Nota 10. Función inversa

Por Julio César Soria Ramírez

Introducción

En esta nota centraremos nuestros esfuerzos en comprender el concepto de función inversa, partiremos de la definición de lo que es una función inversa derecha o izquierda de una función, para concluir que cuando una función tiene un inverso derecho y uno izquierdo ambos son la misma función.

Definición

Sean $A$, $B$ conjuntos, $f:A\to B$, $g:B\to A$ funciones.

Si $g\circ f=id_A$, decimos que $f$ es una inversa derecha de $g$, y que $g$ es una inversa izquierda de $f$.

Decimos que $f$ es invertible si existe una función $g$ que sea inversa izquierda y derecha de $f$; en este caso se dice que $g$ es una inversa de $f$.

En el ejemplo siguiente $f$ es una inversa izquierda de $g$, $g$ es una inversa derecha de $f$, $f$ no es una inversa derecha de $g$, $g$ no es una inversa izquierda de $f$.

Ejemplos

1. Sean $f:\set{1,2,3}\to \set{4,5,6,7}$ con:

$f(1)=4$, $f(2)=5$, $f(3)=6$

y $g:\set{ 4,5,6,7 }\to \set{1,2,3}$ con:

$g(4)=1$, $g(5)=2$, $g(6)=3$, $g(7)=3.$

Si se hace la composición $g\circ f$:

$g\circ f(1)=g(f(1))=g(4)=1$

$g\circ f(2)=g(f(2))=g(5)=2$

$g\circ f(3)=g(f(3))=g(4)=3.$

Así $g\circ f=id_{\set{1,2,3}}$, de forma que $g$ es una inversa izquierda de $f$ y $f$ es una inversa derecha de $g$.

Pero $f\circ g\neq id_{\set{4,5,6,7}}$, pues $f\circ g(7)=f(g(7))=f(3)=6$, y por lo tanto $g$ no es una inversa derecha de $f$ y $f$ no es una inversa izquierda de $g$.

2. Sean $h:\set{1,2,3}\to \set{4,5}$ con:

$h(1)=2$, $h(2)=4$, $h(3)=5$

y $j:\set{4,5}\to \set{1,2,3}$ con:

$j(4)=1$, $j(5)=3.$

Como:

$h\circ j(4)=h(j(4))=h(1)=4$,

$h\circ j(5)=h(j(5))=h(3)=5$,

notamos que $h\circ j=id_{\set{4,5}}$, pero $j\circ h\neq id_{\set{1,2,3}}$ pues $j\circ h(2)=1$.

Teorema

Sean $A$, $B$ conjuntos, $f:A\to B$ una función. Si $f$ tiene un inverso derecho $g$ y un inverso izquierdo $h$, entonces $g=h$.

Demostración

Sean $A$ y $B$ conjuntos y $f:A\to B$ una función. Supongamos que existen $g$ un inverso derecho de $f$ y $h$ un inverso izquierdo de $f$.

Como $g$ es un inverso derecho de $f$, por definición $g$ es una función $g:B\to A$ tal que $f\circ g=id_B$.

Como $h$ es un inverso izquierdo de $f$, por definición $h$ es una función $h:B\to A$ tal que $h\circ f=id_A$.

Queremos demostrar que $h=g.$

$h=$empezamos tomando la función $h$
$h\circ id_B=$la reescribimos de esta forma, expresándola como la identidad en $B$
compuesta con $h$
$h\circ (f\circ g)=$por hipotesis $id_B=f\circ g$
$(h\circ f)\circ g=$por asociatividad de la composición de
funciones
$id_A\circ g=$ por hipotesis $id_A=h\circ f$
$g$la composición con la identidad nos
da $g$

$\square$

Corolario

Si una función $f$ es invertible, entonces su inverso es único. En este caso su inverso se denota por $f^{-1}$.

Sea $f$ una función invertible. Supongamos que $g$ y $h$ son inversos de $f$. En particular $g$ es un inverso derecho de $f$ y $h$ es un inverso izquierdo de $f$. Así, por el teorema anterior $g=h$.

Tarea Moral

En cada inciso determina si existe una inversa derecha de $f$, o bien una inversa izquierda de $f$.

En caso de que exista constrúyela.

1. $f:\set{3,4,7,8}\to \set{1,2,7,8,9}$ con

$f(3)=9$, $f(4)=8$, $f(7)=7$, $f(8)=2$.

2. $f:\set{-2,-1,0,1,2}\to \set{3,6,9}$ con

$f(-2)=f(2)=3$, $f(1)=f(-1)=6$, $f(0)=9$.

3. $f:\set{0,2,4,6}\to \set{1,3,5,7}$ con

$f(x)=x+1$.

4. $f:\set{1,2,3}\to \set{5,6,7}$ con

$f(1)=f(2)=5$, $f(3)=7$.

5. Utiliza el siguiente recurso de geogebra para obtener la función inversa de algunas funciones.

Más adelante

En la siguiente nota analizaremos las definiciones de funciones inyectivas, suprayectivas y biyectivas.

Enlaces relacionados

Deja una respuesta

Tu dirección de correo electrónico no será publicada.

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.