Continuidad, Diferenciabilidad

Por Angélica Amellali Mercado Aguilar

Introducción

Análogamente al cálculo univariable, una función $f(x,y)$ es continua en un punto $(a,b)$ si se cumplen las siguientes condiciones: la función está definida en $(a,b)$, es decir $f(a,b)$ existe, el límite existe y además coincide con el valor de la función, sin embargo, en varias variables hay varias maneras de acercarse a un punto, por ejemplo: a lo largo del eje $x$, (manteniendo $y$ fijo); a lo largo del eje $y$, (manteniendo $x$ fijo), a lo largo de líneas diagonales; curvas o incluso camimnos extraños. Si el límite cambia dependiendo de la dirección de aproximación, la función no es continua en ese punto.

Proposición 1 Sea $f:\mathbb{R}^{2}\rightarrow \mathbb{R}$ tal que $$\lim_{(x,y)\rightarrow (a,b)}f(x,y)=L$$
Entonces para una función real y continua $g$ definida en un entorno da $a$ tal que $$\lim_{x\rightarrow a}g(x)=b$$ se tiene que $$\lim_{x\rightarrow a}f(x,g(x))=L$$

Demostración. Por la existencia del límite doble, dado $\epsilon>0$ existe un $\delta>0$, tal que $$|(x,y)-(a,b)|<\delta \Rightarrow |f(x,y)-L|<\epsilon.$$ Ahora $$\lim_{x\rightarrow a}g(x)=b$$ quiere decir que dado $\delta>0$ existe $\sigma>0$, con $0<\sigma<\delta$ tal que: $$|x-a|<\sigma \Rightarrow |g(x)-b|<\delta.$$ Por
tanto, si $|x-a|<\sigma$, se tiene que $|(x,g(x))-(a,b)|<\delta.$ Con lo cual, $$|f(x,g(x))-L|<\epsilon$$ $\square$

Ejemplo: Determinar si existe, el límite de la función definida por

$f(x,y)= \left\{\begin{array}{lcc} \frac{x^{2}y}{x^{2}+y^{2}}&(x,y)\neq (0,0)\\ \\0&(x,y)=(0,0)\end{array}\right.$

Para determinar su límite podemos acercarnos por trayectorias (funciones continuas) al origen.

Pongamos $y=g(x)=0$ se tiene entonces que

$$\lim_{(x,y)\rightarrow(0,0)}f(x,y)=\lim_{(x,y)\rightarrow(0,0)}f(x,g(x))=\lim_{(x,y)\rightarrow(0,0)}f(x,0)=\lim_{x\rightarrow0}\frac{x^{2}0}{x^{2}+0^{2}}=0$$
Pongamos ahora $y=g(x)=x$ se tiene entonces que
$$\lim_{(x,y)\rightarrow(0,0)}f(x,y)=\lim_{(x,y)\rightarrow(0,0)}f(x,g(x))=\lim_{(x,x)\rightarrow(0,0)}f(x,x)=\lim_{x\rightarrow0}\frac{x^{2}x}{x^{2}+x^{2}}=\lim_{x\rightarrow0}\frac{x^{3}}{2x^{2}}=0$$
Lo anterior nos dice que si existe el límite, éste tendría que ser 0, para comprobarlo usaremos la definición, se tiene entonces que debemos hallar un $\delta>0$ tal que
$\left|\frac{x^{2}y}{x^{2}+y^{2}}\right|<\epsilon$ siempre que $|(x,y)-(0,0)|<\delta$. Observamos que
$$\left|\frac{x^{2}y}{x^{2}+y^{2}}\right|=\frac{|x^{2}||y|}{|x^{2}+y^{2}|}=\frac{|x|^{2}|y|}{|x^{2}+y^{2}|}\leq
\frac{|\overline{x}|^{2}|\overline{x}|}{|\overline{x}|^{2}}=|\overline{x}|<\delta.$$
$\therefore$ podemos tomar $\delta=\epsilon$

Ejemplo: Determinar si existe, el límite de la función definida por

Para determinar su límite podemos acercarnos por trayectorias (funciones continuas) al origen.

Pongamos $y=g(x)=x$ se tiene entonces que

$$\lim_{(x,y)\rightarrow(0,0)}f(x,y)=\lim_{(x,y)\rightarrow(0,0)}f(x,g(x))=\lim_{(x,x)\rightarrow(0,0)}f(x,x)=\lim_{x\rightarrow0}\frac{x^{2}}{x^{2}+x^{2}}=\frac{1}{2}$$

Pongamos $y=g(x)=0$ se tiene entonces que

$$\lim_{(x,y)\rightarrow(0,0)}f(x,y)=\lim_{(x,y)\rightarrow(0,0)}f(x,g(x))=\lim_{(x,0)\rightarrow(0,0)}f(x,0)=\lim_{x\rightarrow0}\frac{x (0)}{x^{2}+0^{2}}=0$$

como $\frac{1}{2}\neq 0$ entonces $\cancel{\exists}$ el límite de la función.

Continuidad de Funciones de $\mathbb{R}^{n} \rightarrow \mathbb{R}$

Definición 1. Sea $f:\Omega\subset\mathbb{R}^{n} \rightarrow \mathbb{R}$, y sea $x_{0}$ un punto de acumulación de $\Omega$.Se dice que $f(x_{0})\in\mathbb{R}$ es el límite de $f$ en $x_{0}$, y se denota por: $$\displaystyle\lim_{x\rightarrow x_{0}}f(x)=f(x_{0})$$ Si dado $\varepsilon > 0$, existe $\delta > 0$ tal que $|f(x)-f(x_{0})|<\varepsilon$ cuando $x \in \Omega$, $0<|x-x_{0}|<\delta$

Ejemplo: Demostrar la continuidad en $\mathbb{R}^2$ de la función $f(x,y)=xy$.

p.d. Dado $\epsilon>0$ $\exists$ $\delta>0$ tal que $|xy-ab|\leq \epsilon$ siempre que $0<|x-a|<\delta_1$ y $0<|y-b|\leq \delta_2$ tenemos que:

$|xy-ab|
=|xy-xb+xb-ab|
\leq |x(y-b)|+|b(x-a)|
\leq \left(|x-a|+|a|\right)|y-b|+|b||x-a|\leq \left(\delta+|a|\right)\delta+|b|\delta
=\delta\underset{\underset {\text{Esta la podemos acotar}}{\searrow\ \ \ \ \ \ \ \ \ \ \ \
}}{\left(\left(\delta+|a|\right)+|b|\right)}$

Si $\delta=1$ tenemos que $\delta(1+|a|+|b|)$ y asi tomamos

$$\delta=mín \left\{ 1 , \frac{\epsilon}{1+|a|+|b|}\right\}$$

Diferenciación de funciones $\mathbb{R}^{n}\rightarrow\mathbb{R}$

Sea $f:A \subseteq\mathbb{R}^{n}\rightarrow \mathbb{R}$ y $\overline{a}=(a_{1},\ldots,a_{n})\epsilon$ $A$. Se define la derivada pacial $i$-esima en $\overline{a}$ denotada $f_{x}(\overline{a})$, $D_{x}f(\bar{a})$ ó $\displaystyle\frac{\partial f}{\partial x}(\bar{a})$ de la forma $$f_{x}=\displaystyle\lim_{h \rightarrow 0}\frac{f(a_{1},\ldots,a_{i}+h,\ldots.a_{n})-f(\bar{a})}{h}=\displaystyle\lim_{h \rightarrow 0}\frac{f(a+he_{i})-f(a)}{h}$$ siendo $\bar{e}_{i}=(0,\ldots,\underset{i-esimo}{1},\ldots,0)$.

Si $n=2$ existen 2 derivadas parciales.

