Álgebra Moderna I: Teorema de Jordan-Hölder

Por Cecilia del Carmen Villatoro Ramos

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

Éste es un momento emotivo. Hemos llegado a la última entrada del curso. Así que sin mucho preámbulo comencemos a hablar del tema que nos compete.

El Teorema de Jordan-Hölder nos dice que cada par de series de composición de un grupo $G$ siempre son del mismo tamaño y con factores de composición isomoforfos entre sí. De nuevo, es un teorema que nos describe cómo es un grupo y los subgrupos que lo conforman.

Debido a que los factores de composición son grupos simples, obtenemos una descomposición del grupo $G$ en elementos mínimos (en el sentido de que no tienen una subestructura del mismo tipo) y de nuevo, podemos hacer una analogía con el Teorema fundamental de la aritmética, aunque esto se ve mejor cuando $G = \z_n.$

Por último, así como el Cuarto teorema de isomorfía justifica que los factores de composición son simples, en la demostración del Teorema de Jordan-Hölder usamos mucho el Segundo teorema de isomorfía para justificar la isomorfía que existe entre los factores de composición, así que es recomendable repasarlo. La demostración que se presenta a continuación sigue el desarrollo del libro de Harvey E. Rose que se encuentra en la bibliografía, específicamente en el Teorema 9.5 de la página 191.

El último teorema del curso

Teorema. (de Jordan – Hölder) Sean $G$ un grupo finito y
\begin{align*}
G & = G_1 \unrhd G_2 \unrhd \cdots \unrhd G_{s+1} = \{e\}\\
G & = H_1 \unrhd H_2 \unrhd \cdots \unrhd H_{t+1} = \{e\}
\end{align*}
dos series de composición de $G$. Entonces $s = t$ y existe una permutación $\sigma \in S_t$ tal que para toda $i\in\{1,2,\dots ,s\}$
\begin{align*}
G_i/G_{i+1} \cong H_{\sigma(i)}/ H_{\sigma(i)+1}.
\end{align*}

Demostración.

Sea $G$ un grupo finito.
Por inducción sobre $|G|$.

H.I. Supongamos que el resultado se cumple si el orden del grupo es menor que $|G|.$

Sean
\begin{align*}
G & = G_1 \unrhd G_2 \unrhd \cdots \unrhd G_{s+1} = \{e\}\\
G & = H_1 \unrhd H_2 \unrhd \cdots \unrhd H_{t+1} = \{e\}
\end{align*}
dos series de composición de $G$.

Caso 1. $G_2 = H_2$, entonces
\begin{align*}
G_2 \unrhd \cdots \unrhd G_{s+1} = \{e\}\\
H_2 \unrhd \cdots \unrhd H_{t+1} = \{e\}
\end{align*}
son series de composición de $G_2$.

Dado que $G_1/G_2$ es simple, en particular $G_1/G_2\neq \{e_{G_1/G_2}\}$ y así $G=G_1\neq G_2$. En consecuencia $G_2\leq G$ y $|G_2|<|G|$ y por H.I. $s-1 = t-1$ y existe $\sigma\in S_{t-1}$ tal que
\begin{align*}
G_i/ G_{i+1} \cong H_{\sigma(i)} / H_{\sigma(i) + 1} \quad \forall i\in\{2,\dots,t\}.
\end{align*}

Como $G_1 = G = H_1$ y $G_2 = H_2$, entonces $G_1/G_2 = H_1/H_2$.

Así, $s=t$ y $\alpha\in S_t$ con $\alpha(1) = 1$, $\alpha(i) = \sigma(i)$ para $i\in\{2,\dots, t\}$ cumple que
\begin{align*}
G_i/G_{i+1} \cong H_{\alpha(i)} / H_{\alpha(i)+1} \quad \forall i \in \{1,\dots, t\}.
\end{align*}

Caso 2. $G_2 \neq H_2$

Como $G_2 \unlhd G$ y $H_2 \unlhd G$ se tiene que $G_2H_2 \unlhd G$.

Además
\begin{align*}
G_2 &\leq G_2H_2 \unlhd G \\
H_2 &\leq G_2H_2 \unlhd G.
\end{align*}

Como $G/G_2$ es simple, por el ejercicio 2 de Grupos simples y series de grupos se tiene que $G_2$ es un subgrupo normal de $G$ máximo. Así, $G_2H_2 = G$ ó $G_2H_2 = G_2$. Análogamente $G_2H_2 = G$ ó $G_2H_2 = H_2$. Pero si $G_2H_2 = G_2$ y $G_2H_2 = H_2$ tendríamos que $G_2=H_2$, lo que es una contradicción. Por lo tanto \begin{equation}\label{ec1}G_2H_2 = G.\end{equation}

Como $G_2\unlhd G$ entonces usamos el 2do Teorema de Isomorfía y nos dice que $G_2\cap H_2 \unlhd H_2$ y

\begin{align*}
G_2H_2/G_2 \cong H_2/(G_2\cap H_2).
\end{align*}

Pero, como también $H_2 \unlhd G$, el 2do teorema de isomorfía también nos dice que $G_2 \cap H_2 \unlhd G_2$ y
\begin{align*}
G_2H_2/H_2 \cong G_2/(G_2\cap H_2).
\end{align*}

Por (\ref{ec1}) tenemos que $G = G_2H_2$ obteniendo así que

\begin{align*}
G/G_2 &\cong H_2/(G_2\cap H_2)\\
G/H_2 &\cong G_2/(G_2\cap H_2).
\end{align*}

Diagrama de retícula para el Segundo Teorema de Isomorfía.

Como $G/G_2$ es simple, $H_2/(G_2\cap H_2)$ también lo es. Así, $G_2\cap H_2$ es un subgrupo normal máximo de $H_2$.

Análogamente como $G/H_2$ es simple, $G_2/(G_2\cap H_2)$ también lo es. Así, $G_2 \cap H_2$ es un subgrupo normal máximo de $G_2$.

Sea $K_3 = G_2\cap H_2$. Consideremos una serie de composición para $K_3$
\begin{align*}
K_3 \unrhd K_4 \unrhd \cdots \unrhd K_{r+1} = \{e\}.
\end{align*}

Tenemos las siguientes series de composición
\begin{align}
G &= G_1\unrhd G_2 \unrhd \cdots \unrhd G_{s+1} = \{e\} \\
G &= G_1 \unrhd G_2 \unrhd K_3 \unrhd K_4 \unrhd \cdots \unrhd K_{r+1} = \{e\} \\
G &= H_1 \unrhd H_2 \unrhd K_3 \unrhd K_4 \unrhd \cdots \unrhd K_{r+1} = \{e\} \\
G &= H_1 \unrhd H_2 \unrhd \cdots \unrhd H_{t+1} = \{e\}
\end{align}

Por el caso 1 aplicado a $(2)$ y $(3)$, $s= r$ y los factores de composición de
\begin{align*}
G_2 &\unrhd \cdots \unrhd G_{s+1} = \{e\}\\
G_2 &\unrhd K_3 \unrhd K_4 \unrhd \cdots \unrhd K_{r+1} = \{e\}
\end{align*}
son isomorfos salvo por el orden en el que están colocados.

Por el caso 1 aplicado a $(4)$ y $(5)$, $r=t$ y los factores de composición de
\begin{align*}
H_2 &\unrhd K_3 \unrhd K_4 \unrhd \cdots \unrhd K_{r+1} = \{e\}\\
H_2 &\unrhd \cdots \unrhd H_{t+1} = \{e\}
\end{align*}
son isomorfos salvo por el orden en el que están colocados.
Tenemos entonces que $s = t$.

