Introducción
Dada una curva $f:[a,b]\rightarrow\mathbb{R}^{n}$, el Vector Unitario Tangente $T$ es otra
función vectorial asociada a la curva, y está definida por:
$$\boxed{T(t)=\frac{f^{\prime}(t)}{\|f^{\prime}(t)\|}\ \ \ \ \text{siempre
que $|f^{\prime}(t)| \neq 0$.}}$$
De acuerdo a la definición anterior tenemos
$$\|T(t)\|=\left\|\frac{f^{\prime}(t)}{\|f^{\prime}(t)\|}\right\|=\frac{\|f'(t)\|}{\|f'(t)\|}=1$$
y de acuerdo a lo anterior
\begin{align*} \|T(t)\|=1 &~\Rightarrow~T(t)\cdot T(t)=1 \\ &~\Rightarrow~\frac{d}{dt}(T(t)\cdot T(t))=0 \\ &~\Rightarrow~T'(t)\cdot T(t)+T(t)\cdot T'(t)=0 \\ &~\Rightarrow~2(T'(t)\cdot T(t))=0 \\ &~\Rightarrow~T'(t)\cdot T(t)=0 \end{align*}
lo que implica que $T'(t)$ es ortogonal $T(t)$. Si $T^{\prime}\neq 0$ el vector unitario que tiene la misma dirección que $T^{\prime}$ se llama Vector Normal Principal a la
curva y se designa por $N(t)$. Asi pues $N(t)$ es una nueva función vectorial asociada a la curva y esta dada por la ecuación:
$$\boxed{N(t)=\frac{T^{\prime}(t)}{\|T^{\prime}(t)\|}\ \ \ \ \text{si}\ \ \ \ \ \|T^{\prime}(t)\| \neq 0}$$
de acuerdo a lo visto con el vector tangente, se tiene que $T(t)$ y $N(t)$ son ortogonales.
Un tercer vector definido mediante
$$\boxed{B(t)=T(t)\times N(t)}$$
recibe el nombre de Vector Binormal. Notese que $$\|B(t)\|=\|T(t)\times
N(t)\|=\|T(t)\|\|N(t)\|\sin\left(\frac{\pi}{2}\right)=1$$
de acuerdo a lo anterior
\begin{align*} \|B(t)\|=1&~\Rightarrow~B(t)\cdot B(t)=1 \\ &~\Rightarrow~\frac{d}{dt}(B(t)\cdot B(t))=0 \\ &~\Rightarrow~B'(t)\cdot B(t)+B(t)\cdot B'(t)=0\\ &~\Rightarrow~ 2(B'(t)\cdot B(t))=0\\ &~\Rightarrow~B'(t)\cdot B(t)=0 \end{align*}
por tanto $B'(t)$ es ortogonal a $B(t)$. Es decir $\boxed{B'(t)\cdot B(t)=0}$
Ejemplo. Pruebe que $\displaystyle{B'(t)\cdot T(t)=0}$
Solución. Si $B(t)=T(t)\times N(t)$ entonces $B(t)$ es ortogonal a $T(t)$ y $B(T)$ es ortogonal a $N(t)$ y por lo tanto $B(t)\cdot T(t)=0$
Por otro lado
$$N(t)=\frac{T(t)}{\|T'(t)\|}~\Rightarrow~\|T'(t)\|~N(T)=T'(t)$$
Si $B(t)$ es ortogonal a $N(t)$ entonces $B(t)$ es ortogonal a $\|T'(t)\|~N(T)$. Por lo tanto
$$B(t)\cdot T'(t)=B(t)\cdot \|T'(t)\|~N(T)=0$$
Tenemos entonces que
\begin{align*} \frac{d}{dt}(B(t)\cdot T(t))=0&~\Rightarrow~B'(t)\cdot T(t)+B(t)\cdot T'(t)=0 \\ &~\Rightarrow~B'(t)\cdot T(t)+0=0 \\ &~\Rightarrow~B'(t)\cdot T(t)=0 \end{align*}
Por lo tanto $\boxed{B'(t)\cdot T(t)=0}$.$~~\blacksquare$
Según los resultados anteriores $B'(t)\cdot B(t)=0$ y $B'(t)\cdot T(t)=0$. Pero también $N(t)\cdot B(t)=0$ y $N(t)\cdot T(t)=0$. Por lo tanto $N(t)$ y $B'(t)$ deben ser paralelos, es decir existe $\alpha$ tal que $\boxed{B'(t)=\alpha N(t)}$.
Si la curva está parametrizada por longitud de arco, considerando que $\|\overline{f}'(s)\|=1$, se tiene
\begin{align*} T(s) & =\overline{f}'(s) \\ N(s) & =\frac{\overline{f}»(s)}{|\overline{f}»(s)|} \\ B(s) & =T(s)\times N(s) \end{align*}
$\fbox{Fórmulas de Frenet-Serret}$
El sistema de vectores ${T(t),N(t),B(t)}$ forman un triedro en el cual
$$\boxed{B(t)=T(t)\times N(t)}$$
de acuerdo a la definición anterior
\begin{align*} B(t)=T(t)\times N(t)&~\Rightarrow~N(t)\times B(t)=N(t)\times (T(t)\times N(t)) \\ &~\Rightarrow~N(t)\times B(t)=(N(t)\cdot N(t))T(t)-(N(t)\cdot T(t))N(t) \\ &~\Rightarrow~N(t)\times B(t)=T(t)-0\cdot N(t) \\ &~\Rightarrow~N(t)\times B(t)=T(t) \end{align*}
por tanto
$$\boxed{N(t)\times B(t)=T(t)}$$
Análogamente de acuerdo a la definición anterior
\begin{align*} B(t)=T(t)\times N(t)&~\Rightarrow~B(t)\times T(t)=(T(t)\times N(t))\times T(t) \\ &~\Rightarrow~B(t)\times T(t)=(T(t)\cdot T(t))N(t)-(N(t)\cdot T(t))T(t) \\ &~\Rightarrow~B(t)\times T(t)=N(t)-0\cdot T(t) \\ &~\Rightarrow~B(t)\times T(t)=N(t) \end{align*}
por tanto
$$\boxed{B(t)\times T(t)=N(t)}$$
Por que dicho sistema de vectores, es un conjunto ortonormal. Las fórmulas que dan las derivadas del triedro móvil, en términos del mismo triedro móvil, se llaman las fórmulas de Frenet-Serret.
Teorema
(a) $\displaystyle{\frac{dT}{ds}=\kappa N}$
(b) $\displaystyle{\frac{dB}{ds}=-\tau N(s)}$
(c) $\displaystyle{\frac{dN}{ds}=\tau B-\kappa T}$
$\fbox{Demostración}$
(a) Por definición $\displaystyle{N(s)=\frac{T'(s)}{\|T'(s)\|}}$ y $\displaystyle{\kappa(s)=\left\|\frac{dT}{ds}\right\|=\|f»(s)\|}$. Luego
$$T'(s)=\|T'(s)\|~N(s)=\kappa(s)~N(s).$$
(b) $\displaystyle{\frac{dB}{ds}=-\tau N(s)}$ es fórmula de definición de torsión.
(c) \begin{align*} N'(s)&=B'(s)\times T(s)+B(s)\times T'(s) \\ &=-\tau N(s)\times T(s)+B(s)\times \kappa N(s) \\ &=\tau T(s)\times N(s)-\kappa N(s)\times B(s) \\ &=\tau B(s)-\kappa T(s).~~\blacksquare \end{align*}