Sea $\bar{a}=(x_{0},y_{0})$ un punto del interior del dominio de $f:A \subseteq\mathbb{R}^{2}\rightarrow \mathbb{R}$ las derivas parciales de $f$ en el punto $\bar{a}$ denotada respectivamente por $f_{x}(x_{0},y_{0})$, $f_{y}(x_{0},y_{0})$
son:

$$f_{x}(x_{0},y_{0})=\displaystyle\lim_{h \rightarrow 0}\frac{f(x_{0}+h,y_{0})-f(x_{0},y_{0})}{h}$$
$$f_{y}(x_{0},y_{0})=\displaystyle\lim_{k \rightarrow 0}\frac{f(x_{0},y_{0}+k)-f(x_{0},y_{0})}{k}$$

Ejemplo. Si $f(x,y)=x^{2}+x+1$ entonces
$f_{x}(0,0)=1$ ya que $f_{x}=\displaystyle\lim_{h \rightarrow 0}\frac{f(0+h,0)-f(0,0)}{h}=
\displaystyle\lim_{h \rightarrow 0}\frac{h^{2}+h+1-1}{h}=\displaystyle\lim_{h \rightarrow 0}\frac{h(h+1)}{h}=
\displaystyle\lim_{h \rightarrow 0}h+1 = 1$ y $f_{y}=\displaystyle\lim_{k \rightarrow 0}\frac{f(0,0+k)-f(0,0)}{k}=
\displaystyle\lim_{k \rightarrow 0}\frac{1-1}{k}=0$

Ejemplo. Si $f(x,y)=x^{2}+x+1$ entonces $f_{x}(0,0)=1$ ya que

$f_{x}=\displaystyle\lim_{h \rightarrow 0}\frac{f(0+h,0)-f(0,0)}{h}=
\displaystyle\lim_{h \rightarrow 0}\frac{h^{2}+h+1-1}{h}=\displaystyle\lim_{h \rightarrow 0}\frac{h(h+1)}{h}= \displaystyle\lim_{h \rightarrow 0}h+1 = 1$ y $f_{y}=\displaystyle\lim_{k \rightarrow 0}\frac{f(0,0+k)-f(0,0)}{k}= \displaystyle\lim_{k \rightarrow 0}\frac{1-1}{k}=0$

Observación: La derivada parcial en un punto de una función de varias variables en la derivada de la función de una variable, obtenida haciendo constante todas las variables, menos una. en consecuencia se pueden aplicar con esta interpretación, las reglas de derivación en una variable.

Las derivadas parciales en el punto $(x_{0},y_{0})$ de la función $z=f(x,y)$ representa la pendiente de las curvas intersección $C_{1}$ y $C_{2}$ de la superficie $z=f(x,y)$ con los planos $y=y_{0}$, $x=x_{0}$ respectivamente

Ejemplo. Calcular las derivadas parciales

$a)$ $f(x,y)=a\arcsin(x-y)$

$b)$ $f(t,u)=\displaystyle\frac{\cos(2tu)}{t^{2}+u^{2}}$

$c)$ $f(x,y,z)=\displaystyle\frac{xyz}{x^{2}+y^{2}+z^{2}}$

$d)$ $f(x,y)=\displaystyle\int_{0}^{\sqrt{xy}}e^{-t^{2}}dt \qquad x>0, \, y>0$

Solución.

$a)$ $f_{x}=\displaystyle\frac{x}{\sqrt{1-(x-y)^{2}}}+ \arcsin(x-y)$

$f_{y}=\displaystyle\frac{-x}{\sqrt{1-(x-y)^{2}}}$

$b)$ $f_{t}=\displaystyle\frac{-(t^{2}+u^{2})\sin(2tu)\cdot2u-\cos(2tu)2t}{(t^{2}+u^{2})^{2}}$


$f_{u}=\displaystyle\frac{(t^{2}+u^{2})-\sin(2tu)2u-\cos(2tu)2u}{(t^{2}+u^{2})^{2}}$

$c)$ $f_{x}=\displaystyle\frac{(x^{2}+y^{2}+z^{2})yz-xyz(2x)}{(x^{2}+y^{2}+z^{2})^{2}}$


$f_{y}=\displaystyle\frac{(x^{2}+y^{2}+z^{2})xz-xyz(2y)}{(x^{2}+y^{2}+z^{2})^{2}}$


$f_{z}=\displaystyle\frac{(x^{2}+y^{2}+z^{2})xy-xyz(2z)}{(x^{2}+y^{2}+z^{2})^{2}}$

$d)$ $f_{x}=\displaystyle e^{-xy}\frac{y}{2\sqrt{xy}}$


$f_{y}=\displaystyle e^{-xy}\frac{x}{2\sqrt{xy}}$

Más adelante

Definiremos la derivada parcial y notaremos como es similar a la derivada ordinaria a una dimensión evaluando un límite de un cociente que va incrementando en una direccion.

Tarea Moral

1.- Sea $f: \mathbb{R}^2 \rightarrow \mathbb{R}$, $(x,y) \rightarrow x^2 + y^2 + 5$, calcular el límite $\lim_{(x,y)\rightarrow(0,1)}f(x,y)$

2.- Mostrar que $f: \mathbb{R}^2 \rightarrow \mathbb{R}^2$, $(x,y) \rightarrow (x^2y,(y+x^3)/(1+x^2))$

3.- Considera la función $f(x,y)=\dfrac{sen(x^2+y^2)}{x^2+y^2}$ aunque $f$ no esté definida en $(0,0)$ determina si la función tiende a algún número cuando $(x,y)$ tiende a $(0,0)$

4.-Muestra que $f:\mathbb{R}^n \rightarrow \mathbb{R}^m$ es continua en todos los puntos si y sólo si la imagen inversa de todo abierto es abierta.

5.- Calcula las siguientes derivadas parciales :

$f(x,y)= e^{xy}log(x^2+y^2)$

$f(x,y)=\dfrac{2xy}{(x^2+y^2)^2}$

Enlaces

Criterio de Cauchy, Conjuntos Compactos y compacidad por sucesiones

Por Angélica Amellali Mercado Aguilar

Introducción

El criterio de Cauchy es una herramienta bastante útil para demostrar convergencia en conjuntos compactos porque en estos conjuntos toda sucesión de Cauchy converge necesariamente.

Definición. Sea ${\overline{x_{k}}}$ una sucesión de puntos de $\mathbb{R}^{n}$. Se dice que ${\overline{x_{k}}}$ es una sucesión de Cauchy si dado $\epsilon>0$ $\exists N_{0}\in \mathbb{N}$ tal que $|\overline{x_{k}}-\overline{x_{l}}|<\epsilon$ $\forall k,l\geq N_{0}$

Teorema 1. Una sucesión $\overline{x_{k}}\in \mathbb{R}^{n}$ es convergente si y solo si cumple el criterio de Cauchy

Demostración. $\Rightarrow$ Suponemos que ${\overline{x_{k}}}\rightarrow \overline{x}$ $\therefore$ $|\overline{x_{k}}-\overline{x}|<\epsilon$ $\forall k>N_{0}$. Se tiene entonces que $$|\overline{x_{k}}-\overline{x_{l}}|=|\overline{x_{k}}-\overline{x}+\overline{x}-\overline{x_{l}}|\leq |\overline{x_{k}}-\overline{x}|+|\overline{x}-\overline{x_{l}}|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon$$ $\forall k,l>N_{0}$ $\therefore$ ${\overline{x_{k}}}$

$\Leftarrow$ Supongamos que ${\overline{x_{k}}}$ cumple la condición de Cauchy por tanto se tiene que: $$|\overline{x_{k}}-\overline{x_{l}}|<\epsilon\Rightarrow |x_{i,k}-x_{i,l}|<\epsilon\quad \forall i\Rightarrow {x_{i,k}}\quad cumple\quad Cauchy$$ $\therefore$ $x_{i,k}$ es convergente $\forall i$ $\therefore$ ${\overline{x_{k}}}$ es convergente. $\square$

Teorema 2. (Bolzano-Wierstrass) Toda sucesión $\overline{x_{k}}$ en $\mathbb{R}^{n}$ acotada tiene un punto limite. Dicho de otro modo, toda sucesión en $\mathbb{R}^{n}$ tiene una subsucesión convergente

Demostración. Sea $\overline{x_{k}}$ en $\mathbb{R}^{n}$ suponiendo $\overline{x_{k}}$ es acotada, entonces cada $x_{i,k}$ es acotada $\therefore$ según el teorema de Bolzano-Wierstrass para sucesiones en $\mathbb{R}$, ${x_{i,k}}$ tiene una subsucesión convergente $\alpha_{i,k}$ la cual es una sucesión convergente, $\therefore$ podemos formar la sucesiòn $\overline{x_{\alpha,k}}={x_{\alpha,1,k},x_{\alpha,2,k},…,x_{\alpha,n,k}}$ la cual es una sucesión convergente, pero $\overline{x_{\alpha,k}}$ es subsucesión de $\overline{x_{k}}$ $\therefore$ $\overline{x_{k}}$ tiene una subsucesión convergente. $\square$

Criterio de Convergencia de Cauchy

Una colección $g$ de conjuntos abiertos cuya unión contiene a $K$ con frecuencia se llama cubierta de $K$. De modo que el requisito para que $K$ sea compacto es que toda cubierta $g$ de $K$ se pueda sustituir por una cubierta finita $g$ de $K$.