Consideremos $G_i/G_{i+1}$ con $i\in\{2,\dots,t\}$:

Si $G_i/G_{i+1} \cong K_j/K_{j+1}$ con $j\in \{3,\dots, t\}$, entonces sabemos que existe $l\in\{2,\dots, t\}$ tal que $K_j/K_{j+1} \cong H_l/H_{l+1}.$

Por otro lado si $G_i/ G_{i+1} \cong G_2/K_3$, entonces $G_2/K_3=G_2/(G_2\cap H_2) \cong G/H_2=H_1/H_2.$

Entonces, para $i\in\{2,\dots,t\}$ se tiene que $G_i/G_{i+1}$ es isomorfo a $ H_l/H_{l+1}$ para alguna $l\in\{1,2,\dots, t\}$.

Finalmente consideremos el cociente $G/G_2$. Tenemos que $G/G_2\cong H_2/(G_2\cap H_2)=H_2/K_3 \cong H_m/H_{m+1}$, para alguna $m\in \{2,\dots, t\}$.

Por lo tanto para $i\in\{1,2,\dots,t\}$ se tiene que $G_i/G_{i+1}$ es isomorfo a $ H_l/H_{l+1}$ para alguna $l\in\{1,2,\dots, t\}$.

Así, los factores de composición de las series $(1)$ y $(4)$ son isomorfos salvo por el orden en que aparecen.

$\square$

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Demuestra que el Teorema de Jordan-Hölder induce el Teorema fundamental de la aritmética.
    1. Toma el grupo cíclico $\z_n$ con $n \in \z$ no necesariamente primo.
    2. Encuentra el orden de un subgrupo máximo de $\z_n$.
    3. Observa la forma de las series de composición de $\z_n$.
    4. Usa el teorema de Jordan-Hölder para concluir el Teorema fundamental de la aritmética.

Más adelante…

Nuestro curso abarca hasta este teorema, pero el estudio del álgebra continúa en un curso de Álgebra Moderna II donde se estudia la Teoría de anillos y la Teoría de Galois. Estas dos teorías son igualmente interesantes y apasionantes y tienen muchas aplicaciones.

Entradas relacionadas

Álgebra Moderna I: Grupos simples y series de grupos

Por Cecilia del Carmen Villatoro Ramos

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

Como hemos visto en las entradas anteriores, muchas pruebas de grupos se realizan por inducción sobre $|G|$ usando información de un subgrupo normal $N$ y el cociente $G/N$.

Pero para poder usar $G/N$ se requiere que exista un subgrupo normal $N$ de $G$ con $1\lneq |N| \lneq |G|.$ Y en ocasiones no existe un $N$ normal que no sea el mismo $G$ o $\{e_G\}$, entonces conviene estudiar a los grupos $G$ no triviales tales que tienen sólo dos subgrupos normales.

Por otro lado, ¿es posible tener una serie de grupos normales contenidos entre sí? A esta situación lo conocemos como una serie de composición.

Esta entrada está dedicada a los conceptos de Grupos simples y Series de composición de grupos, será útil para que, más adelante, entendamos el Teorema de Jordan Hölder.

Qué simples son los grupos simples

Definición. Sea $G$ un grupo con $G\neq \{e\}$. Decimos que $G$ es simple si sus únicos subgrupos normales son $G$ y $\{e\}$.

Ejemplo.
Sea $p\in \z^+$ un número primo, $G$ un grupo con $|G| = p$. Entonces $G$ es un grupo simple ya que si $N\unlhd G$ se tiene que $|N| \Big| |G| = p$ y así $|N| = 1$ ó $|N| = p$, esto implica que $N = \{e\}$ ó $N = G$.

Observación. Todo grupo finito simple abeliano es isomorfo a $\z_p$.

Demostración.
Sea $G$ un grupo finito simple abeliano. Dado que $G\neq\{e\}$ consideremos $a\in G, a\neq e$. Como $G$ es abeliano, todo subgrupo es normal, así
\begin{align*}
\{e\} \lneq \left< a \right> \unlhd G
\end{align*}
pero $G$ es simple, entonces $\left< a \right> = G$ y $G$ es cíclico.

Más aún, $G\cong \z_n$ con $n= |G|$. Veamos que $n$ es primo.

P. D. $n$ es primo.

Supongamos por reducción al absurdo que $n$ es compuesto, es decir $n = st$ con $s,t\in \z^+$, donde $s<n$ y $t< n$.

Entonces $a^s \neq e$ ya que $s<n = o(a)$, por lo que $\{e\} \lneq \left< a^s\right>$.

Además $$(a^s)^t = e$$ y así $o(a^s)\Big| t$, lo que implica que $o(a^s) \leq t < n$ y en consecuencia $\left< a^s\right> \lneq \; G$.

Por lo tanto $\{e\} \lneq \left< a^s\right> \lneq \; G$. Pero como $G$ es un grupo abeliano todos sus subgrupos son normales, por lo que $\left< a^s\right>$ sería un subgrupo normal de $G$ distinto de $\{e\} $ y de $G$, lo que es una contradicción.

Concluimos que $n$ es primo y así $G\cong \z_n$ con $n$ primo.

$\blacksquare$

Nota. Hay grupos simples no abelianos finitos e infinitos.

Series de grupos

Definición. Sea $G$ un grupo. Una secuencia de subgrupos
\begin{align*}
G = G_1 \geq G_2 \geq \cdots \geq G_{k+1} = \{e\}
\end{align*}
es una serie de composición para $G$ si $G_{i+1} \unlhd G_{i}$ y $G_i/G_{i+1}$ es simple para toda $i\in\{1,\dots, k\}$.
Esto cocientes se llaman factores de composición.

A pesar de que estamos dando una definición, es importante señalar que en el caso de un grupo finito es el Cuarto teorema de isomorfía el que justifica que en efecto estas series de composición existen:

Observación 1. Sean $G$ un grupo finito y $N$ un subgrupo normal propio de $G$ tal que es máximo con esta propiedad, es decir tal que si $N\leq H\lneq G$ con $H$ normal en $G$, entonces $N=H$. Se tiene que $G/N$ es simple.

Demostración.

Sean $G$ un grupo finito y $N$ un subgrupo normal de $G$ tal que es máximo con esta propiedad. Supongamos que $\mathcal{H}$ es un subgrupo normal de $G/N$ con $$\{e_{G/N}\}\leq \mathcal{H}\lneq G/N.$$ Por el Cuarto teorema de isomorfía sabemos que $\mathcal{H}=H/N$ para algún $N\leq H\lneq G.$ Además, como $\mathcal{H}\unlhd G/N$ sabemos que $H\unlhd G$. Pero al ser $N$ un subgrupo normal máximo tenemos que $N=H$ por lo cual $\mathcal{H}=N/N=\{e_{G/N}\}$. Así, $G/N$ es simple.

Observación 2. Si $G$ es finito, estas series de composición existen.

Demostración (sencilla).

Si $G$ es trivial entonces $G$ mismo es una serie de composición para $G$.

Supongamos entonces que $G$ es no trivial. Consideramos $G_1=G$ y $G_2$ un subgrupo normal propio de $G$ tal que es máximo con esta propiedad. Entonces por la observación 1 $G_1/G_2$ es simple.

Si $G_2=\{e\}$, $G_1\geq G_2$ es una serie de composición para $G$.

Si $G_2\neq\{e\}$ tomamos $G_3$ un subgrupo normal propio de $G_2$, máximo, y así sucesivamente. Como $G$ es finito este proceso termina y da lugar a una serie de composición para $G$.

$\blacksquare$

Ejemplos

Ejemplo 1. Tomemos $\z_{12}$. Notemos que en este caso el grupo es abeliano por lo que todos sus subgrupos son normales. Proponemos
\begin{align}\label{ejemplo1}
\z_{12} \unrhd \left<\bar{3}\right> \unrhd \left<\bar{6}\right> \unrhd\{\bar{0}\}.
\end{align}

Como $\left| \left<\bar{3}\right>\right| = 4$, entonces $\left| \z_{12} \Big/ \left<\bar{3}\right>\right| = \frac{12}{4} = 3$ y así $\z_{12} \Big/ \left<\bar{3}\right> \cong \z_3$ que es simple.

