Nota 12. Teoremas de la composición de funciones inyectivas, suprayectivas y biyectivas.

Por Julio César Soria Ramírez

Introducción

En la nota anterior definimos cuándo una función es inyectiva, suprayectiva y biyectiva, en esta nota daremos cinco resultados referentes a la composición de funciones inyectivas, suprayectivas y biyectivas, de forma que es conveniente que se tengan muy claras las definiciones de estos conceptos.

Teorema

La composición de funciones inyectivas es inyectiva.

Demostración

Consideraremos cualesquiera dos funciones inyectivas y vamos a mostrar que su composición es inyectiva.

Sean $A$, $B$, $C$ conjuntos $f:A\to B$, $g:B\to C$ funciones inyectivas.

Por demostrar que $g\circ f$ es inyectiva.

Para mostrar que la composición es inyectiva se tiene que ver que si $g\circ f(x_1)= g\circ f(x_2)$ entonces $x_1=x_2$.

Sean $x_1,x_2\in A$ tales que $g\circ f(x_1)= g\circ f(x_2)$

por definición de composición se tiene que

$g(f(x_1))= g(f(x_2)),$

al ser $g$ inyectiva esto implica que $f(x_1)=f(x_2)$

y como $f$ también es inyectiva concluimos que $x_1=x_2$.

Por lo tanto $g\circ f$ es inyectiva, así la composición de funciones inyectivas es inyectiva.

$\square$

Teorema

La composición de funciones suprayectivas es suprayectiva

Demostración

Sean $A$, $B$, $C$ conjuntos $f:A\to B$, $g:B\to C$ funciones suprayectivas.

Por demostrar que $g\circ f$ es suprayectiva.

Para probar que $g\circ f:A\to C$ es suprayectiva dado $c\in C$ tenemos que exhibir $a\in A$ tal que $g\circ f(a)=c$.

Sea $c\in C$.

Como $g$ es suprayectiva, existe $b\in B$ tal que $g(b)=c$.

Como $f$ es suprayectiva, existe $a\ A$ tal que $f(a)=b$.

Entonces

$g\circ f(a)=g(f(a))=g(b)=c.$

Así, para para cada $c\in A$ existe $a\in A$ tal que $g\circ f(a)=c$ que es lo que queríamos demostrar.

$\square$

Corolario

La composición de funciones biyectivas es biyectiva.

Demostración

Sean $A$, $B$, $C$ conjuntos $f:A\to B$, $g:B\to C$ funciones biyectivas.

Como $f$ y $g$ son biyectivas, en particular son inyectivas y por lo demostrado anteriormente $g\circ f$ es inyectiva.

Como $f$ y $g$ son biyectivas, en particular son suprayectivas y por lo demostrado anteriormente $g\circ f$ es suprayectiva.

Así, $g\circ f$ es inyectiva y suprayectiva y por lo tanto biyectiva, que es lo que queríamos probar.

$\square$

Teorema

Sean $A$, $B$, $C$ conjuntos $f:A\to B$, $g:A\to B$, $h:B\to C$ funciones, con $h$ inyectiva. Si $h\circ f=h\circ g$, entonces $f=g$.

Consideremos $A$, $B$, $C$ conjuntos $f:A\to B$, $g:B\to C$, $h:B\to C$ funciones. Tomemos como hipótesis que $h$ es inyectiva y que $h\circ f=h\circ g$. Debemos probar que $f=g$.

Veamos que $f$ y $g$ tienen la misma regla de correspondencia. Sea $a\in A$, como $h\circ f=h\circ g$ tenemos que $h\circ f(a)=h\circ g(a).$

Por definición de composición lo anterior implica que:

$h(f(a))=h(g(a)),$

y al ser $h$ inyectiva:

$f(a)=g(a).$

Por lo tanto $f$ y $g$ tienen la misma regla de correspondencia. Como además tienen el mismo dominio y el mismo codominio concluimos que $f=g$, que es lo que queríamos demostrar.

$\square$

Teorema

Sean $A$, $B$, $C$ conjuntos $f:A\to B$, $g:B\to C$, $h:B\to C$ funciones, con $f$ suprayectiva. Si $g\circ f=h\circ g$, entonces $g=h$.

Consideremos $A$, $B$, $C$ conjuntos $f:A\to B$, $g:B\to C$, $h:B\to C$ funciones. Supongamos que $f$ es suprayectiva y que $g\circ f=h\circ f$. Tenemos que demostrar que $g=h.$

Veamos que $g$ y $h$ tienen la misma regla de correspondencia. Para ello consideremos un elemento cualquiera de su dominio, es decir un $b\in B.$ Como $f$ es suprayectiva sabemos que existe $a\in A$ tal que $f(a)=b$.

Además $g\circ f=h\circ f$ por hipótesis, así que $g\circ f(a)=h\circ f(a).$ Entonces por la definición de composición de funciones se tiene que:

$g(f(a))=h(f(a)).$

Pero $a$ es tal que $f(a)=b$, así que podemos reescribir lo anterior de la siguiente forma:

$g(b)=h(b).$

De este modo para cualquier $b\in B$ se tiene que $g(b)=h(b)$ y entonces $g$ y $h$ tienen la misma regla de correspondencia.

Como además $g$ y $h$ tienen el mismo dominio y el mismo codominio concluimos que $g=h$, que es lo que queríamos demostrar.

$\square$

Tarea Moral

1. En cada inciso determina si existe, y en su caso encuentra funciones $f$ y $g$ con las siguientes características:

i) Sean $f:A\to B$, $g:B\to C$ tales que $f$ es inyectiva, $g$ suprayectiva pero $g\circ f$ ni inyectiva ni suprayectiva.

ii) Sean $f:A\to B$, $g:B\to C$ tales que $f$ es no es suprayectiva, $g$ no es inyectiva pero $g\circ f$ es biyectiva.

Más adelante

En la siguiente nota retomaremos el tema de relaciones para hablar de una muy especial y útil, la llamada relación de equivalencia, un concepto ampliamente usado en distintas áreas de las matemáticas.

Enlaces relacionados

Enlace a la entrada anterior. Nota 11. Funciones inyectivas, suprayectivas y biyectivas.

Enlace a la entrada siguiente. Nota 13. Relación de equivalencia.

Deja una respuesta

Tu dirección de correo electrónico no será publicada.

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.