Ejemplo. Sea $k={x_{1},x_{2},…,x_{m}}$ un subconjunto finito de $\mathbb{R}^{n}$ si $G={G_{\alpha}}$ es una colección de abiertos tal que $k\subset{G_{\alpha}}$ y si todo punto de k pertenece a algún subconjunto de ${G_{\alpha}}$ entonces cuando más m subconjuntos de ${G_{\alpha}}\supset k$ $\therefore$ k es un subconjunto compacto de $\mathbb{R}^{n}$.

Ejemplo. Considere al subconjunto $H=\left\{x\in \mathbb{R}| x\geq0\right\}$. Sea $G_{n}=(-1,n)$ $n\in \mathbb{N}$ de tal manera que ${G_{n}| n\in \mathbb{N}}$ sea una colección de subconjuntos abiertos de $\mathbb{R}$ cuya union contenga a $H$. Si ${G_{n_{1}}, G_{n_{2}},…,G_{n_{k}}}$ es una subcolección finita de ${G_{n}|n\in\mathbb{N}}$. Sea $M=sup\left\{n_{1},n_{2},…,n_{k}\right\}$ de tal manera que $G_{n_{j}} \subset G_{n_{k}}$ de aquí deducimos que $G_{M}$ es la unión de
${G_{n_{1}}, G_{n_{2}},…,G_{n_{k}}}$. Sin embargo el número real $M$ no pertenece a $G_{M}$ y por lo tanto no pertenece a $\bigcup_{j=1}^{k}G_{n_{j}}$. En consecuencia, ninguna unión finita de ${G_{n}|n\in\mathbb{N}}$ puede contener a $H$.$\therefore$ $H$ no es compacto.

Ejemplo. Demuestrese que todo intervalo cerrado $[a, b]$ de $\mathbb{R}$ es compacto.
Demostración. Supongamos un recubrimiento abierto $[a, b]$ tal que no admite subrecubrimiento finito. Entonces tampoco existe un subrecubrimiento finito para

$[a, c]$ $[c; b]$ con $c$ punto medio. Sea $[a_1, b_1] = [a, c]$ el intervalo para el cual no existe el subrecubrimiento finito.

Sea $[a_1, b_1] = [a, c]$ el intervalo para el cual no existe el subrecubrimiento finito.

Sea $p$ el punto de intersección y sea $U$ el recubrimiento que contiene a $p$ y sea $[p-\varepsilon,p+\varepsilon]\subset U$. Entonces existe $r \in \mathbb{N}$ tal que $\forall n > r$,$\frac{b-a}{2^n} < \varepsilon$ y $\forall \, n\geq r$ $[a_n,b_n]\subset U \underset{\circ}{\bigtriangledown}$ ya que ningun $[a_k, b_k]$ admitía un subrecubrimiento finito.

Ejemplo. Sea $H=(0,1)$ en $\mathbb{R}$. Si $G_{n}={\frac{1}{n},1-\frac{1}{n}}$ para $n>0$ entonces la colección${G_{n_{1}},G_{n_{2}},…,G_{n_{k}}}$ es una subcolección finita de ${G_{n}| n>2}$. Sea $M=sup{n_{1},…,n_{k}}$ de tal manera que $G_{n_{j}} \subset G_{M}$ se ifiere que $G_{M}$ es la unión de ${G_{n_{1}},G_{n_{2}},…,G_{n_{k}}}$ sin embargo el número real $\frac{1}{m}$ pertenece a $H$ pero no pertenece a $G_{M}$ $\therefore$ ninguna subcolecciónfinita de $\left\{G_{n}~|~ n>2\right\}$ puede formar una subcolección finita para $H$ $\therefore$ $H$ no es compacto.

Compactos por Sucesiones

Teorema 3. Sea $A\subset \mathbb{R}^{n}$ tal que para todo recubrimiento abierto $\left\{A_{i}\right\}_{i\in I}$ admite un subrecubrimiento finito es decir $\displaystyle{A\subset \bigcup_{i}^{n}A_{i}}$ entonces toda sucesión de puntos de $A$ tiene una subsucesión convergente hacia un punto que pertenece a $A$

Demostración. Supongamos que exite una sucesión $\overline{x}{n}\in A$ que no tuviera una subsucesión convergente (en este caso $\overline{x}_{n}$ tiene infinitos elementos). Sea $\overline{x}\in A$ como $\lim_{n\rightarrow\infty}\overline{x}{n}\neq \overline{x}$, existe $\delta{x}>0$ tal que en la bola abierta $B(\overline{x},\delta_{x})$ solo hay a lo más un número finito de elementos de $\overline{x}_{n}$. Entonces la familia de abiertos ${B(\overline{x},\delta{x})}$ es un recubrimiento abierto de A; por hipótesis este recubrimiento admite un subrecubrimiento finito $A_{x_{1}},A_{x_{2}},…,A_{x_{n}}$ de estos abiertos. Por lo tanto los infinitos elementos de $\overline{x}_{n}$ que estan en $A$ pueden ser cubiertos por un número finito de conjuntos abiertos $\underset{\circ}{\bigtriangledown}$ pues cada $A{x_{i}}$ cubre a lo mas un número finito de elementos de $A$.

Teorema 4. Si toda sucesión de puntos de $A$ tiene una subsucesión convergente hacia un punto que pertenece a $A$ entonces $A$ es cerrado y acotado.

Demostración. A es cerrado. Sea $\overline{a}\in\mathbb{R}^{n}$ tal que $\overline{a}\in \partial A$ vamos a ver que $\overline{a}\in A$. Como $\overline{a}\in \partial A$ entonces $\forall~r>0$ $B(\overline{a},r)\bigcap A\neq \emptyset$ consideremos ahora $r=\frac{1}{n}$ y en cada bola abierta $\displaystyle{(\overline{a},\frac{1}{n}}$ hay algún punto de $A$ al que podemos llamar $\overline{x}{n}$ de esta manera construimos una sucesión de puntos de $A$ que convergen a $\overline{a}$ por lo tanto por hipótesis $\overline{a}\in A$ por tanto $A$ es cerrado.

A es acotado. Si $A$ no fuera acotado, existiria una sucesión $\overline{x}_{n}$ de puntos de $A$ tal que $\lim_{n\rightarrow\infty}\overline{x}_{n}=\infty$ y este límite no estaría en $A$ $\underset{\circ}{\bigtriangledown}$ por tanto $A$ es acotado.

Teorema. Heine-Borel. Todo subconjunto cerrado y acotado es compacto.

$1.-$ $K$ compacto implica que $K$ es cerrado.

Demostración. Sea $\bar{x} \in K^c$ y sea $G_m =\left\{y \in \mathbb{R}^n | |y-x | > \frac{1}{m}, m \in \mathbb{N}\right\}$ entonces $y \in Ext B(\bar{x}, \frac{1}{m})$ cada $G_m$ es abierta, la unión de todas las $G_m$ consta de todos los puntos de $\mathbb{R}^n$ excepto $x$. Dado que $x \in K$ cada punto de $K$ pertenece a algún $G_m$. Debido a la compacidad de $K$, se infiere que existe $M \in \mathbb{N}$ tal que $K \subset \bigcup_1^m G_i$. Dado que los conjuntos $G_m$ incrementan con $m$, $K \subset G_m$ de donde la vecindad ${z \in \mathbb{R}^n | |z-x| < \frac{1}{m}}$ no intercepta a $K$ demostrando que $K^c$ es abierto $\therefore$ $K$ es cerrado.

$2.-$ $K$ compacto implica que $K$ es acotado.

Demostración. Sea $H_m = \left\{ x \in \mathbb{R}^n | \left\| x\right\| < m\right\}$ todo el espacio $\mathbb{R}^n$ y por tanto $K$ está contenido en la unión de los conjuntos crecientes, $H_m$ $m\in \mathbb{N}$. Dado que $K$ es compacto existe $M \in \mathbb{N}$ tal que $K \subset H_m$ por lo que $K$ esta acotado.