Sabemos que $\left| \left<\bar{6}\right> \right|= 2$, así $\left| \left<\bar{3}\right> \Big/ \left<\bar{6}\right>\right| = \frac{4}{2} = 2$ y entonces $ \left<\bar{3}\right> \Big/ \left<\bar{6}\right> \cong \z_2$ que es simple.

Finalmente $ \left<\bar{6}\right> \Big/ \{\bar{0}\} \cong \left<\bar{6}\right> \cong \z_2$ que es simple. Así $(\ref{ejemplo1})$ es una serie de composición para $\z_{12}$.

También $\z_{12} \unrhd \left<\bar{2}\right> \unrhd \left<\bar{6}\right> \unrhd \{\bar{0}\}$ lo es.

Ejemplo 2. Tomemos $D_{2(4)} = \{\text{id}, a, a^2, a^3, b, ab, a^2b, a^3b\}$. Donde $a$ es la rotación de $\frac{\pi}{4}$ y $b$ es la reflexión respecto al eje $x$.

Tenemos que
\begin{align*}
\left<a^2,b\right> = \{\text{id}, a^2, b, a^2b\}
\end{align*}
es de orden cuatro, entonces $\left[ D_{2(4)} : \left<a^2,b\right> \right] = 2$. Así $D_{2(4)} \unrhd \left< a^2, b \right>$ y $D_{2(4)}/ \left< a^2,b \right> \cong \z_2$ que es simple.

También $\left[ \left<a^2,b\right> : \left< b \right> \right] = 2$ y $ \left<a^2,b\right> / \left<b\right>\cong \z_2$ que es simple. Finalmente $\left< b \right> / \{\text{id}\} \cong \z_2$ que es simple.

Así,
\begin{align*}
D_{2(4)} \unrhd \left< a^2, b\right> \unrhd \left<b\right> \unrhd \{\text{id}\}
\end{align*}
es una serie de composición para $D_{2(4)}$.

También
\begin{align*}
D_{2(4)} \unrhd \left< a \right> \unrhd \left< a^2 \right> \unrhd \{\text{id}\}.
\end{align*}

Observación 3. En una serie de composición $G_{i-1} \unrhd G_i$ pero no necesariamente $G \unrhd G_i$.

Observación 4. Puede ser que dos grupos no isomorfos tengan los mismos factores de composición salvo isomorfía.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Considera la nota que aparece en esta entrada: hay grupos simples no abelianos finitos e infinitos.
    • Encuentra un grupo simple no abeliano finito.
    • Encuentra un grupo simple no abeliano infinito.
    • ¿Qué pasará con los grupos abelianos infinitos? ¿existirán los grupos abelianos infinitos simples?
  2. Encuentra un grupo $G$ que cumpla la observación: $G_{i-1} \unrhd G_i$ pero no necesariamente $G \unrhd G_i$.
  3. Describe un ejemplo de grupos tales que no sean isomorfos y tengan los mismos factores de composición salvo isomorfía.
  4. En cada uno de los siguientes casos encuentra todas las series de composición de $G$ y compara los factores de composición obtenidos:
    • $G = \z_{60}$.
    • $G = \z_{48}$.
    • $S_3 \times \z_2.$

Más adelante…

Estos conceptos que pueden parecer muy sencillos, al combinarlos nos dan el último teorema que veremos en este curso: el Teorema de Jordan-Hölder. Una poderosa herramienta que nos dice que los factores de composición de dos series distintas de un mismo grupo son los mismos salvo isomorfía.

Entradas relacionadas

Álgebra Moderna I: Teorema fundamental de los grupos abelianos finitos.

Por Cecilia del Carmen Villatoro Ramos

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

El temario de este curso consiste principalmente en el estudio de la Teoría de grupos, comenzamos su construcción desde las operaciones binarias, estudiamos distintos tipos de grupos y funciones entre ellos (homomorfismos) y seguimos intentando describir a los grupos. El primer gran escalón de nuestro curso fueron los Teoremas de isomorfía, luego los Teoremas de Sylow y ahora llegamos al tercero: el Teorema fundamental de los grupos abelianos finitos.

Otros dos teoremas fundamentales que seguramente conoces son el Teorema fundamental del álgebra y el Teorema fundamental de la aritmética, conviene recordar el segundo. Básicamente nos dice que a todo número entero lo podemos ver como un producto de primos, además nos dice que estos primos son únicos excepto por el orden en que aparecen. Este teorema es importante porque intuitivamente nos dice que los números primos son los ladrillos básicos para construir a cualquier número.

¿Cuáles son estos mismos ladrillos para los grupos abelianos finitos? En la entrada de Producto directo interno vimos un teorema en el que para ciertos casos podemos descomponer a un grupo finito $G$ en sus $p$-subgrupos de Sylow, donde cada $p$ corresponde a un factor primo del orden del grupo. ¿Qué podría ser más fundamental que eso?

Usaremos el teorema que vimos en Producto directo interno y veremos que un grupo abeliano finito $G$ es isomorfo a un producto directo de grupos ajenos a $G$ en lugar de los $p$-subgrupos de Sylow que dependen del grupo que los contiene. ¿Qué grupos finitos relacionados con primos conocemos aparte de los $p$-subgrupos? Los candidatos ideales son $\z_n$, con $n$ una potencia de un primo, que de acuerdo a lo que hemos estudiado son abelianos y finitos.

Así, el Teorema fundamental de los grupos abelianos finitos nos presenta a los $\z_n$, con $n$ una potencia de un primo, como nuestros ladrillos elementales para describir cualquier grupo abeliano finito $G$.

Último lema numerado

Como prometimos en la entrada anterior, siguiendo con el desarrollo hecho por Judson, T.W. en el libro Abstract Algebra: Theory and Applications, Department of Mathematics and Statistics Stephen F. Austin State University que aparece en la bibliografía y que puede revisarse en http://abstract.ups.edu/aata/struct-section-finite-abelian-groups.html, aquí está el tercer lema numerado que usaremos para demostrar el Teorema fundamental de los grupos abelianos finitos.

Lema 3. Sean $p\in\z^+$ un primo y $G$ un $p$-grupo abeliano. Tenemos que $G$ es un producto directo interno de grupos cíclicos.

Demostración.
Por el segundo principio de inducción.

Sea $p\in\z^+$ un primo, $G$ un $p$-grupo abeliano.

Sea $g\in G$ un elemento de orden máximo (podemos suponer que $g\neq e$ ya que si $g = e$, entonces $G = \{e\}$).

H.I. Supongamos que todo $p$-grupo abeliano de orden menor que el orden de $G$ es un producto directo interno de grupos cíclicos.

Por el lema 2, $G$ es el producto directo de $\left< g \right>$ y un subgrupo $H$ de $G$. Entonces $|G| = |\left< g \right>|\,|H|$ lo que implica que $\displaystyle |H| = \frac{|G|}{|\left< g \right>|}$ y, esto implica que $ \displaystyle |H| < |G|$.

Además, $H$ también es un $p$-grupo abeliano. Así que por la hipótesis de inducción $H$ es el producto directo de grupos cíclicos.

Por lo tanto $G$ es producto directo de grupos cíclicos, a saber $\left< g \right>$ y los grupos cíclicos cuyo producto directo es $H$.

$\blacksquare$

Teorema fundamental de los grupos abelianos finitos

Recordemos que los isomorfismos preservan la estructura algebraica de los grupos. Recordemos que los grupos $\z_n$, con $n$ una potencia de un primo, son abelianos y finitos, por lo que sólo pueden ser isomorfos a otros grupos abelianos y finitos. Más aún, todo grupo abeliano finito es isomorfo a un producto directo de este tipo de grupos.

Teorema. (Fundamental de los Grupos Abelianos Finitos) Todo grupo abeliano finito $G$ es isomorfo a un producto directo de grupos cíclicos de la forma $$\z_{p_1^{\alpha_1}} \times \cdots \times \z_{p_r^{\alpha_r}}$$ con $p_1,\dots, p_r,\alpha_1,\dots, \alpha_r \in \z^+$ y $p_1,\dots,p_r$ primos no necesariamente distintos.

