31. Material en revisión: Conjuntos Conexos

Por Mariana Perez

Definición:

Se dice que un subconjunto $A \subseteq \mathbb{R}^n$ es disconexo si existen dos abiertos ajenos $\mathcal{U_1}\, ; \mathcal{U_2}$, tales que:

$A \subseteq \mathcal{U_1} \cup \mathcal{U_2} $

y

$A \cap \mathcal{U_1} \neq \emptyset$

$A \cap \mathcal{U_2} \neq \emptyset$

Decimos que $A$ es conexo si no es disconexo.

Teorema:

Si $f : A \subseteq \mathbb{R}^n \rightarrow \mathbb{R}^m$ es una función continua, y $A$ es conexo entonces, $f(A)$ también es conexo.

Demostración:

Supongamos que $f(A)$ no es conexo.

Entonces existen $\mathcal{V_1}, \mathcal{V_2} \subseteq \mathbb{R}^m$ abiertos, ajenos, tales que $$f(A) \subseteq \mathcal{V_1} \cup \mathcal{V_2}$$ $$f(A) \cap \mathcal{V_1} \neq \emptyset$$ $$f(A) \cap \mathcal{V_2} \neq \emptyset$$

Como $f$ es continua, entonces $f^{-1}(\mathcal{V_1})$ y $f^{-1}(\mathcal{V_2})$ son abiertos.

Afirmación: $f^{-1}(\mathcal{V_1}) \cap f^{-1}(\mathcal{V_2}) = \emptyset$

Supongamos que la intersección no es el conjunto vacío.

Entonces existe $\vec{x} \in f^{-1}(\mathcal{V_1}) \cap f^{-1}(\mathcal{V_2})$ por lo que se cumple que $f(\vec{x}) \in \mathcal{V_1}$ y $f(\vec{x}) \in \mathcal{V_2}$ por lo tanto $ \mathcal{V_1} \cap \mathcal{V_2} \neq \emptyset$ (CONTRADICCIÓN: ya que los supusimos ajenos).

Entonces $A \subseteq f^{-1}(\mathcal{V_1}) \cup f^{-1}(\mathcal{V_2}).$

Sea $\vec{x} \in A$. Calculamos $f(\vec{x}) \in f(A).$

Entonces $f(A) \subseteq \mathcal{V_1} \cup \mathcal{V_2}$, es decir, se tiene que $\vec{x} \in \mathcal{V_1}$ o $\vec{x} \in \mathcal{V_2}$, por lo tanto $$\vec{x} \in f^{-1}(\mathcal{V_1}) \; \text{o} \; \vec{x} \in f^{-1}(\mathcal{V_2})$$

Si $f(\vec{x}) \in \mathcal{V_1}$ entonces $\vec{x} \in f^{-1}(\mathcal{V_1}).$

Si $f(\vec{x}) \in \mathcal{V_2}$ entonces $\vec{x} \in f^{-1}(\mathcal{V_2}).$

Por lo tanto, $$\vec{x} \in f^{-1}\mathcal{V_1}\cup f^{-1}(\mathcal{V_2}).$$

Falta ver que $$A \cap f^{-1} (\mathcal{V_1}) \neq \emptyset$$ $$A \cap f^{-1} (\mathcal{V_2}) \neq \emptyset$$

Como $f(A) \cap \mathcal{V_1} \neq \emptyset$ entonces, existe $\vec{a_1} \in A$ tal que $f^{-1}(\vec{a_1}) \in \mathcal{V_1}$ es decir $\vec{a_1} \in f^{-1}(\vec{a_1}) \cap A \neq \emptyset.$

Análogamente, como $f(A) \cap \mathcal{V_2} \neq \emptyset$ entonces, existe $\vec{a_2} \in A$ tal que $f^{-1}(\vec{a_2}) \in \mathcal{V_2}$ es decir $\vec{a_2} \in f^{-1}(\vec{a_2}) \cap A \neq \emptyset.$ $_{\blacksquare}$

CASO PARTICULAR

$$f : A \subseteq \mathbb{R}^n \longrightarrow \mathbb{R}$$

Teorema del valor intermedio.

Si $A$ es conexo y $f$ es continua, y existen $\vec{x_1}$, $\vec{x_2}$ $\in A$ tales que $$f(\vec{x_1}) < f(\vec{x_2})$$

Para todo $c$ tal que $f(\vec{x_1}) < c < f(\vec{x_2})$ existe un $\vec{x_c} \in A$ tal que $$f(\vec{x_c}) = c$$

Por el teorema que acabamos de probar $f(A) \subseteq \mathbb{R}$ es un conjunto conexo.

Si no existiera $\vec{x_c} \in A$ tal que $f(\vec{x_c}) = c$ entocnes consideremos

$\mathcal{V_1} = (-\infty, c)$

$\mathcal{V_2} = (c, \infty)$, abiertos y ajenos.

Por lo que, como $\vec{x_1} \in A \Rightarrow f(\vec{x_1}) \in f(A)$ pero $f(\vec{x_1}) \in \mathcal{V_1}$ entonces $f(A) \cap \mathcal{V_1} \neq \emptyset$

Análogamente, como $\vec{x_2} \in A \Rightarrow f(\vec{x_2}) \in f(A)$ pero $f(\vec{x_2}) \in \mathcal{V_2}$ entonces $f(A) \cap \mathcal{V_2} \neq \emptyset$

Luego $f(A)$ sería disconexo. (CONTRADICCIÓN)

$\therefore$ existe $\vec{x_c} \in A$ tal que $f(\vec{x_c}) = c$ $_{\blacksquare}$

Definición:

Sea $A \subseteq \mathbb{R}^n$

Se dice que $A$ es conexo por trayectorias (c.p.t.) si para todo par de puntos $\vec{p}, \vec{q} \in A$ existe una curva poligonal tal que une $\vec{p}$ con $\vec{q}$ y está contenida en $A.$

Ejemplo:

$$A = \mathbb{R}^n \setminus \{(x,y) \in \mathbb{R}^2 \mid x \leq 0, y = 0 \}$$

dibujo A

Ejemplo:

$$\mathcal{C} = \left\{ (x,y) \in \mathbb{R}^2 \mid x\neq 0 ; y = \sin \left( \frac{1}{x} \right) \right\} \cup \; \mathcal{U} = \{ (x,y) \in \mathbb{R}^2 \mid x = 0 , -1 \leq y \leq 1 \}$$

dibujo B

$\mathcal{C}$ es conexa pero $\mathcal{C}$ no es conexa por trayectorias poligonales.

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.