Para completar la demostración de este teorema se necesita probar que si $K$ es un subconjunto cerrado y acotado contenido en la unión de una colección $g {G_{\alpha}}$
de conjuntos abiertos en $\mathbb{R}^n$, entonces está contenido en la unión de
algún número finito de conjuntos de $g$.

Dado que $K$ esta acotado, encontramos un punto de acumulación de $K$, como $K$ es cerrado $y \in K$ y esta en alguna celda abierta, por lo tanto existe $\varepsilon > 0$ tal que para cada $w$ con $|y -w| < \varepsilon $ en la celda abierta y si suponemos que $g ={G_{\alpha}}$ no admite un subrecubrimiento finito llegamos a una contradicción.

Teorema 6. Si $S$ es un conjunto cerrado y acotado en $\mathbb{R}^{n}$ entonces $S$ es compacto por sucesiones

Demostración. Suponga que $S$ es cerrado y acotado, sea ${x_{k}}$ una sucesión de puntos de $S$, se tiene entonces que $S$ es acotada y por el teorema de Bolzano- Weierstrass ${x_{k}}$ tiene una subsucesión convergente ${x_{k_{\alpha}}}$ tal que $x_{k_{\alpha}}\rightarrow x$ y como $S$ es cerrado $x\in S$. $\square$

Más adelante

En la siguiente sección estudiaremos el cálculo diferencial en las funciones reales ($\mathbb{R}^n\rightarrow \mathbb{R}$). Notaremos como los conceptos definidos en esta sección son necesarios para la noción de derivada, entre otros temas

Tarea Moral

1.-Sea $\left\{ \widehat{x}_{k} =( x^{(1)}_k, …, x{^(n)}_k) \right\}$ una sucesión en $\mathbb{R}^n$. Pruebe que $\left\{\widehat{x}_{k}\right\}$ está acotada si y sólo si $\left\{x^{(i)}_k\right\}$ está acotada para cada $i \in {1,…,n}$.

2.- Pruebe que si $\left\{ \widehat{x}_{k} \right\}$ es una sucesión de Cauchy en $\mathbb{R}^n$, entonces cualquier subsucesión también lo es.

3.- Sea $\left\{ \widehat{x}_{k} \right\}$ una sucesión de Cauchy en $\mathbb{R}^n$, prueba directamente de la definición la sucesión $\left\{ \widehat{x}_{k} \right\}$ está acotada.

4.- Sea $k \subset \mathbb{R}^n$. Prueba que el conjunto $K$ es compacto si y sólo si toda sucesión $\left\{ \widehat{x}_{k} \right\} \subset K$ tiene una subsucesión que converge a un punto $\widehat{x}_{0} \in K$ .

5.- Prueba que $\mathbb{R}^n$ no es compacto.

Enlaces

Puntos interiores y cerradura de un Conjunto

Por Angélica Amellali Mercado Aguilar

Puntos Interiores y Cerradura de un Conjunto

Proposición. Para todo subconjunto $A$ de $\mathbb{R}^n$ se tiene:

$(1)$ $int(A)\subset A$

Demostración. Si $\bar{a}\in int(A)$ $\exists$ $r>0$ tal que $B(\bar{a},r)\subset A$ $\therefore$ $int(A) \subset A$

$(2)$ $A\subset\bar{A}$

Demostración. Si $\bar{a}\in A$ $\forall$ $B(\bar{a},r)$ se tiene que $B(\bar{a},r)\cap A\neq\emptyset$ $\therefore$ $A\subset\bar{A}$

Lema. Sea $A$ un subconjunto de $\mathbb{R}^n$

(1) Si $v\subset A$ y $v$ es abierto entonces $v\subset A^o$

Demostración. Sea $\bar{x}\in v$, como $v$ es abierto $\exists$ $r>0$ tal que $B(\bar{x},r)\subset v$ y como $v\subset A$ entonces $B(\bar{x},r)\subset A$ esto significa que $\bar{x}$ es un punto interior de $A$ es decir $\bar{x}\in A$.

(2) Si $A\subset F\subset\mathbb{R}^n$ y $F$ es cerrado, entonces $\bar{A}\subset F$

Demostración. Para probar que $\bar{A}\subset F$ mostraremos que el complemento de $F$, $F^c$ está contenido en el complemento de $\bar{A}^c$ de $\bar{A}$. Sea $\bar{x}\in F^c$ como $F$ es cerrado $F^c$ es abierto, luego $\exists$ $r>0$ tal que $B(\bar{x},r)\subset F^c$ pero $A\subset F$

$\therefore$ $F^c\subset A^c$ de donde $B(\bar{x},r)\subset
A^c$ o sea $B(\bar{x},r)\cap A=\emptyset$ esto significa que
$\bar{x}$ no es punto adherente de $A$ es decir $\bar{x}\not\in\bar{A}$ asi que $\bar{x}\in\bar{A}^c$.

Punto de Acumulación

Ejemplo. Sea $A$ un subconjunto arbitrario de $\mathbb{R}^{n}$. Se dice que $\overline{x}\in \mathbb{R^{n}}$ es un punto de acumulación de A, si toda bola abierta con centro en $\overline{x}$ contiene un punto de A distinto de $\overline{x}$ es decir $$\forall r>0 \quad \left(B(\overline{x},r)-{\overline{x}}\right)\bigcap A\neq \emptyset$$
Al conjunto de puntos de acumulación de A se le denomina el conjunto derivado de A y se le denota $A^{a}$

Sea $$A=\{(x,y)\in\mathbb{R}^{2}~|~x^{2}+y^{2}<1\}=B((0,0),1)$$
Probaremos que el punto $$\left(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right)$$
que no pertenece a $A$, es punto de acumulación de $A$.

Dado $r>0$ se tiene que
$$\left(\frac{1}{\sqrt{2}}-\frac{r}{\sqrt{2}(r+1)},\frac{1}{\sqrt{2}}-\frac{r}{\sqrt{2}(r+1)}\right)=\frac{1}{\sqrt{2}(r+1)}(1,1)$$
es tal que
$$\left|\frac{1}{\sqrt{2}}-\frac{r}{\sqrt{2}(r+1)},\frac{1}{\sqrt{2}}-\frac{r}{\sqrt{2}(r+1)}\right|=\frac{1}{\sqrt{2}(r+1)}|(1,1)|$$
$$=\frac{1}{\sqrt{2}(r+1)}\sqrt{2}$$
$$=\frac{1}{r+1}$$
$$<1$$

y por lo tanto pertenece a $A$. Por otra parte, se tiene que
$$0<\left|\left(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right)-\left(\frac{1}{\sqrt{2}}-\frac{r}{\sqrt{2}(r+1)},\frac{1}{\sqrt{2}}-\frac{r}{\sqrt{2}(r+1)}\right)\right|$$
$$=\left|\frac{r}{\sqrt{2}(r+1)},\frac{r}{\sqrt{2}(r+1)}\right|$$
$$=\frac{r}{\sqrt{2}(r+1)}|(1,1)|$$
$$=\frac{r}{\sqrt{2}(r+1)}\sqrt{2}$$
$$=\frac{r}{r+1}$$
$$<r$$

de donde concluimos que este punto también pertenece al conjunto

$$B\left(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}},r\right)-\left(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right)$$
y por lo tanto que
$$\left(B\left(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}},r\right)-\left(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right)\right)\bigcap A \neq \emptyset$$
es decir, que
$$\left(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right)$$
es un punto de acumulación de $A$.

Ejemplo. Tenemos
$$A=(a,b)~\Rightarrow~A’=[a,b]$$
$$A=[0,1)-{2}~\Rightarrow~A’=[0,1]$$
$$A=\left\{\frac{1}{k}~\big|~k\in\mathbb{N}\right\}~\Rightarrow~A’=\left\{0\right\}$$

Tarea Moral

Sean $A$ y $B$ subconjuntos de $\mathbb{R}^n$.

Indica y prueba si las siguientes afirmaciónes son ciertas.