Demostración.

Sea $G$ un grupo abeliano finito. Por ser $G$ abeliano todos sus subgrupos son normales, en particular sus subgrupos de Sylow.

Por el teorema de la entrada Producto directo interno, $G$ es isomorfismo al producto directo de sus subgrupos de Sylow, y por el lema 3 cada uno de ellos es un producto directo de subgrupos cíclicos. Además, como los subgrupos de Sylow son de orden una potencia de un primo, sus subgrupos también, por lo que son isomorfos a $\z_{p^\alpha}$ con $p,\alpha \in \z^+$ y $p$ un primo.

Así, $G$ es isomorfo a un producto directo de la forma
\begin{align*}
\z_{p_1^{\alpha_1}} \times \cdots \times \z_{p_r^{\alpha_r}}
\end{align*}
con $p_1,\dots,p_r,\alpha_1,\dots, \alpha_r \in\z^+$, $p_1,\dots,p_r$ primos no necesariamente distintos.

$\blacksquare$

Apreciemos cómo la demostración de los lemas anteriores, nos facilitó la demostración de este teorema fundamental.

Ejemplo.

Sea $G$ un grupo abeliano de orden $180 = 4\cdot 45 = 2^2\cdot 3^2 \cdot 5$.

Entonces, de acuerdo con el Teorema fundamental de los grupos abelianos finitos, $G$ es isomorfo a alguno de

  • $\z_2\times\z_2\times\z_3\times\z_3\times\z_5$,
  • $\z_4\times\z_3\times\z_3\times\z_5$,
  • $\z_2\times\z_2\times\z_9\times\z_5$ ó
  • $\z_4\times\z_9\times\z_5$.

Podría ser isomorfo a cualquiera de ellos, pero para saber a cuál requeriríamos más información. De cualquier modo este primer análisis nos ayuda mucho a entender cómo debe ser el grupo.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Si $G$ es un grupo abeliano finito, definimos $v_k(G)$ como el número de elementos de $G$ de orden $k$.
    Prueba que si dos grupos finitos abelianos, $G$ y $G^*$ son isomorfos si y sólo si $v_k(G) = v_k(G^*)$ para todo entero $k$. (Este resultado no es cierto para grupos no abelianos).
  2. Prueba el Teorema Fundamental de la Aritmética aplicando el Teorema Fundamental de Grupos Abelianos Finitos a $G = \z_n$, con $n\in\n$.
  3. Usa el Teorema Fundamental de Grupos abelianos finitos para describir a…
    • Un grupo de orden $144.$
    • Un grupo de orden $360.$
    • Un grupo de orden $2783.$
  4. Encuentra para cuáles $n \in \z^+$ los grupos de orden $n$ son cíclicos.
  5. Prueba que $A$ es un grupo abeliano finito de orden $n$ si y sólo si para cada $d$ divisor de $n$, hay a lo más $d$ elementos $a\in A$ tales que $a^d = 1_A.$

Más adelante…

Esta entrada fue un tema muy anticipado. Ahora comenzaremos otro tema que, aunque sea corto, es igual de importante que el Teorema fundamental de grupos finitos abelianos. De hecho, comparte que también es semejante con el Teorema fundamental de la aritmética. Comenzaremos a estudiar el Teorema de Jordan-Hölder

Entradas relacionadas

Versión cuatro del Teorema de la Función Implícita

Por Angélica Amellali Mercado Aguilar

Ejemplo. Se da el nivel cero de una función diferenciable $F:\mathbb{R}^{4}\rightarrow \mathbb{R}$ y un punto P perteneciente a este nivel. Diga en cada caso si en los alrededores del punto p es posible ver la gráfica de F como la gráfica de una función diferenciable del tipo

$$a)~u=u(x,y,z)$$ $$b)~z=z(x,y,u)$$$$c)~y=y(x,u,z)$$ $$d)~x=x(y,z,u)$$ para $x^{2}+y^{2}+z^{2}+u^{u}=4$ en $p=(1,1,1,1)$

Solución. En este caso para todos los incisos podemos definir $f(x,y,z,u)=x^{2}+y^{2}+z^{2}+u^{u}-4=0$ y para el inciso a, se tiene
$$\frac{\partial F}{\partial u}=2u\left.\right|_{(1,1,1,1)}=2\neq0$$ por lo tanto es posible ver a la gráfica de F como una función diferenciable del tipo $u=u(x,y,z)$ y sus derivadas parciales seran:

$$\frac{\partial u}{\partial x}(1,1,1,1)=-\frac{\frac{\partial F}{\partial x}\left.\right|{(1,1,1,1)}}{\frac{\partial F}{\partial u}\left.\right|{(1,1,1,1)}}=-\frac{2x}{2u}=-1$$
$$\frac{\partial u}{\partial y}(1,1,1,1)=-\frac{\frac{\partial F}{\partial y}\left.\right|{(1,1,1,1)}}{\frac{\partial F}{\partial u}\left.\right|{(1,1,1,1)}}=-\frac{2y}{2u}=-1$$
$$\frac{\partial u}{\partial z}(1,1,1,1)=-\frac{\frac{\partial F}{\partial z}\left.\right|{(1,1,1,1)}}{\frac{\partial F}{\partial u}\left.\right|{(1,1,1,1)}}=-\frac{2z}{2u}=-1$$

para el inciso b, se tiene

$$\frac{\partial F}{\partial z}=2z\left.\right|{(1,1,1,1)}=2\neq0$$ por lo tanto es posible ver a la gráfica de F como una función diferenciable del tipo $z=z(x,y,u)$ y sus derivadas parciales seran: $$\frac{\partial z}{\partial x}(1,1,1,1)=-\frac{\frac{\partial F}{\partial x}\left.\right|{(1,1,1,1)}}{\frac{\partial F}{\partial z}\left.\right|{(1,1,1,1)}}=-\frac{2x}{2z}=-1$$ $$\frac{\partial z}{\partial y}(1,1,1,1)=-\frac{\frac{\partial F}{\partial y}\left.\right|{(1,1,1,1)}}{\frac{\partial F}{\partial z}\left.\right|{(1,1,1,1)}}=-\frac{2y}{2z}=-1$$ $$\frac{\partial z}{\partial z}(1,1,1,1)=-\frac{\frac{\partial F}{\partial z}\left.\right|{(1,1,1,1)}}{\frac{\partial F}{\partial z}\left.\right|_{(1,1,1,1)}}=-\frac{2u}{2z}=-1$$

para el inciso c, se tiene

$$\frac{\partial F}{\partial y}=2y\left.\right|{(1,1,1,1)}=2\neq0$$ por lo tanto es posible ver a la gráfica de F como una función diferenciable del tipo $y=y(x,z,u)$ y sus derivadas parciales seran: $$\frac{\partial y}{\partial x}(1,1,1,1)=-\frac{\frac{\partial F}{\partial x}\left.\right|{(1,1,1,1)}}{\frac{\partial F}{\partial y}\left.\right|{(1,1,1,1)}}=-\frac{2x}{2y}=-1$$ $$\frac{\partial y}{\partial z}(1,1,1,1)=-\frac{\frac{\partial F}{\partial z}\left.\right|{(1,1,1,1)}}{\frac{\partial F}{\partial y}\left.\right|{(1,1,1,1)}}=-\frac{2z}{2y}=-1$$ $$\frac{\partial y}{\partial u}(1,1,1,1)=-\frac{\frac{\partial F}{\partial u}\left.\right|{(1,1,1,1)}}{\frac{\partial F}{\partial y}\left.\right|{(1,1,1,1)}}=-\frac{2u}{2y}=-1$$ para el inciso d, se tiene $$\frac{\partial F}{\partial x}=2x\left.\right|{(1,1,1,1)}=2\neq0$$ por lo tanto es posible ver a la gráfica de F como una función diferenciable del tipo $x=x(y,z,u)$ y sus derivadas parciales seran:
$$\frac{\partial x}{\partial y}(1,1,1,1)=-\frac{\frac{\partial F}{\partial y}\left.\right|{(1,1,1,1)}}{\frac{\partial F}{\partial x}\left.\right|{(1,1,1,1)}}=-\frac{2x}{2y}=-1$$
$$\frac{\partial x}{\partial z}(1,1,1,1)=-\frac{\frac{\partial F}{\partial z}\left.\right|{(1,1,1,1)}}{\frac{\partial F}{\partial x}\left.\right|{(1,1,1,1)}}=-\frac{2z}{2y}=-1$$
$$\frac{\partial x}{\partial u}(1,1,1,1)=-\frac{\frac{\partial F}{\partial u}\left.\right|{(1,1,1,1)}}{\frac{\partial F}{\partial x}\left.\right|{(1,1,1,1)}}=-\frac{2u}{2y}=-1$$

