Nota 12. Teoremas de la composición de funciones inyectivas, suprayectivas y biyectivas.

Por Julio César Soria Ramírez

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

En la nota anterior definimos cuándo una función es inyectiva, suprayectiva y biyectiva, en esta nota daremos cinco resultados referentes a la composición de funciones inyectivas, suprayectivas y biyectivas, de forma que es conveniente que se tengan muy claras las definiciones de estos conceptos.

Teorema

La composición de funciones inyectivas es inyectiva.

Demostración

Consideraremos cualesquiera dos funciones inyectivas y vamos a mostrar que su composición es inyectiva.

Sean $A$, $B$, $C$ conjuntos $f:A\to B$, $g:B\to C$ funciones inyectivas.

Por demostrar que $g\circ f$ es inyectiva.

Para mostrar que la composición es inyectiva se tiene que ver que si $g\circ f(x_1)= g\circ f(x_2)$ entonces $x_1=x_2$.

Sean $x_1,x_2\in A$ tales que $g\circ f(x_1)= g\circ f(x_2)$

por definición de composición se tiene que

$g(f(x_1))= g(f(x_2)),$

al ser $g$ inyectiva esto implica que $f(x_1)=f(x_2)$

y como $f$ también es inyectiva concluimos que $x_1=x_2$.

Por lo tanto $g\circ f$ es inyectiva, así la composición de funciones inyectivas es inyectiva.

$\square$

Teorema

La composición de funciones suprayectivas es suprayectiva

Demostración

Sean $A$, $B$, $C$ conjuntos $f:A\to B$, $g:B\to C$ funciones suprayectivas.

Por demostrar que $g\circ f$ es suprayectiva.

Para probar que $g\circ f:A\to C$ es suprayectiva dado $c\in C$ tenemos que exhibir $a\in A$ tal que $g\circ f(a)=c$.

Sea $c\in C$.

Como $g$ es suprayectiva, existe $b\in B$ tal que $g(b)=c$.

Como $f$ es suprayectiva, existe $a\ A$ tal que $f(a)=b$.

Entonces

$g\circ f(a)=g(f(a))=g(b)=c.$

Así, para para cada $c\in A$ existe $a\in A$ tal que $g\circ f(a)=c$ que es lo que queríamos demostrar.

$\square$

Corolario

La composición de funciones biyectivas es biyectiva.

Demostración

Sean $A$, $B$, $C$ conjuntos $f:A\to B$, $g:B\to C$ funciones biyectivas.

Como $f$ y $g$ son biyectivas, en particular son inyectivas y por lo demostrado anteriormente $g\circ f$ es inyectiva.

Como $f$ y $g$ son biyectivas, en particular son suprayectivas y por lo demostrado anteriormente $g\circ f$ es suprayectiva.

Así, $g\circ f$ es inyectiva y suprayectiva y por lo tanto biyectiva, que es lo que queríamos probar.

$\square$

Teorema

Sean $A$, $B$, $C$ conjuntos $f:A\to B$, $g:A\to B$, $h:B\to C$ funciones, con $h$ inyectiva. Si $h\circ f=h\circ g$, entonces $f=g$.

Consideremos $A$, $B$, $C$ conjuntos $f:A\to B$, $g:B\to C$, $h:B\to C$ funciones. Tomemos como hipótesis que $h$ es inyectiva y que $h\circ f=h\circ g$. Debemos probar que $f=g$.

Veamos que $f$ y $g$ tienen la misma regla de correspondencia. Sea $a\in A$, como $h\circ f=h\circ g$ tenemos que $h\circ f(a)=h\circ g(a).$

Por definición de composición lo anterior implica que:

$h(f(a))=h(g(a)),$

y al ser $h$ inyectiva:

$f(a)=g(a).$

Por lo tanto $f$ y $g$ tienen la misma regla de correspondencia. Como además tienen el mismo dominio y el mismo codominio concluimos que $f=g$, que es lo que queríamos demostrar.

$\square$

Teorema

Sean $A$, $B$, $C$ conjuntos $f:A\to B$, $g:B\to C$, $h:B\to C$ funciones, con $f$ suprayectiva. Si $g\circ f=h\circ g$, entonces $g=h$.

Consideremos $A$, $B$, $C$ conjuntos $f:A\to B$, $g:B\to C$, $h:B\to C$ funciones. Supongamos que $f$ es suprayectiva y que $g\circ f=h\circ f$. Tenemos que demostrar que $g=h.$

Veamos que $g$ y $h$ tienen la misma regla de correspondencia. Para ello consideremos un elemento cualquiera de su dominio, es decir un $b\in B.$ Como $f$ es suprayectiva sabemos que existe $a\in A$ tal que $f(a)=b$.

Además $g\circ f=h\circ f$ por hipótesis, así que $g\circ f(a)=h\circ f(a).$ Entonces por la definición de composición de funciones se tiene que:

$g(f(a))=h(f(a)).$

Pero $a$ es tal que $f(a)=b$, así que podemos reescribir lo anterior de la siguiente forma:

$g(b)=h(b).$

De este modo para cualquier $b\in B$ se tiene que $g(b)=h(b)$ y entonces $g$ y $h$ tienen la misma regla de correspondencia.

Como además $g$ y $h$ tienen el mismo dominio y el mismo codominio concluimos que $g=h$, que es lo que queríamos demostrar.

$\square$

Tarea Moral

1. En cada inciso determina si existe, y en su caso encuentra funciones $f$ y $g$ con las siguientes características:

i) Sean $f:A\to B$, $g:B\to C$ tales que $f$ es inyectiva, $g$ suprayectiva pero $g\circ f$ ni inyectiva ni suprayectiva.

ii) Sean $f:A\to B$, $g:B\to C$ tales que $f$ es no es suprayectiva, $g$ no es inyectiva pero $g\circ f$ es biyectiva.

Más adelante

En la siguiente nota retomaremos el tema de relaciones para hablar de una muy especial y útil, la llamada relación de equivalencia, un concepto ampliamente usado en distintas áreas de las matemáticas.

Enlaces relacionados

Página principal del curso.

Enlace a la entrada anterior. Nota 11. Funciones inyectivas, suprayectivas y biyectivas.

Enlace a la entrada siguiente. Nota 13. Relación de equivalencia.

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.