1.- Si $A \subset B$ entonces $\overline{A}\subset \overline{B}$

2.- $\overline{A \cup B}$ = $\overline{A} \cup \overline{B}$

3.- $A$ es cerrado si y sólo si $A \cup A ´= \overline{A}$

Sea $A=\{ (m,0) \in \mathbb{R}^2 | m \in \mathbb{Z} \}$

4.- Indica quién es $A’$

5.- Indica quién es $\overline{A}$

Diferenciales de orden uno, dos,…n

Por Angélica Amellali Mercado Aguilar

Introduccion

La interpretación geométrica de un diferencial en cálculo está relacionada con el cambio local de una función, es deicr, cómo cambia su función cuando varía por poco las entradas de la función. En otras palabras representa una aproximación lineal al cambio de una función.

Diferenciales de funciones $f:A\subset\mathbb{R}^{2}\rightarrow\mathbb{R}$

Tenemos que $f:A\subset\mathbb{R}^{2}\rightarrow\mathbb{R}$ es diferenciable si
$$f(x_{o}+h_{1},y_{0}+h_{2})=f(x_{0},y_{0})+\frac{\partial f}{\partial x}(x_{0},y_{0})h_{1}+\frac{\partial f}{\partial y}(x_{0},y_{0})h_{2}+r(h_{1},h_{2})$$
cumple
$$\lim_{(h_{1},h_{2})\rightarrow(0,0)}\frac{r(h_{1},h_{2})}{|(h_{1},h_{2})|}=0$$
Esto se puede escribir como
$$f(x_{o}+h_{1},y_{0}+h_{2})-f(x_{0},y_{0})=\frac{\partial f}{\partial x}(x_{0},y_{0})h_{1}+\frac{\partial f}{\partial y}(x_{0},y_{0})h_{2}+r(h_{1},h_{2})$$

tomando
$$f(x_{o}+h_{1},y_{0}+h_{2})-f(x_{0},y_{0})=\triangle z$$
$$\frac{\partial f}{\partial x}(x_{0},y_{0})h_{1}=\frac{\partial f}{\partial x}(x_{0},y_{0})\triangle x$$
$$\frac{\partial f}{\partial y}(x_{0},y_{0})h_{2}=\frac{\partial f}{\partial y}(x_{0},y_{0})\triangle y$$
tenemos que
$$\triangle z=\frac{\partial f}{\partial x}(x_{0},y_{0})\triangle x+\frac{\partial f}{\partial y}(x_{0},y_{0})\triangle y+r(\triangle x,\triangle y)$$
haciendo $\triangle x,~\triangle y\rightarrow 0$ tenemos
$$dz=\frac{\partial f}{\partial x}(x_{0},y_{0})dx+\frac{\partial f}{\partial y}(x_{0},y_{0}) dy$$
$\textbf{Definición.}$Si $z=f(x,y)$ es una función diferenciable, la diferencial de f denotada $dz$ se define
$$dz=\frac{\partial f}{\partial x}(x_{0},y_{0})dx+\frac{\partial f}{\partial y}(x_{0},y_{0}) dy$$

$\textbf{Ejemplo.}$ Calcular la diferencial de $z=4x^{2}-xy$\En este caso
$$dz=\frac{\partial (4x^{2}-xy)}{\partial x}dx+\frac{\partial (4x^{2}-xy)}{\partial y}dy=(8x-y)dx-xdy$$

Ahora bien
$$f(x_{o}+h_{1},y_{0}+h_{2})-f(x_{0},y_{0})=\triangle z\approx \frac{\partial f}{\partial x}(x_{0},y_{0})\triangle x+\frac{\partial f}{\partial y}(x_{0},y_{0})\triangle y$$
expresa el cambio aproximado de $z=f(x,y)$ cuando $(x,y)$ pasa a $(x+\triangle x,y+\triangle y)$

Ejemplo. Aproximar el cambio de $z=4x^{2}-xy$ cuando $(x,y)$ pasa de $(2,1)$ a $(2.1,1.5)$\
En este caso tomamos $x_{0}=2$, $y_{0}=1$, $\triangle x=0.1$ y $\triangle y=.5$ y el valor de cambio será
$$\frac{\partial f}{\partial x}(2,1)\triangle x+\frac{\partial f}{\partial y}(2,1)\triangle y=(15)(0.1)-2(0.5)=1.5$$
mientras que
$$f(2.1,1.5)-f(2,1)=14.49-14=0.49$$
por lo tanto en la aproximacion se cometió un error de $0.01$

Ejemplo. Usando diferenciales se quiere calcular aproximadamente
$$A=\frac{0.97}{\sqrt{15.05}+\sqrt[3]{0.98}}$$

Solución. Considerando la función
$$f(x,y,z)=\frac{x}{\sqrt{y+\sqrt[3]{z}}}$$
con $x=1$, $y=15$, $z=1$, $dx=-0.03$, $dy=0.05$ y $dz=-0.02$ se tiene
$$f(x+dx,y+dy,z+dz)=f(x,y,z)+df(x,y,z)$$
en este caso
$$f(x,y,z)=f(1,15,1)=\frac{1}{4}$$
$$\frac{\partial f}{\partial x}=\frac{1}{\sqrt{y}+\sqrt[3]{z}},~\frac{\partial f}{\partial y}=-\frac{x}{2}\left(y+\sqrt[3]{z}\right)^{\frac{-3}{2}},~\frac{\partial f}{\partial z}=-\frac{x}{2}(y+\sqrt[3]{z})^{\frac{-3}{2}}\frac{1}{3}z^{\frac{-2}{3}}$$
evaluando en $(1,15,1)$ se tiene
$$\frac{\partial f}{\partial x}(1,15,1)=\frac{1}{4},~\frac{\partial f}{\partial y}(1,15,1)=-\frac{1}{128},~\frac{\partial f}{\partial z}(1,15,1)=-\frac{1}{384}$$
de modo que
$$df(1,15,1)=\frac{1}{4}(-0.03)-\frac{1}{128}(0.05)-\frac{1}{384}(-0.02)=-\frac{3.01}{384}$$
por lo que
$$A=\frac{1}{4}-\frac{3.01}{384}=0.242161$$
(el valor es $0.2421726$)

Diferencial de orden 2

Si $\displaystyle{df=\frac{\partial f}{\partial x}dx+\frac{\partial f}{\partial y}dy}$ entonces una diferencial de orden 2 seria:
$$d^{2}f=d(df)=d\left(\frac{\partial f}{\partial x}dx+\frac{\partial f}{\partial y}dy\right)=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}dx+\frac{\partial f}{\partial y}dy\right)dx+\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}dx+\frac{\partial f}{\partial y}dy\right)dy$$
$$=\left(\frac{\partial^{2} f}{\partial x^{2}}dx+\frac{\partial^{2} f}{\partial x\partial y}dy\right)dx+\left(\frac{\partial^{2} f}{\partial y\partial x}dx+\frac{\partial^{2} f}{\partial y^{2}}dy\right)dy=\frac{\partial^{2} f}{\partial x^{2}}dx^{2}+\frac{\partial^{2} f}{\partial x\partial y}dxdy+\frac{\partial^{2} f}{\partial y\partial x}dydx+\frac{\partial^{2} f}{\partial y^{2}}dy^{2}$$
$$=\frac{\partial^{2} f}{\partial x^{2}}dx^{2}+2\frac{\partial^{2} f}{\partial x\partial y}dxdy+\frac{\partial^{2} f}{\partial y^{2}}dy^{2}$$
Por lo tanto

$$d^{2}f=d(df)=\frac{\partial^{2} f}{\partial x^{2}}dx^{2}+2\frac{\partial^{2} f}{\partial x\partial y}dxdy+\frac{\partial^{2} f}{\partial y^{2}}dy^{2}$$