Teorema de la Función Implicita (version (4))

Consideremos ahora el sistema
$$au+bv-k_{1}x=0$$ $$cu+dv-k_{2}y=0$$
con $a,b,c,d,k_{1},k_{2}$ constantes. Nos preguntamos cuando podemos resolver el sistema para $u$ y $v$ en términos de $x$ y $y$.
Si escribimos el sistema como
$$au+bv=k_{1}x$$ $$cu+dv=k_{2}y$$
y sabemos que este sistema tiene solución si $det \left|\begin{array}{cc} a&b \\c&d\end{array}\right|\neq0$ en tal caso escribimos
$u=\displaystyle \frac{1}{det \left|\begin{array}{cc} a&b \\c&d\end{array}\right|}(k_{1}dx-k_{2}by)$, $~~~$ $v=\displaystyle \frac{1}{det \left|\begin{array}{cc} a&b \\c&d\end{array}\right|}(k_{2}ay-k_{1}cx)$.
Esta solución no cambiaria si consideramos
$$au+bv=f_{1}(x,y)$$ $$cu+dy=f_{2}(x,y)$$

donde $f_{1}$ y $f_{2}$ son funciones dadas de $x$ y $y$. La posibilidad de despejar las variables $u$ y $v$ en términos de $x$ y $y$ recae sobre los coeficientes de estas variables en las ecuaciones dadas.

Ahora si consideramos ecuaciones no lineales en $u$ y $v$ escribimos el sistema como
$$g_{1}(u,v)=f_{1}(x,y)$$ $$g_{2}(u,v)=f_{2}(x,y)$$

nos preguntamos cuando del sistema podemos despejar a $u$y $v$ en términos de $x$ y $y$. Mas generalmente, consideramos el problema siguiente, dadas las funciones $F$ y $G$ de las variables $u,v,x,y$ nos preguntamos cuando de las expresiones

$$F(x,y,u,v)=0$$ $$G(x,y,u,v)=0$$

podemos despejar a $u$ y $v$ en términos de $x$ y $y$ en caso de
ser posible diremos que las funciones $u=\varphi_{1}(x,y)$ y
$v=\varphi_{2}(x,y)$ son funciones implícitas dadas. Se espera que
$\exists’$n funciones $u=\varphi_{1}(x,y)$ y
$v=\varphi_{2}(x,y)$ en
$$F(x,y,\varphi_{1}(x,y),\varphi_{2}(x,y)$$ $$G(x,y,\varphi_{1}(x,y),\varphi_{2}(x,y)$$
con $(x,y)$ en alguna vecindad $V$. Suponiendo que existen $\varphi_{1}$ y $\varphi_{2}$ veamos sus derivadas

$$\displaystyle \frac{\partial F}{\partial x}\displaystyle \frac{\partial x}{\partial
x}+\displaystyle \frac{\partial F}{\partial y}\displaystyle \frac{\partial y}{\partial x}+\displaystyle \frac{\partial F}{\partial u}\displaystyle \frac{\partial u}{\partial
x}+\displaystyle \frac{\partial F}{\partial v}\displaystyle \frac{\partial v}{\partial x}=0 \Rightarrow \displaystyle \frac{\partial F}{\partial u}\displaystyle \frac{\partial u}{\partial x}+\displaystyle \frac{\partial F}{\partial v}\displaystyle \frac{\partial v}{\partial x}=-\displaystyle \frac{\partial F}{\partial x}$$

$$\displaystyle \frac{\partial G}{\partial x}\displaystyle \frac{\partial x}{\partial x}+\displaystyle \frac{\partial G}{\partial y}\displaystyle \frac{\partial y}{\partial x}+\displaystyle \frac{\partial G}{\partial u}\displaystyle \frac{\partial u}{\partial x}+\displaystyle \frac{\partial G}{\partial v}\displaystyle \frac{\partial v}{\partial x}=0 ~~ \Rightarrow ~~ \displaystyle \frac{\partial G}{\partial u}\displaystyle \frac{\partial u}{\partial x}+\displaystyle \frac{\partial G}{\partial v}\displaystyle \frac{\partial v}{\partial x}=-\displaystyle \frac{\partial G}{\partial x}$$

Lo anterior se puede ver como un sistema de 2 ecuaciones con 2 incógnitas $\displaystyle \frac{\partial u}{\partial x}$ y $\displaystyle \frac{\partial v}{\partial x}$. Aquí se ve que para que el sistema tenga solución

$det \left|\begin{array}{cc} \displaystyle \frac{\partial F}{\partial
u}&\displaystyle \frac{\partial F}{\partial v} \\ \displaystyle \frac{\partial F}{\partial u}&\displaystyle \frac{\partial G}{\partial v}\end{array}\right|\neq0$ en $(P)$ (el $det$ Jacobiano) y según la regla de Cramer

$\displaystyle \frac{\partial u}{\partial x}=-\frac{\det
\left|\begin{array}{cc} \displaystyle -\frac{\partial F}{\partial
x}&\displaystyle \frac{\partial F}{\partial v}
\\ \displaystyle -\frac{\partial G}{\partial x}&\displaystyle \frac{\partial G}{\partial
v}\end{array}\right|}{\det
\left|\begin{array}{cc} \displaystyle \frac{\partial F}{\partial
u}&\displaystyle \frac{\partial F}{\partial v}
\\ \displaystyle \frac{\partial F}{\partial u}&\displaystyle \frac{\partial G}{\partial
v}\end{array}\right|}$, $~~ $ $\displaystyle \frac{\partial v}{\partial x}=-\frac{\det \left|\begin{array}{cc} \displaystyle \frac{\partial F}{\partial u}&\displaystyle -\frac{\partial F}{\partial x} \\ \displaystyle \frac{\partial G}{\partial u}&\displaystyle -\frac{\partial G}{\partial x}\end{array}\right|}{det \left|\begin{array}{cc} \displaystyle \frac{\partial F}{\partial u}&\displaystyle \frac{\partial F}{\partial v} \\ \displaystyle \frac{\partial F}{\partial u}&\displaystyle \frac{\partial G}{\partial v}\end{array}\right|}$ (con los dos $det$ Jacobianos).

