21. Material en revisión: Ejemplo de otra función que no tiene límite en un punto.

Por Mariana Perez

Sea $f : \mathbb{R}^2 \longrightarrow \mathbb{R}$

$$f(x, y) = \dfrac{2xy}{x^2+y^2}$$

* ¿Cuál es la gráfica de $f$?

* ¿Cuáles son los puntos de discontinuidad?

Cortes con el plano $x = x_0$ constante.

$z = f(x_0, y) = \dfrac{2x_0 y}{x_0^2+y^2}$

Por ejemplo, si $x_0 = 1$

$f(1, y) = \dfrac{2y}{1 + y^2}$

si $x_0 = 2$

$f(2, y) = \dfrac{4y}{4 + y^2}$

si $x_0 = \dfrac{1}{2}$

$f(\frac{1}{2}, y) = \dfrac{y}{\frac{1}{4} + y^2}$

CASO ESPECIAL $x = x_0 = 0$

$$z = f(0, y) = \dfrac{2(0)y}{0+y^2}$$

$z = 0$

https://www.geogebra.org/classic/r5c2eu76

Curvas de nivel

$f(x, y)=c $ con $ c \neq 0$

$\dfrac{2xy}{x^2+y^2} = c $

$2xy = c (x^2+y^2)$

$\dfrac{2}{c}xy = x^2+y^2$

$y^2 \, – \, \dfrac{2}{c}xy + x^2 = 0$

Calculamos los valores de $y$.

$$y = \dfrac{\frac{2}{c}x \pm \sqrt{\frac{4}{c^2}x^2 \, – \, 4x^2}}{2}$$

$$y = \dfrac{\frac{2}{c}x \pm \sqrt{\frac{4x^2}{c^2}(1-c^2)}}{2}$$

Simplificando obtenemos que:

$$y = \dfrac{x}{c} \pm \dfrac{x}{c} \sqrt{(1-c^2)}$$

Son dos rectas y solo hay curvas para el intervalo $c=[-1, 1].$

En el siguiente enlace puedes observar vistas simultáneas de las curvas de nivel y la gráfica de la función.

https://www.geogebra.org/classic/u8kxbxq5

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.