Ejemplo. Hallar la diferencial de orden 2 para $f(x,y)=e^{x^{2}+y^{y}}$

Solución. En este caso tenemos la fórmula
$$d^{2}f=d(df)=\frac{\partial^{2} f}{\partial x^{2}}dx^{2}+2\frac{\partial^{2} f}{\partial x\partial y}dxdy+\frac{\partial^{2} f}{\partial y^{2}}dy^{2}$$
vamos a calcular las derivadas parciales correspondientes
$$\frac{\partial(e^{x^{2}+y^{2}})}{\partial x}=2xe^{x^{2}+y^{2}}$$
$$\frac{\partial(e^{x^{2}+y^{2}})}{\partial y}=2ye^{x^{2}+y^{2}}$$
$$\frac{\partial^{2}(e^{x^{2}+y^{2}})}{\partial x^{2}}=\frac{\partial}{\partial x}\left(\frac{\partial(e^{x^{2}+y^{2}})}{\partial x}\right)=\frac{\partial(2xe^{x^{2}+y^{2}})}{\partial x}=4x^{2}e^{x^{2}+y^{2}}+2e^{x^{2}+y^{2}}$$
$$\frac{\partial^{2}(e^{x^{2}+y^{2}})}{\partial y^{2}}=\frac{\partial}{\partial y}\left(\frac{\partial(e^{x^{2}+y^{2}})}{\partial y}\right)=\frac{\partial(2ye^{x^{2}+y^{2}})}{\partial y}=4y^{2}e^{x^{2}+y^{2}}+2e^{x^{2}+y^{2}}$$
$$\frac{\partial^{2}(e^{x^{2}+y^{2}})}{\partial y\partial x}=\frac{\partial}{\partial y}\left(\frac{\partial(e^{x^{2}+y^{2}})}{\partial x}\right)=\frac{\partial (2xe^{x^{2}+y^{2}})}{\partial y}=4xye^{x^{2}+y^{2}}$$
$$\frac{\partial^{2}(e^{x^{2}+y^{2}})}{\partial x\partial y}=\frac{\partial}{\partial x}\left(\frac{\partial(e^{x^{2}+y^{2}})}{\partial y}\right)=\frac{\partial (2ye^{x^{2}+y^{2}})}{\partial x}=4xye^{x^{2}+y^{2}}$$
y la diferencial de orden 2 sería:
$$d^{2}f=\left(4x^{2}e^{x^{2}+y^{2}}+2e^{x^{2}+y^{2}}\right)dx^{2}+8xye^{x^{2}+y^{2}}dxdy+\left(4y^{2}e^{x^{2}+y^{2}}+2e^{x^{2}+y^{2}}\right)dy^{2}$$

Diferencial de orden 3

Si $\displaystyle{d^{2}f=\frac{\partial^{2} f}{\partial x^{2}}dx^{2}+2\frac{\partial^{2} f}{\partial x\partial y}dxdy+\frac{\partial^{2} f}{\partial y^{2}}dy^{2}}$ entonces una diferencial de orden 3 seria:
$$d^{3}f=d(d^{2}f)=d\left(\frac{\partial^{2} f}{\partial x^{2}}dx^{2}+2\frac{\partial^{2} f}{\partial x\partial y}dxdy+\frac{\partial^{2} f}{\partial y^{2}}dy^{2}\right)=$$
$$\frac{\partial}{\partial x}\left(\frac{\partial^{2} f}{\partial x^{2}}dx^{2}+2\frac{\partial^{2} f}{\partial x\partial y}dxdy+\frac{\partial^{2} f}{\partial y^{2}}dy^{2}\right)dx+\frac{\partial}{\partial y}\left(\frac{\partial^{2} f}{\partial x^{2}}dx^{2}+2\frac{\partial^{2} f}{\partial x\partial y}dxdy+\frac{\partial^{2} f}{\partial y^{2}}dy^{2}\right)dy=$$

$$\left(\frac{\partial^{3} f}{\partial x^{3}}dx^{2}+2\frac{\partial^{3} f}{\partial x^{2}\partial y}dxdy+\frac{\partial^{3} f}{\partial x\partial y^{2}}dy^{2}\right)dx+\left(\frac{\partial^{3} f}{\partial x^{2} \partial y}dx^{2}+2\frac{\partial^{3} f}{\partial x\partial y^{2}}dxdy+\frac{\partial^{3} f}{\partial y^{3}}dy^{2}\right)dy=$$

$$\frac{\partial^{3} f}{\partial x^{3}}dx^{3}+2\frac{\partial^{3} f}{\partial x^{2}\partial y}dx^{2}dy+\frac{\partial^{3} f}{\partial x\partial y^{2}}dxdy^{2}+\frac{\partial^{3} f}{\partial x^{2} \partial y}dydx^{2}+2\frac{\partial^{3} f}{\partial x\partial y^{2}}dxdy^{2}+\frac{\partial^{3} f}{\partial y^{3}}dy^{3}=$$

$$\frac{\partial^{3} f}{\partial x^{3}}dx^{3}+3\frac{\partial^{3} f}{\partial x^{2}\partial y}dx^{2}dy+3\frac{\partial^{3} f}{\partial x\partial y^{2}}dxdy^{2}+\frac{\partial^{3} f}{\partial y^{3}}dy^{3}$$
Por lo tanto
$$d^{3}f=d(d^{2}f)=\frac{\partial^{3} f}{\partial x^{3}}dx^{3}+3\frac{\partial^{3} f}{\partial x^{2}\partial y}dx^{2}dy+3\frac{\partial^{3} f}{\partial x\partial y^{2}}dxdy^{2}+\frac{\partial^{3} f}{\partial y^{3}}dy^{3}$$

Diferencial de orden 3

Si $\displaystyle{d^{3}f=\frac{\partial^{3} f}{\partial x^{3}}dx^{3}+3\frac{\partial^{3} f}{\partial x^{2}\partial y}dx^{2}dy+3\frac{\partial^{3} f}{\partial x\partial y^{2}}dxdy^{2}+\frac{\partial^{3} f}{\partial y^{3}}dy^{3}}$ entonces una diferencial de orden 4 seria:
$$d^{4}f=d(d^{3}f)=\frac{\partial^{4} f}{\partial x^{4}}dx^{4}+4\frac{\partial^{4} f}{\partial x^{3}\partial y}dx^{3}dy+6\frac{\partial^{4} f}{\partial x^{2}\partial y^{2}}dx^{2}dy^{2}+4\frac{\partial^{4} f}{\partial x\partial y^{3}}dxdy^{3}+\frac{\partial^{4} f}{\partial y^{4}}dy^{4}$$

Diferencial de orden n

$$d^{n}f=\frac{\partial^{n} f}{\partial x^{n}}dx^{n}+\left(\begin{matrix}n\\1\end{matrix}\right)\frac{\partial^{n-1} f}{\partial x^{n-1}\partial y}dx^{n-1}dy+\left(\begin{matrix}n\\2\end{matrix}\right)\frac{\partial^{n-2} f}{\partial x^{n-2}\partial y^{2}}dx^{n-2}dy^{2}+\cdots+\left(\begin{matrix}n\\k\end{matrix}\right)\frac{\partial^{n-k} f}{\partial x^{n-k}\partial y^{k}}dx^{n-k}dy^{k}+\cdots+\frac{\partial^{n}f}{\partial y^{n}}dy^{n}$$

que se puede escribir
$$d^{n}f=\sum_{j=0}^{n}\left(\begin{matrix}n\\j\end{matrix}\right)\frac{\partial^{n}f}{\partial x^{n-j}\partial y^{j}}dx^{n-j}dy^{j}$$

Mas adelante

Tarea Moral

1.- Aproximar el cambio de $z=6y^2-5xy+x$ cuando $(x,y)$ pasa de $(0,0)$ a $(0.5, 2.5)$

2.- Aproximar el cambio de $z=4xy$ cuando (x,y) pasa de $(1,2)$ a $(1.3, 4.2)$

3.- Usa diferenciales para calcular aproximadamente
$$A=\frac{1.02}{\sqrt{9.95}+\sqrt[3]{81}}$$

4.- Hallar el diferencial de orden 2 para $f(x,y)= 3x^2+\sqrt{xy}$

5.- Hallar el diferencial de orden 3 para $f(x,y)=sen(4x+y^2)$

Enlaces

Cálculo Diferencial e Integral II: Funciones integrables con finitas discontinuidades

Por Moisés Morales Déciga

Introducción

Hasta ahora, hemos hablado de funciones integrables en un intervalo cerrado, en términos de ciertas sumas superiores e inferiores. Vimos en la entrada de Propiedades de la integral que si una función es monótona o continua, entonces su integral siempre está definida. Ahora veremos qué sucede con las funciones que tienen discontinuidades. En esta entrada trataremos a las funciones que finitas discontinuidades. En la siguiente hablaremos de funciones con una infinidad de discontinuidades.