Análogamente si derivamos con respecto a $y$ obtenemos
$$\displaystyle \frac{\partial F}{\partial
u}\displaystyle \frac{\partial u}{\partial y}+\displaystyle
\frac{\partial F}{\partial v}\displaystyle \frac{\partial
v}{\partial y}=-\displaystyle \frac{\partial F}{\partial y}$$ ,$$\displaystyle \frac{\partial G}{\partial u}\displaystyle \frac{\partial u}{\partial y}+\displaystyle
\frac{\partial G}{\partial v}\displaystyle \frac{\partial v}{\partial y}=-\displaystyle \frac{\partial G}{\partial y}$$
de donde

$\displaystyle \frac{\partial u}{\partial y}=-\frac{\det
\left|\begin{array}{cc} \displaystyle -\frac{\partial F}{\partial
y}&\displaystyle \frac{\partial F}{\partial v}
\\ \displaystyle -\frac{\partial G}{\partial y}&\displaystyle \frac{\partial G}{\partial
v}\end{array}\right|}{det
\left|\begin{array}{cc} \displaystyle \frac{\partial F}{\partial
u}&\displaystyle \frac{\partial F}{\partial v}
\\ \displaystyle \frac{\partial F}{\partial u}&\displaystyle \frac{\partial G}{\partial
v}\end{array}\right|}$,$~~$ $\displaystyle \frac{\partial v}{\partial y}=-\frac{\det \left|\begin{array}{cc} \displaystyle \frac{\partial F}{\partial u}&\displaystyle -\frac{\partial F}{\partial y} \\ \displaystyle \frac{\partial G}{\partial u}&\displaystyle -\frac{\partial G}{\partial y}\end{array}\right|}{det \left|\begin{array}{cc} \displaystyle \frac{\partial F}{\partial u}&\displaystyle \frac{\partial F}{\partial v} \\ \displaystyle \frac{\partial F}{\partial u}&\displaystyle \frac{\partial G}{\partial v}\end{array}\right|}$ (con los dos $det$ Jacobianos).

Al determinante $det \left|\begin{array}{cc} \displaystyle
\frac{\partial F}{\partial u}&\displaystyle \frac{\partial F}{\partial v} \\ \displaystyle \frac{\partial G}{\partial u}&\displaystyle \frac{\partial G}{\partial v}\end{array}\right|$ lo llamamos Jacobiano y lo denotamos por $\displaystyle \frac{\partial (F,G)}{\partial (u,v)}$.

Teorema de la Función Implícita (Versión 4)

Teorema 1. Considere las funciones $z_{1}=F(x,y,u,v)$ y $z_{2}=G(x,y,u,v)$. Sea $P=(x,y,u,v) \in \mathbb{R}^{4}$ un punto tal que $F(P)=G(P)=0$.
Suponga que en una bola $\textit{B} \in \mathbb{R}^{4}$ de centro $P$ las funciones $F$ y $G$ tienen (sus cuatro) derivadas parciales continuas. Si el Jacobiano $\displaystyle \frac{\partial (F,G)}{\partial (u,v)}(P)\neq0$ entonces las expresiones
$F(x,y,u,v)=0$ y $G(x,y,u,v)=0$ definen funciones (implícitas) $u=\varphi_{1}(x,y)$ y $v=\varphi_{2}(x,y)$ definidas en una vecindad $v$ de $(x,y)$ las cuales tienen derivadas parciales continuas en $v$ que se pueden calcular como se menciona arriba.

Demostración. Dado que $$det \left|\begin{array}{cc} \displaystyle \frac{\partial F}{\partial u}&\displaystyle \frac{\partial F}{\partial v} \\ \displaystyle \frac{\partial F}{\partial u}&\displaystyle \frac{\partial G}{\partial v}\end{array}\right|\neq 0$$ entonces $\displaystyle{\frac{\partial F}{\partial u}(p)}$, $\displaystyle{\frac{\partial F}{\partial v}(p)}$, $\displaystyle{\frac{\partial G}{\partial u}(p)}$, $\displaystyle{\frac{\partial G}{\partial v}(p)}$ no son cero al mismo tiempo, podemos suponer sin pérdida de generalidad que $\displaystyle{\frac{\partial G}{\partial v}(p)}\neq0$. Entonces la función $z_{1}=G(x,y,u,v)$ satisface las hipótesis del T.F.I y en una bola abierta con centro p, v se puede escribir como $v=\psi(x,y,u)$. Hacemos ahora $$H(x,y,u)=F(x,y,u,\psi(x,y,u))$$ y tenemos que $$\frac{\partial H}{\partial u}=\frac{\partial F}{\partial x}\frac{\partial x}{\partial u}+\frac{\partial F}{\partial y}\frac{\partial y}{\partial u}+\frac{\partial F}{\partial u}\frac{\partial u}{\partial u}+\frac{\partial F}{\partial v}\frac{\partial \psi}{\partial u}=\frac{\partial F}{\partial u}+\frac{\partial F}{\partial v}\frac{\partial \psi}{\partial u}$$ por otro lado
$$\frac{\partial \psi}{\partial u}=-\frac{\frac{\partial G}{\partial u}}{\frac{\partial G}{\partial v}}$$ por lo tanto $$\frac{\partial H}{\partial u}=\frac{\partial F}{\partial u}+\frac{\partial F}{\partial v}\frac{\partial \psi}{\partial u}=\frac{\partial F}{\partial u}+\frac{\partial F}{\partial v}\left(-\frac{\frac{\partial G}{\partial u}}{\frac{\partial G}{\partial v}}\right)=\frac{\frac{\partial F}{\partial u}\frac{\partial G}{\partial v}-\frac{\partial F}{\partial v}\frac{\partial G}{\partial u}}{\frac{\partial G}{\partial v}}\neq0$$por lo tanto para $H(x,y,u)=0$ tenemos que existe una función $u=\varphi_{1}(x,y)$ y por lo tanto $v=\psi(x,y,u)=\psi(x,y,\varphi_{1}(x,y,u))=\varphi_{2}(x,y)$ y por tanto $u,v $ se pueden expresar en términos de $x,y$ en una vecindad de $p$ $\square$

Ejemplo. Analizar la solubilidad del sistema
$$e^{u}+e^{v}=x+ye$$ $$ue^{u}+ve^{v}=xye$$

Solución. En este caso definimos
$$F(x,y,u,v)=e^{u}+e^{v}-x-ye=0$$ $$G(x,y,u,v)=ue^{u}+ve^{v}-xye=0$$
por lo que el sistema tendrá solución si $\displaystyle{\det\left|\begin{array}{cc} \displaystyle \frac{\partial F}{\partial u}&\displaystyle \frac{\partial F}{\partial v}
\\ \displaystyle \frac{\partial F}{\partial u}&\displaystyle \frac{\partial G}{\partial
v}\end{array}\right|}\neq 0$
En este caso
$$\det\left|\begin{array}{cc} \displaystyle \frac{\partial F}{\partial
u}&\displaystyle \frac{\partial F}{\partial v}
\\ \displaystyle \frac{\partial F}{\partial u}&\displaystyle \frac{\partial G}{\partial
v}\end{array}\right|=\det\left|\begin{array}{cc} \displaystyle e^{u}&\displaystyle e^{v}\\ ue^{u}+e^{e^{u}}&ve^{v}+e^{v}\end{array}\right|=e^{u}\left(ve^{v}+e^{v}\right)-e^{v}\left(ue^{u}+e^{u}\right)=ve^{u+v}-ue^{v+u}\neq 0$$
por lo tanto u y v se pueden ver en términos de x,y $\therefore$ se pueden calcular sus parciales en $u=0,~v=1,~x=1, ~y=1$ que es este caso dan

$$\displaystyle \frac{\partial u}{\partial x}=-\frac{\det
\left|\begin{matrix}-1&-ye\\e^{v}&ve^{v}+e^{v}\end{matrix}\right|}{ve^{u+v}-ue^{v+u}}=-\frac{-(ve^{v}+e^{v})+e^{v}ye}{ve^{u+v}-ue^{v+u}}\left.\right|{(1,1,1,1)}=\frac{2e-e^{2}}{e}=2-e$$ $$\displaystyle \frac{\partial v}{\partial x}=-\frac{\det \left|\begin{matrix}e^{u}&ue^{u}+e^{u}\\-1&-ye\end{matrix}\right|}{ve^{u+v}-ue^{v+u}}=-\frac{-ye^{u}e+ue^{u}+e^{u}}{ve^{u+v}-ue^{v+u}}\left.\right|{(1,1,1,1)}=\frac{e-1}{e}=1-e^{-1}$$ $$\displaystyle \frac{\partial u}{\partial y}=-\frac{\det
\left|\begin{matrix}-e&-xe\\e^{v}&ve^{v}+e^{v}\end{matrix}\right|}{ve^{u+v}-ue^{v+u}}=-\frac{-e(ve^{v}+e^{v})+e^{v}xe}{ve^{u+v}-ue^{v+u}}\left.\right|{(1,1,1,1)}=\frac{e^{2}+e^{2}-e^{2}}{e}=e$$ $$\displaystyle \frac{\partial v}{\partial y}=-\frac{\det \left|\begin{matrix}e^{u}&ue^{u}+e^{u}\\-e&-xe\end{matrix}\right|}{ve^{u+v}-ue^{v+u}}=-\frac{-e^{u}xe+e(ue^{u}+e^{u})}{ve^{u+v}-ue^{v+u}}\left.\right|{(1,1,1,1)}=\frac{e-e}{e}=0$$

