 opciones y a su vez, cuando llegamos al 2, ya sólo le podrá corresponder 1 opción. En resumen, en la primera posición hay 3 opciones, en la segunda hay 2 opciones y en la tercera sólo 1 y el número de transformaciones será de 3×2×1=6.

Las primeras 3 transformaciones que veremos son:

0id00ρ110ρ22111210222021

De hecho a las 6 transformaciones las visualizaremos como las «simetrías» de un triángulo equilátero. Las primeras 3 corresponden a rotaciones (la identidad es quien rota 0 grados). Diremos que ρ1 y ρ2 son inversas, pues ρ1ρ2=ρ2ρ1=id (vamos a dejar esta relación como ejercicio de la tarea moral, para practicar). Es decir, con cualquier elemento inicial, la imagen de la composición será el mismo elemento inicial. Esto quiere decir que una rotación rotará 120° en una dirección y al aplicar la segunda rotación rota 120° pero en dirección contraria. Los triángulos correspondientes son:

También se cumple que ρ1ρ1=ρ2, pues

0ρ11ρ12120201

Entonces decimos que cumple la siguiente definición:

Definición. Sea f cualquier transformación, decimos que

fn=fff,

es decir, fn es f compuesta consigo misma n veces.

En nuestro ejemplo, escribiremos que se cumple entonces la relación ρ12=ρ2. Por otro lado, para Δ3 tenemos otras 3 transformaciones llamadas transposiciones que geométricamente las visualizamos como reflexiones y son:

0α00β20γ1121110212022

El triángulo que representa a estas transformaciones es:

Las direcciones de la flecha dependerán de cada transformación. Ahora vamos a probar una relación que cumple α, la cual es:

Demostrar que se cumple α2=id.

Demostración. En efecto, recordemos que α2=αα, así que desarrollaremos el seguimiento de elementos a través de la composición αα como sigue:

0α0α0121212

y observemos que al final de la composición obtuvimos α2(0)=0, α2(1)=1, α2(2)=2 y con ello vemos que α2=id.

◻

En la sección de tarea moral dejaremos unos ejercicios de práctica sobre más relaciones que cumplen α, β y γ; como son α2=β2=γ2=id, αβ=ρ1 y que αβα=βαβ=γ.

A continuación vamos a definir a un conjunto de transformaciones que cumplen ciertas propiedades interesantes y para ejemplificar a dicho conjunto retomaremos uno de los conjuntos vistos en esta entrada.

Grupos de transformaciones

Definición. A un conjunto G de transformaciones de un conjunto A le llamaremos un grupo de transformaciones de A si cumple:

  1. idAG
  2. f,gGgfG
  3. fGf1G

Como ejemplos, tomemos a A como A=Δ3. Sabemos que tiene 6 elementos, pero un grupo de transformaciones es el de las rotaciones ya que contiene a la identidad (1), es cerrado bajo la composición (2) y es cerrado bajo inversas (3).

Otro grupo de transformaciones de A=Δ3 es el de las transposiciones (o reflexiones) junto con la identidad.

Definición. Dado un conjunto cualquiera de transformaciones de A, el grupo que genera es el grupo de transformaciones obtenido de todas las posibles composiciones con elementos de él o sus inversos.

Como ejemplo de un grupo que genera tenemos a α y β ya que generan todas las transformaciones de Δ3.

También ρ1 genera el grupo de rotaciones de Δ3 ( porque ρ3=id, ρ1 y ρ2=ρ2).

Para terminar con esta entrada daremos un concepto adicional. Si te llamaron la atención los conjuntos Δ2 y Δ3 y quieres saber más de ellos o si hay más conjuntos similares, la respuesta es sí. Pertenecen a un conjunto de transformaciones, el cual definiremos a continuación:

Definición. Al conjunto de todas las transformaciones de un conjunto con n elementos Δn:={0,1,,n1} se le llama grupo simétrico de orden n y se le denota Sn. Dicho grupo tiene n!=n×(n1)×(n2)×2×1 (n factorial) elementos a los cuales se le llaman permutaciones.

Tarea moral

  • Considerando el conjunto Δ3 y sus transformaciones id, ρ1 y ρ2 que vimos en esta entrada, demostrar que ρ1 y ρ2 son inversas, es decir:
    1. ρ1ρ2=ρ2ρ1=id
  • Considerando el conjunto Δ3 y sus transformaciones id, α, β y γ que vimos en esta entrada, demostrar que se cumplen las relaciones siguientes:
    1. α2=β2=γ2=id. [Sugerencia: Hacer cada composición por separado].
    2. αβ=ρ1
    3. αβα=βαβ=γ.
  • Demuestren que ρ1 genera el grupo de rotaciones de Δ3. [Sugerencia: Demuestren que se cumplen las relaciones ρ3=id, y ρ2=ρ2), porque ρ1 es un elemento de dicho grupo de rotaciones].

Más adelante

En esta entrada vimos que en el conjunto Δ3 hay dos posibles grupos de transformaciones: el de las rotaciones y el de las transposiciones junto con la identidad. Mediante triángulos pudimos visualizar el comportamiento que hay en los elementos iniciales y sus imágenes; con ello se comprende porque están en cada grupo.

En la siguiente entrada continuaremos con un primer grupo de transformaciones en los \mathbb{R}, que es de las transformaciones afines, que tiene una muy buena relación con un lugar geométrico que ya hemos visto: las rectas. La entrada [Rectas en forma paramétrica] de la Unidad 1 nos podrá ayudar como repaso si lo requerimos.

Enlaces

  • Página principal del curso:
  • Entrada anterior del curso:
  • Siguiente entrada del curso:

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.