Breve repaso de integrabilidad

Recordemos que para determinar si una función acotada $f:\mathbb{R}\to \mathbb{R}$ es integrable en cierto intervalo $[a,b]$, debemos calcular ciertas sumas superiores e inferiores con respecto a una partición. Esto es tomar algunos puntos $x_0<\ldots<x_n$ en $[a,b]$, con $x_0=a$ y $x_n=b$. Escribimos $$P=\{ x_0, x_1, … , x_n \},$$

y decimos que $P$ genera los siguientes intervalos a los que llamamos celdas

$$[x_0,x_1],[x_1,x_2],…,[x_{n-1},x_n].$$

A $[x_{k-1},x_{k}]$ le llamamos la $k$-ésima celda de $P$, cuya longitud es $\Delta x_{k}=x_k-x_{k-1}$. Si $m_k$ es el ínfimo de los valores de $f$ en la $k$-ésima celda y $M_k$ es su supremo, entonces podemos definir respectivamente la suma inferior y superior como $$\underline{S}(f,P)=\sum_{k=1}^n m_k\Delta x_k \quad \text{y} \quad \overline{S}(f,P)=\sum_{k=1}^n M_k\Delta x_k.$$

La función $f$ es integrable cuando el ínfimo de las sumas superiores (tomado sobre todas las particiones) coindice con el supremos de las sumas inferiores. Vimos que esto es equivalente a pedir que para todo $\epsilon$ haya una partición en la que la suma superior y la inferior difieran menos que $\epsilon$ (a lo que llamamos el criterio de Riemann). Probamos varias otras propiedades de esta definición, pero una que será muy importante para esta entrada es la siguiente.

Proposición. Sea $f:\mathbb{R}\to \mathbb{R}$ una función acotada. Sea $c$ cualquier valor entre $[a,b]$. Si la integral

$$\int \limits_{a}^{b} f(x) \ dx$$

existe, entonces las dos integrales

$$\int \limits_{a}^{c} f(x) \ dx, \int \limits_{c}^{b} f(x) \ dx$$

también existen. Y viceversa, si estas dos integrales existen, entonces la primera también.

Cuando las tres integrales existen, se cumple además la siguiente igualdad:

$$\int \limits_{a}^{b} f(x) \ dx = \int \limits_{a}^{c} f(x) \ dx \ + \int \limits_{c}^{b} f(x) \ dx .$$

Usaremos esta proposición en las siguientes secciones, pero necesitamos una versión un poco más versátil.

Proposición. Sea $f:\mathbb{R}\to \mathbb{R}$ una función acotada y $n$ un entero positivo. Sea $P=\{x_0,\ldots,x_n\}$ una partición de $[a,b]$. Si la integral $$\int \limits_{a}^{b} f(x) \ dx$$ existe, entonces todas las integrales $$\int_{x_{k-1}}^{x_k} f(x)\, dx$$ para $k=1,\ldots,n$ existen. Y viceversa, si estas $n$ integrales existen, entonces la primera también. Cuando todas estas integrales existen, entonces $$\int \limits_{a}^{b} f(x) \ dx = \sum_{k=1} ^n \int_{x_{k-1}}^{x_k} f(x)\, dx.$$

La demostración de esta proposición no es difícil, pues se sigue de la proposición anterior y de una prueba inductiva. Por ello, la encontrarás como parte de los ejercicios.

Funciones escalonadas

Hablaremos de la integrabilidad de funciones escalonadas, para lo cual necesitaremos la siguiente definición.

Definición. Una función $f:\mathbb{R}\to \mathbb{R}$ es escalonada en el intervalo $[a,b]$, si existe una partición $P=\{ x_0, x_1, … , x_n\}$ del intervalo $[a,b]$, tal que $f$ es constante en cada subintervalo abierto de $P$. Es decir, para cada $k=1, 2, …, n$ existe un número real $s_k$ tal que:

$$f(x)=s_k, \quad \text{si} \quad x_{k-1} < x < x_k.$$

A las funciones escalonadas también se les conoce como funciones constantes a trozos.

Ejemplo. En algunos sistemas postales se deben poner estampillas en una carta para poderse enviar. La cantidad de estampillas que hay que poner está determinada por el peso de la carta. Supongamos que una estampilla cuesta $5$ pesos y que hay que poner una estampilla por cada $20g$ (o fracción) que pese la carta, hasta un máximo de $100g$.

Si el peso de la carta en gramos está en el intervalo $[0,20]$, entonces tienes que pagar $5$ pesos. Si está en el intervalo $(20,40]$, pagarás 10 pesos y así sucesivamente hasta que llegue a 100 gramos. Gráficamente, el costo de envío tendría el siguiente comportamiento (puedes dar clic en la imagen para verla a mayor escala).

Observa que en efecto parece ser que hay «escalones». Esta función es escalonada pues al dar la partición $P=\{0,20,40,60,80,100\}$, tenemos que la función es constante en cada intervalo abierto definido por la partición.

Si quisiéramos calcular la integral de esta función, ¿qué podríamos hacer? Podemos utilizar la proposición de separar la integral en intervalos que enunciamos arriba, usando la misma partición $P$. Como la función es constante en cada intervalo dado, entonces su integral existe. Así, la integral en todo el intervalo $[0,100]$ existirá y será la suma de las integrales en cada intervalo. Tendrás que encontrar el valor exacto como uno de los ejercicios.

$\triangle$

Integral para funciones escalonadas

Las funciones escalonadas en un cierto intervalo siempre son integrables, como lo afirma el siguiente resultado.

Teorema. Sea $f:\mathbb{R} \to \mathbb{R}$ una función. Si $f$ es escalonada en un intervalo $[a,b]$, entonces es integrable en $[a,b]$. Además, si la partición que muestra que es escalonada es $P=\{x_0,\ldots,x_n\}$, y para $x$ en el intervalo $[x_{k-1},x_k]$ (para $k=1,\ldots,n$) se cumple que $f(x)=s_k$, entonces se tiene que $$\int_a^b f(x)\, dx = \sum_{k=1}^n s_k (x_k-x_{k-1}).$$

El teorema nos dice entonces que el valor de la integral es la suma de los productos del valor $s_k$ (constante), por la longitud del $k$-ésimo intervalo. Esto tiene mucho sentido geométrico: cada uno de estos productos es el área de un rectángulo correspondiente a un «escalón». El teorema nos dice que el área buscada es la suma de las áreas de estos escalones.

Demostración. La demostración es consecuencia de la proposición para partir integrales en intervalos. Notemos que como $f$ es constante en cada intervalo $[x_{k-1},x_k]$ (para $k=1,\ldots,n$), entonces es integrable en dicho intervalo. En efecto, fijemos una $k\in \{1,\ldots,n\}$ y tomemos $Q=\{y_0,\ldots,y_m\}$ una partición de $[x_{k-1},x_k]$. En en este intervalo cualquier suma superior (o inferior) se hace tomando como supremo (o ínfimo) al valor constante $s_k$, de modo que:

\begin{align*}
\overline{S}(f,Q)&=\sum_{i=1}^m M_i \Delta y_i\\
&=\sum_{i=1}^m s_k \Delta y_i\\
&=s_k\sum_{i=1}^m \Delta y_i\\
&=s_k(x_k-x_{k-1}),\\
\underline{S}(f,Q)&= \sum_{i=1}^m m_i \Delta y_i \\
&=\sum_{i=1}^m s_k \Delta y_i\\
&=s_k\sum_{i=1}^m \Delta y_i\\
&=s_k (x_k – x_{k-1}).
\end{align*}

Así, el ínfimo de las particiones superiores y el supremo de las inferiores es $c_k(x_k-x_{k-1})$, por lo que la integral existe en cada intervalo $[x_{k-1},x_k]$ y es igual a $c_k (x_k – x_{k-1})$. Usando la proposición que enunciamos en la sección de recordatorio sobre partir la integral por intervalos, obtenemos

$$\int_a^b f(x)\, dx = \sum_{k=1}^n \int_{x_{k-1}}^{x_k} f(x)\, dx =\sum_{k=1}^n s_k (x_k-x_{k-1}),$$

como queríamos.

$\square$

Funciones continuas a trozos

Las funciones escalonadas son muy sencillas, pero las ideas que hemos discutido respaldan una cierta intuición de que para la integrabilidad «si la función se comporta bien en cada uno de una cantidad finita de intervalos, entonces se comporta bien en todo el intervalo». Esa idea se repite a continuación.