Tres versiones del Tema de la Función Inversa

Por Angélica Amellali Mercado Aguilar

Teorema de la Función Implicita (version (1))

Teorema 1. Considere la función $y=f(x)$. Sea $(x_{0},y_{0}) \in
\mathbb{R}^{2}$ un punto tal que $F(x_{0},y_{0})=0$. Suponga que la función F tiene derivadas parciales en alguna bola con centro $(x_{0},y_{0})$ y que $\displaystyle \frac{\partial F}{\partial y}(x_{0},y_{0})\neq 0$. Entonces $F(x,y)=0$ se puede resolver para $y$ en términos de $x$ y definir así una función $y=f(x)$ con dominio en una vecindad de $(x_{0},y_{0})$, tal que $y_{0}=f(x_{0})$, lo cual tiene derivadas continuas en $\mathcal{V}$ que pueden calcularse como $$y’=f'(x)=-\displaystyle \frac{\displaystyle \frac{\partial F}{\partial x}(x,y)}{\displaystyle \frac{\partial F}{\partial y}(x,y)}$, $x \in \mathcal{V}$$.

Vamos ahora a probar que f es continua en $(x_{0}-h,x_{0}+h)$ haciendo ver primero que es continua en$x_{0}$ y despues mostrando que es continua en todo $x\in (x_{0}-h,x_{0}+h)$

Demostración. Sea $0<\epsilon<k$. Si se repite el proceso para determinar la funcion f, pero ahora restringidos a un cuadrado más pequeño T, centrado en $(x_{0},y_{0})$, descrito por $$T={(x,y)\in\mathbb{R}^{2}~|~|x-x_{0}<\epsilon,|y-y_{0}|<\epsilon|}$$obtenemos la misma función pero con dominio restringido a un intervalo $(x_{0}-\delta,x_{0}+\delta)$ con $\delta0$ tal que para todo x, si $|x-x_{0}|<\delta$ entonces $|f(x)-f(x_{0})|<\epsilon$. Por tanto, f es continua en $x_{0}$.\Para probar que f es continua en x $\forall~x\in (x_{0}-h,x_{0}+h)$ tómese $x_{1}$ en $(x_{0}-h,x_{0}+h)$ con $x_{1}\neq x_{0}$ y un $\epsilon>0$ lo suficientemente pequeño para garantizar que el cuadrado $$U=\left\{(x,y)\in\mathbb{R}^{2}~|~|x-x_{1}<\epsilon,|y-y_{1}|<\epsilon|\right\}$$ centrado en $(x_{1},y_{1})$ y donde $y_{1}=f(x_{1})$ este totalmente contenido en el cuadrado original S, y ademas para todo x tal que $|x-x_{1}<\epsilon$, $x\in(x_{0}-h,x_{0}+h)$. Así, repitiendo el proceso para determinar f, ahora restringiendonos a las x que cumplen $|x-x_{1}<\epsilon$, encontramos que existe una $0<\delta_{1}<\epsilon$ tal que, para todo x, si $|x-x_{1}<\delta_{1}$ entonces $|f(x)-f(x_{1})<\epsilon$. lo cual quiere decir que f es continua en $x_{1}$. Por consiguiente, f es continua en $(x_{0}-h,x_{0}+h)$

Ahora probaremos que $y’$ es continua en $I=(x_{0}-h,x_{0}+h)$ con derivada
$$y’=-\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}}$$

Demostración. Como F tiene parciales continuas en $x_{0}$ entonces F es diferenciable en $x_{0}$ por lo tanto
$$F((x_{0},y_{0})+(h_{1},h_{2}))=F(x_{0},y_{0})+\frac{\partial F}{\partial x}(x_{0},y_{0})h_{1}+\frac{\partial F}{\partial y}(x_{0},y_{0})h_{2}+r(h_{1},h_{2})$$donde
$$\lim_{(h_{1},h_{2})\rightarrow(0,0)}\frac{r(h_{1},h_{2})}{|(h_{1},h_{2})|}=0$$
tomando $x_{0}+h_{1}\in I$ y haciendo $y_{0}+h_{2}=f(x_{0}+h_{1})$ se tiene
$$F((x_{0},y_{0})+(h_{1},h_{2}))=F(x_{0}+h_{1},f(x_{0}+h_{2}))=0$$
también
$$F(x_{0},y_{0})=0$$por lo tanto
$$F(x_{0}+h_{1},f(x_{0}+h_{2}))-F(x_{0},y_{0})=0$$esto quiere decir
$$\frac{\partial F}{\partial x}(x_{0},y_{0})h_{1}+\frac{\partial F}{\partial y}(x_{0},y_{0})h_{2}+r(h_{1},h_{2})=0$$
como
$$r(h_{1},h_{2})=0parah_{1},h_{2}$$ cercanas a 0
$$\frac{\partial F}{\partial x}(x_{0},y_{0})h_{1}+\frac{\partial F}{\partial y}(x_{0},y_{0})h_{2}=0$$
por lo tanto
$$\frac{h_{2}}{h_{1}}=-\frac{\frac{\partial F}{\partial x}(x_{0},y_{0})}{\frac{\partial F}{\partial y}(x_{0},y_{0})}$$
pero $h_{2}=\triangle y$ y $h_{1}=\triangle x$ por lo tanto
$$\frac{\triangle y}{\triangle x}=-\frac{\frac{\partial F}{\partial x}(x_{0},y_{0})}{\frac{\partial F}{\partial y}(x_{0},y_{0})}$$
haciendo $\triangle y~\triangle x~\rightarrow~0$ se tiene
$$y'(x_{0})=\frac{dy}{dx}=-\frac{\frac{\partial F}{\partial x}(x_{0},y_{0})}{\frac{\partial F}{\partial y}(x_{0},y_{0})}$$
este mismo razonamiento es valido para $x\in I$. $\quad$

Teorema de la Función Implícita ( Versión (2))

Considere la función $F(x,y,z)$. Sea $(x_{0},y_{0},z_{0}) \in \mathbb{R}^{3}$ un punto tal que $F(x_{0},y_{0},z_{0})=0$. Suponga que la función F tiene derivadas parciales $\displaystyle{\frac{\partial F}{\partial x},~\frac{\partial F}{\partial y},~\frac{\partial F}{\partial z}}$ continuas en alguna bola con centro $(x_{0},y_{0},z_{0})$ y que $\displaystyle \frac{\partial F}{\partial z}(x_{0},y_{0},z_{0})\neq 0$.
Entonces $F(x,y,z)=0$ se puede resolver para $z$ en términos de $x,y$ y definir así una función $z=f(x,y)$ con dominio en una vecindad de $(x_{0},y_{0},z_{0})$, tal que $z_{0}=f(x_{0},y_{0})$, lo cual tiene derivadas continuas en $\mathcal{V}$ que pueden calcularse como $$\frac{d z}{dx}(x,y)=-\displaystyle \frac{\displaystyle \frac{\partial F}{\partial x}(x,y)}{\displaystyle \frac{\partial F}{\partial z}(x,y)}~~~\frac{d z}{dy}(x,y)=-\displaystyle \frac{\displaystyle \frac{\partial F}{\partial y}(x,y)}{\displaystyle \frac{\partial F}{\partial z}(x,y)}$$
$\textbf{Importante:}$ Este es un resultado que garantiza la existencia de una función $z=f(x,y)$ definida implícitamente por $F(x,y,z)=0$. Esto es, puede resolverse para $z$ en términos de $x,y$, pero no nos dice como hacer el despeje.

