31. Material en revisión: Conjuntos Conexos

Por Mariana Perez

Definición:

Se dice que un subconjunto $A \subseteq \mathbb{R}^n$ es disconexo

si existen dos abiertos ajenos $\mathcal{U_1}\, ; \mathcal{U_2}$,

tales que:

$A \subseteq \mathcal{U_1} \cup \mathcal{U_2} $

y

$A \cap \mathcal{U_1} \neq \emptyset$

$A \cap \mathcal{U_2} \neq \emptyset$

Decimos que $A$ es conexo si no es disconexo.

Teorema:

Si $f : A \subseteq \mathbb{R}^n \rightarrow \mathbb{R}^m$ es una función continua, y $A$ es conexo entonces, $f(A)$ también es conexo.

Demostración:

Supongamos que $f(A)$ no es conexo.

Entonces existen $\mathcal{V_1}, \mathcal{V_2} \subseteq \mathbb{R}^m$ abiertos, ajenos, tales que $$f(A) \subseteq \mathcal{V_1} \cup \mathcal{V_2}$$ $$f(A) \cap \mathcal{V_1} \neq \emptyset$$ $$f(A) \cap \mathcal{V_2} \neq \emptyset$$

Como $f$ es continua, entonces $f^{-1}(\mathcal{V_1})$ y $f^{-1}(\mathcal{V_2})$ son abiertos.

Afirmación: $f^{-1}(\mathcal{V_1}) \cap f^{-1}(\mathcal{V_2}) = \emptyset$

Supongamos que la intersección no es el conjunto vacío.

Entonces existe $\vec{x} \in f^{-1}(\mathcal{V_1}) \cap f^{-1}(\mathcal{V_2})$ por lo que se cumple que $f(\vec{x}) \in \mathcal{V_1}$ y $f(\vec{x}) \in \mathcal{V_2}$ por lo tanto $ \mathcal{V_1} \cap \mathcal{V_2} \neq \emptyset$ (CONTRADICCIÓN: ya que los supusimos ajenos).

Entonces $A \subseteq f^{-1}(\mathcal{V_1}) \cup f^{-1}(\mathcal{V_2}).$

Sea $\vec{x} \in A$. Calculamos $f(\vec{x}) \in f(A).$

Entonces $f(A) \subseteq \mathcal{V_1} \cup \mathcal{V_2}$, es decir, se tiene que $\vec{x} \in \mathcal{V_1}$ o $\vec{x} \in \mathcal{V_2}$, por lo tanto $$\vec{x} \in f^{-1}(\mathcal{V_1}) \; \text{o} \; \vec{x} \in f^{-1}(\mathcal{V_2})$$

Si $f(\vec{x}) \in \mathcal{V_1}$ entonces $\vec{x} \in f^{-1}(\mathcal{V_1}).$

Si $f(\vec{x}) \in \mathcal{V_2}$ entonces $\vec{x} \in f^{-1}(\mathcal{V_2}).$

Por lo tanto, $$\vec{x} \in f^{-1}\mathcal{V_1}\cup f^{-1}(\mathcal{V_2}).$$

Falta ver que $$A \cap f^{-1} (\mathcal{V_1}) \neq \emptyset$$ $$A \cap f^{-1} (\mathcal{V_2}) \neq \emptyset$$

Como $f(A) \cap \mathcal{V_1} \neq \emptyset$ entonces, existe $\vec{a_1} \in A$ tal que $f^{-1}(\vec{a_1}) \in \mathcal{V_1}$ es decir $\vec{a_1} \in f^{-1}(\vec{a_1}) \cap A \neq \emptyset.$

Análogamente, como $f(A) \cap \mathcal{V_2} \neq \emptyset$ entonces, existe $\vec{a_2} \in A$ tal que $f^{-1}(\vec{a_2}) \in \mathcal{V_2}$ es decir $\vec{a_2} \in f^{-1}(\vec{a_2}) \cap A \neq \emptyset.$ $_{\blacksquare}$

CASO PARTICULAR

$$f : A \subseteq \mathbb{R}^n \longrightarrow \mathbb{R}$$

Teorema del valor intermedio.

Si $A$ es conexo y $f$ es continua, y existen $\vec{x_1}$, $\vec{x_2}$ $\in A$ tales que $$f(\vec{x_1}) < f(\vec{x_2})$$

Para todo $c$ tal que $f(\vec{x_1}) < c < f(\vec{x_2})$ existe un $\vec{x_c} \in A$ tal que $$f(\vec{x_c}) = c$$

Por el teorema que acabamos de probar $f(A) \subseteq \mathbb{R}$ es un conjunto conexo.

Si no existiera $\vec{x_c} \in A$ tal que $f(\vec{x_c}) = c$ entocnes consideremos

$\mathcal{V_1} = (-\infty, c)$

$\mathcal{V_2} = (c, \infty)$, abiertos y ajenos.

Por lo que, como $\vec{x_1} \in A \Rightarrow f(\vec{x_1}) \in f(A)$ pero $f(\vec{x_1}) \in \mathcal{V_1}$ entonces $f(A) \cap \mathcal{V_1} \neq \emptyset$

Análogamente, como $\vec{x_2} \in A \Rightarrow f(\vec{x_2}) \in f(A)$ pero $f(\vec{x_2}) \in \mathcal{V_2}$ entonces $f(A) \cap \mathcal{V_2} \neq \emptyset$

Luego $f(A)$ sería disconexo. (CONTRADICCIÓN)

$\therefore$ existe $\vec{x_c} \in A$ tal que $f(\vec{x_c}) = c$ $_{\blacksquare}$

Definición:

Sea $A \subseteq \mathbb{R}^n$

Se dice que $A$ es conexo por trayectorias (c.p.t.) si para todo par de puntos $\vec{p}, \vec{q} \in A$ existe una curva poligonal tal que une $\vec{p}$ con $\vec{q}$ y está contenida en $A.$

Ejemplo:

$$A = \mathbb{R}^n \setminus \{(x,y) \in \mathbb{R}^2 \mid x \leq 0, y = 0 \}$$

dibujo A

Ejemplo:

$$\mathcal{C} = \left\{ (x,y) \in \mathbb{R}^2 \mid x\neq 0 ; y = \sin \left( \frac{1}{x} \right) \right\} \cup \; \mathcal{U} = \{ (x,y) \in \mathbb{R}^2 \mid x = 0 , -1 \leq y \leq 1 \}$$

dibujo B

$\mathcal{C}$ es conexa pero $\mathcal{C}$ no es conexa por trayectorias poligonales.

2 comentarios en “31. Material en revisión: Conjuntos Conexos

    1. Mariana Perez Autor

      Hola Hiram, gracias por tu observación, ya corregí la edición.
      Cualquier otro detalle que observes te agradeceré tus comentarios.
      Saludos.

      Responder

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.