Definición. Sea $f:\mathbb{R}\to \mathbb{R}$. Diremos que $f$ es continua a trozos en el intervalo $[a,b]$ si existe una partición $P=\{x_0,\ldots,x_n\}$ de $[a,b]$ tal que $f$ es continua en cada intervalo $(x_{k-1},x_k)$ para $k=1,\ldots,n$.

Pareciera que estamos pidiendo continuidad en todo el intervalo $[a,b]$. Sin embargo, hay algunas excepciones. Por la manera en la que está escrita la definición, la función $f$ no necesariamente es continua en los puntos $x_1,x_2,\ldots,x_{n-1}$.

Proposición. Sea $f:\mathbb{R}\to \mathbb{R}$ una función acotada. Si $f$ es continua a trozos en el intervalo $[a,b]$, entonces $f$ es integrable en $[a,b]$.

Demostración. Nos gustaría usar la proposición de separación de la integral por intervalos. Para ello, tomemos la partición $P=\{x_0,\ldots,x_n\}$ de $[a,b]$ tal que $f$ es continua en cada intervalo $(x_{k-1},x_k)$ para $k=1,\ldots,n$. Si $f$ fuera continua en cada intervalo cerrado $[x_{k-1},x_k]$, podríamos usar un resultado anterior para ver que es integrable en cada uno de estos intervalos, pero aquí tenemos una hipótesis un poco más débil, pues la continuidad es sólo en el abierto.

De cualquier manera, se puede ver que $f$ es integrable en cada intervalo cerrado $[x_{k-1},x_k]$. Para ello, fijemos $k$ y tomemos $\epsilon>0$. Como $f$ es acotada, tiene supremo $M$ e ínfimo $m$ en $[a,b]$. Si $M=m$, entonces $f$ es constante y no hay nada que hacer. Así, supongamos $M\neq m$ y tomemos una $\delta>0$ tal que $2\delta(M-m)< \frac{\epsilon}{2}$, y tal que $\delta<\frac{x_k-x_{k-1}}{2}$. La segunda condición nos dice que $[x_{k-1}+\delta,x_k-\delta]$ es no vacío. Como $f$ es continua en este intervalo cerrado, es integrable ahí. Por el criterio de Riemann, hay una partición $Q=\{y_1,\ldots,y_{l-1}\}$ de dicho intervalo tal que $$\overline{S}(f,Q)-\underline{S}(f,Q)<\frac{\epsilon}{2}.$$

Si a esta partición agregamos los puntos $y_0=x_{k-1}$ y $y_l=x_k$, entonces obtenemos una partición $Q’=\{y_0,\ldots,y_l\}$ la cual su primera y última celda tienen longitud $\delta$ y cumple

\begin{align*}
\overline{S}(f,Q’)-\underline{S}(f,Q’)&=(\overline{S}(f,Q)-\underline{S}(f,Q))+(M_1-m_1)\Delta y_1 + (M_l-m_l)\Delta y_l\\
&<\frac{\epsilon}{2}+ (M-m)\delta + (M-m)\delta\\
&=\frac{\epsilon}{2}+ 2(M-m)\delta\\
&<\frac{\epsilon}{2}+\frac{\epsilon}{2}\\
&=\epsilon.
\end{align*}

Así, hemos encontrado una partición $Q’$ de $[x_{k-1},x_k]$ donde las sumas superior e inferior difieren en menos de $\epsilon$. Por el criterio de Riemann, $f$ es integrable en ese intervalo, para cada $k=1,\ldots,n$. Concluimos la demostración usando nuevamente la proposición de separación de la integral en intervalos.

$\square$

Ejemplo. La siguiente función $$ f(x)= \left\{ \begin{array}{lcc}             x^2 &   si  & 0 \leq x \leq 2 \\             \\ x &  si & 2 < x < 3 \\             \\ -\frac{x^3}{36} +3 &  si  & 3 \leq x \leq 4.5             \end{array}   \right. $$

es integrable en el intervalo $[0,4.5]$. Tendrás que calcular su integral en los ejercicios.

$\triangle$

Funciones monótonas a trozos

Para esta discusión de funciones monótonas, vale la pena que tengas presente las definiciones de funciones crecientes y decrecientes, que puedes consultar en la entrada correspondiente del curso de Cálculo Diferencial e Integral I.

Definición. Una función $f:\mathbb{R}\to \mathbb{R}$ es monótona a trozos en el intervalo $[a,b]$ si existe una partición $P=\{x_0,\ldots,x_n\}$ de $[a,b]$ tal que $f$ es monótona en cada intervalo $(x_{k-1},x_k)$ para $k=1,\ldots,n$.

Podemos pensar cómo sería la gráfica de una función así. Tendría que estar formada por un número finito de trozos monótonos. Un ejemplo de ello son las funciones escalonadas (son por ejemplo, no crecientes a trozos). Un ejemplo un poco más interesante sería el de la siguiente figura.

Monótona por trozos

Como te imaginarás, las funciones monótonas a trozos también son integrables.

Proposición. Sea $f:\mathbb{R}\to \mathbb{R}$ una función acotada. Si $f$ es monótona a trozos en el intervalo $[a,b]$, entonces $f$ es integrable en $[a,b]$.

Una vez más, la demostración usa la proposición de separación de la integral por intervalos. Pero nuevamente nos enfrentamos con una dificultad. Lo que hemos demostrado anteriormente es que si una función es monónona en un intervalo $[x_{k-1},x_k]$, entonces es integrable en dicho intervalo. ¿Pero si sólo tenemos monotonía en $(x_{k-1},x_k)$? Para atender esta dificultad, se tiene que hacer una adaptación similar a lo que hicimos en la demostración para funciones continuas a trozos. Los detalles quedan como parte de la tarea moral.

Más adelante…

En esta entrada analizamos funciones con una cantidad finita de discontinuidades. También hablamos de las funciones monótonas a trozos, que podrían tener una infinidad de discontinuidades, pero también ser integrables. En la siguiente entrada veremos qué hacer con la integrabilidad cuando tenemos una cantidad infinita de discontinuidades.

Tarea moral

  1. Calcula el valor de la integral de la función escalonada del servicio postal, con la partición dada.
  2. Integra la siguiente función: $$ f(x)= \left\{ \begin{array}{lcc}             x^2 &   si  & 0 \leq x \leq 2 \\             \\ x &  si & 2 < x < 3 \\             \\ -\frac{x^3}{36} +3 &  si  & 3 \leq x \leq 4.5             \end{array}   \right. $$
  1. Integra la siguiente función. Puedes usar fórmulas de integración que conozcas de cursos preuniversitarios, sin embargo, toma en cuenta que tu respuesta será un poco informal hasta que mostremos de dónde salen dichas fórmulas. $$ f(x)= \left\{ \begin{array}{lcc}             \sqrt x &   si  & 0 \leq x \leq 2 \\             \\ ln(x) &  si & 2 < x < 3 \\             \\ -\frac{x^2}{16} -x +5 &  si  & 3 \leq x \leq 4             \end{array}   \right. $$
  1. Demuestra por inducción la proposición de separación de la integral en intervalos que quedó pendiente en la sección de «Breve repaso de integrabilidad». Asegúrate de demostrar la ida y la vuelta.
  2. Sean $f:\mathbb{R}\to \mathbb{R}$ y $g:\mathbb{R}\to \mathbb{R}$ funciones acotadas.
    • Muestra que si $f$ y $g$ son funciones escalonadas en un intervalo $[a,b]$, entonces $f+g$ y $fg$ también son funciones escalonadas en $[a,b]$. Sugerencia. Usa como partición un refinamiento común a las particiones $P$ y $Q$ que muestran que $f$ y $g$ son escalonadas, respectivamente.
    • Muestra que si $f$ y $g$ son funciones continuas por trozos en un intervalo $[a,b]$, entonces $f+g$ y $fg$ también son funciones continuas por trozos en $[a,b]$.
    • Si $f$ y $g$ son funciones monótonas por trozos en un intervalo $[a,b]$, ¿será que $f+g$ y $fg$ también lo son? ¿Bajo qué condiciones de la monotonía sí sucede esto?
  3. Da un ejemplo de una función que sea monótona por trozos, pero que no sea continua por trozos.
  4. Demuestra la proposición de que las funciones monónotas a trozos son integrables.

Entradas relacionadas