Ejemplo. Sea $f(x,y,z)=x+y+z-ze^{z}$ entonces $\displaystyle{\frac{\partial F}{\partial z}=1-e^{z}(z+1)}$ si el punto $P(x_{0},y_{0},z_{0}) \in \mathbb{R}^{3}$ es tal que $x_{0}+y_{0}+z_{0}e^{z_{0}}=0$ y $z\neq0$ y como $\displaystyle \frac{\partial F}{\partial z}\neq 0$. El $\textbf{T.F.Im.}$ sugiere que podamos despejar $z$ en términos de $x$ y $y$ y establecer así una función $z=f(x,y)$ con $z_{0}=f(x_{0},y_{0})$ de modo que su gráfica en los alrededores de $P$ coincide con $F(x,y,z)=0$. Las parciales de la función $f$ son

$\displaystyle \frac{\partial F}{\partial x}= \displaystyle \frac{\displaystyle \frac{-\partial F}{\partial x}}{\displaystyle \frac{\partial F}{\partial z
}}=\displaystyle \frac{-1}{1-e^{z}(z+1)}$,$~~~~$ $\displaystyle
\frac{\partial F}{\partial y}= \displaystyle \frac{\displaystyle
\frac{-\partial F}{\partial y}}{\displaystyle \frac{\partial
F}{\partial z }}=\displaystyle \frac{-1}{1-e^{z}(z+1)}$.

Ejercicio. Si $$\frac{d z}{dx}(x,y)=-\displaystyle \frac{\displaystyle \frac{\partial F}{\partial x}(x,y)}{\displaystyle \frac{\partial F}{\partial z}(x,y)}$$ calcular $$\frac{\partial^{2}F}{\partial x^{2}}$$

Solución. tenemos que
$$\frac{\partial^{2}F}{\partial x^{2}}=\frac{\partial}{\partial x}\left(-\displaystyle
\frac{\displaystyle \frac{\partial F}{\partial x}(x,y)}{\displaystyle \frac{\partial F}{\partial z}(x,y)}\right)=-\frac{\left( \frac{\partial F}{\partial z}\right)\left[ \frac{\partial^{2} F}{\partial x^{2}} \frac{dx}{d x}+ \frac{\partial^{2} F}{\partial y\partial x} \frac{dy}{dx}+ \frac{\partial^{2} F}{\partial z\partial x} \frac{dz}{dx}\right]-\left( \frac{\partial F}{\partial x}\right)\left[ \frac{\partial^{2} F}{\partial x \partial z}\frac{dx}{d x}+ \frac{\partial^{2} F}{\partial y\partial z} \frac{dy}{dx}+ \frac{\partial^{2} F}{\partial z^{2}} \frac{dz}{dx}\right]}{\left(\frac{\partial F}{\partial z}\right)^{2}}$$
$$=-\frac{\left( \frac{\partial F}{\partial z}\right)\left[ \frac{\partial^{2} F}{\partial x^{2}}+ \frac{\partial^{2} F}{\partial z\partial x} \frac{dz}{dx}\right]-\left( \frac{\partial F}{\partial x}\right)\left[ \frac{\partial^{2} F}{\partial x \partial z}+\frac{\partial^{2} F}{\partial z^{2}} \frac{dz}{dx}\right]}{\left(\frac{\partial F}{\partial z}\right)^{2}}$$
$$=-\frac{\left( \frac{\partial F}{\partial z}\right)\left[ \frac{\partial^{2} F}{\partial x^{2}}+ \frac{\partial^{2} F}{\partial z\partial x} \left(-\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial z}}\right)\right]-\left( \frac{\partial F}{\partial x}\right)\left[ \frac{\partial^{2} F}{\partial x \partial z}+\frac{\partial^{2} F}{\partial z^{2}}\left(-\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial z}}\right)\right]}{\left(\frac{\partial F}{\partial z}\right)^{2}}$$
$$=-\frac{\left( \frac{\partial F}{\partial z}\right)^{2} \frac{\partial^{2} F}{\partial x^{2}}-2 \frac{\partial^{2} F}{\partial z\partial x} \frac{\partial F}{\partial x}\frac{\partial F}{\partial z}+\left(\frac{\partial F}{\partial x}\right)^{2}{\frac{\partial^{2} F}{\partial z^{2}}}}{\left(\frac{\partial F}{\partial z}\right)^{3}}$$

Teorema de la Función Implícita (Versión (3))

Teorema 1. Considere la función $z=f(x_{1},…,x_{n})$. Sea $p=(x_{1},…,x_{n},y) \in \mathbb{R}^{n+1}$ un punto tal que $F(p)=0$. Suponga que la función $F$ tiene derivadas parciales $\displaystyle \frac{\partial F}{\partial x_{i}}$, $i=1,…,n$, y $\displaystyle \frac{\partial F}{\partial y}$ continuas en alguna bola con centro $P$ y que $\displaystyle \frac{\partial F}{\partial y}\neq 0$.
Entonces, $F(x_{1}$,…,$x_{n})=0$ puede resolverse para $y$ en términos de $x$ y definir así una vecindad $v$ de $\mathbb{R}^{n}$ del punto $(x_{1},$…,$x_{n})$, una función $y=f(x_{1}$,…,$x_{n})$ lo cual tiene derivadas parciales continuas en $v$ que se pueden calcular con las fórmulas $\displaystyle \frac{\partial F}{\partial x_{i}}(x_{1}$,…,$x_{n})=\displaystyle \frac{\displaystyle \frac{-\partial F}{\partial x_{i}}(x_{1},….,x_{n})}{\displaystyle \frac{\partial F}{\partial y}(x_{1},…,x_{n})}$ con $(x_{1},…,x_{n}) \in v$.

Demostración. Una idea de como probar lo anterior es la siguiente:
Como $\frac{\partial F}{\partial \textcolor{Red}{y}}\neq 0$ entonces tenemos que $\frac{\partial F}{\partial \textcolor{Red}{y}}> 0$ ó $\frac{\partial F}{\partial \textcolor{Red}{y}}<0$ supongamos sin perdida de generalidad que $\frac{\partial F}{\partial \textcolor{Red}{y}}> 0$ entonces tenemos que $F(x_{1},x_{2},…,x_{q},y)$ es creciente cuando $(x_{1},…,x_{q})$ es constante $F(a_{1},…,a_{q},\textcolor{Red}{y})$ es creciente $\forall y\in [b-\epsilon,b+\epsilon]$ además se tiene que $F(a_{1},…,a_{q},b)=0$ entonces $$F(a_{1},…,a_{q},b+\epsilon)>0\quad
F(a_{1},…,a_{q},b-\epsilon)<0$$ $\therefore$ Si $(x_{1},…,x_{q})\in B_{\delta}(a_{1},…,a_{q})$ entonces $$F(x_{1},…,x_{q},b+\epsilon)>0\quad
F(x_{1},…,x_{q},b-\epsilon)<0\quad y\quad F\quad continua$$ se
tiene entonces que $\exists !\quad \textcolor{Red}{y}=f(x_{1},…,x_{q})\in [b-\epsilon,b+\epsilon]$ tal que $F(x_{1},x_{2},…,x_{q},f(x_{1},x_{2},…,x_{q}))=0$ y
$b=f(x_{1},x_{2},…,x_{q})$. Hemos encontrado que si $(x_{1},…,x_{q})\in B_{\delta}(a_{1},…,a_{q})$ entonces $f(x_{1},…,x_{q})=\textcolor{Red}{y}\in (b-\epsilon,b+\epsilon)$
$\therefore$ f es continua. $\square$