Variable Compleja I: Series de potencias. Introducción y criterios de convergencia

Por Pedro Rivera Herrera

Introducción

En esta entrada abordaremos el concepto de serie de potencias, la cual es un tipo particular de serie de números complejos y/o serie de funciones de números complejos, por lo que los resultados de las dos entradas anteriores nos serán de gran utilidad para caracterizar a dichas series.

En general, las series de potencias resultan de gran interés puesto que nos permiten aproximar y definir funciones, en particular a las funciones complejas elementales como lo haremos en las siguientes entradas. Nuestro objetivo en esta entrada es establecer algunos resultados elementales para determinar cuándo y en qué conjuntos estas series convergen.

Definición 29.1. (Serie de Potencias.)
Sean $z_0 \in\mathbb{C}$ y $\{c_n\}_{n\geq 0} \subset \mathbb{C}$ una sucesión de números complejos. Una serie de la forma: \begin{equation*}
\displaystyle \sum_{n=0}^\infty c_n \left(z-z_0\right)^n, \tag{29.1}
\end{equation*} para cada $z\in\mathbb{C}$, es llamada serie de potencias centrada en $z_0$ y los números $c_n\in\mathbb{C}$ son llamados los coeficientes de la serie.

Observación 29.1.
Recordemos que hemos hecho antes la convención $(z-z_0)^0 = 1$ para todo $z-z_0\in\mathbb{C}$.

Considerando lo anterior, podemos pensar a una serie de potencias como una serie de números complejos o como una serie de funciones, por lo que, en cualquiera de los dos casos podemos hablar de los conceptos de convergencia, convergencia absoluta, convergencia puntual y convergencia uniforme establecidos en las entradas anteriores.

Si consideramos a una serie de potencias, dada en (29.1), como una serie de funciones, entonces dicha serie está definida por la sucesión de funciones:
\begin{equation*}
f_0(z) = c_0, \quad f_n(z) = c_n\left(z-z_0\right)^n, \forall n\geq 1.
\end{equation*}

Bajo esta idea, es claro que cada serie de potencias define a una función compleja, de variable $z$, cuyo dominio natural consistirá de todos los $z\in\mathbb{C}$ para los cuales la serie de funciones (29.1) converge. Por tanto, en caso de ser necesario podemos elegir distintos dominios para dicha función, correspondientes con subconjuntos del dominio natural dado por la convergencia de la serie.

Observación 29.2.
Notemos que la serie dada por (29.1) siempre converge en el centro, es decir, si $z=z_0$ entonces para $n \geq 1$ todos los términos de la serie se anulan, mientras que para $n=0$ se obtiene la constante $c_0 \in \mathbb{C}$, por lo que la serie de potencias converge.

Por otra parte, para $z\neq z_0$ la serie de potencias puede converger o diverger, como veremos más adelante.

Si planteamos el cambio de variable:
\begin{equation*}
\zeta = z – z_0, \tag{29.2}
\end{equation*} es claro que $\zeta = 0$ si y solo si $z = z_0$ y $\zeta \neq 0$ si y solo si $z \neq z_0$, entonces la serie de potencias dada en (29.1) toma la forma:
\begin{equation*}
\displaystyle \sum_{n=0}^\infty c_n \zeta^n, \quad \forall \zeta \in\mathbb{C}, \tag{29.3}
\end{equation*} de donde (29.3) converge si $\zeta = 0$, mientras que para $\zeta \neq 0$ la serie puede converger o diverger.

El cambio de variable dado en (29.2) puede simplificar un poco las cuentas, por lo que trabajaremos indistintamente con una serie de potencias de la forma (29.1) ó (29.3), simplemente considerando $z=\zeta$ y a la serie centrada en el origen, es decir, $z_0 = 0$. Para recuperar el caso general bastará con realizar el cambio de variable (29.2).

Ejemplo 29.1.
Veamos que para una serie de potencias, de la forma (29.1) ó (29.3), se cumple alguna de las siguientes condiciones.

  1. La serie converge para todo $z\in\mathbb{C}$ ó $\zeta\in\mathbb{C}$.
  2. La serie converge solo para $z=z_0$ ó $\zeta = 0$.
  3. La serie converge solo para los $z$ ó $\zeta$ en alguna región del plano complejo $\mathbb{C}$.

Solución. Por ahora, para verificar la afirmación basta con dar un ejemplo para cada caso. Más adelante, corolario 29.1, probaremos esta afirmación.

Veamos que cada condición se cumple sin importar si la serie de potencias es de la forma (29.1) ó (29.3).

  1. Consideremos a las series de potencias: \begin{equation*} \displaystyle \sum_{n=0}^\infty \frac{(z-1+i)^n}{(n!)^2} \quad \text{y} \quad \displaystyle \sum_{n=0}^\infty \frac{\zeta^n}{n!}. \end{equation*} Para la primera serie tenemos que $z_0 = 1-i$. Es claro que para $z=z_0$ la serie de potencias converge. Supongamos que $z\neq z_0$, entonces: \begin{align*} \lambda = \lim_{n\to \infty} \dfrac{\left|\dfrac{(z-1+i)^{n+1}}{\left[(n+1)!\right]^2}\right|}{\left|\dfrac{(z-1+i)^{n}}{(n!)^2}\right|} & = \lim_{n\to \infty} \left|\dfrac{(z-1+i)^{n+1}(n!)^2}{(z-1+i)^{n}\left[(n+1)!\right]^2} \right|\\ & = \lim_{n\to \infty} \dfrac{\left|z-1+i\right|(n!)^2}{(n+1)^2(n!)^2}\\ & = \lim_{n\to \infty} \dfrac{\left|z-1+i\right|}{(n+1)^2} = 0. \end{align*} Entonces, por el criterio del cociente de D’Alembert, proposición 27.5, para todo $z\neq z_0$ la serie converge absolutamente. Por lo tanto, para todo $z\in\mathbb{C}$ la primera serie de potencias converge.

    Por otra parte, para la segunda serie de potencias, por el ejemplo 27.8, sabemos que la serie es absolutamente convergente para todo $\zeta\in\mathbb{C}$, por lo que la segunda serie de potencias también converge para todo $\zeta\in\mathbb{C}$.
  2. Consideremos a las series de potencias: \begin{equation*} \displaystyle \sum_{n=1}^\infty \frac{n^n (z-i)^n}{n} \quad \text{y} \quad \displaystyle \sum_{n=0}^\infty n! \zeta^n. \end{equation*} Para la primera serie tenemos que $z_0 = i$, $c_0 = 0$ y $c_n = \dfrac{n^n}{n}$ para $n\geq 1$. Es claro que para $z=z_0$ la serie de potencias converge. Supongamos que $z\neq z_0$, entonces: \begin{equation*} \lambda = \lim_{n\to \infty} \left|\frac{n^n (z-i)^n}{n}\right|^{1/n} = \lim_{n\to \infty} \frac{n \left|z-i\right|}{n^{1/n}} = \infty, \end{equation*} ya que $\lim\limits_{n\to\infty} n = \infty$ y $\lim\limits_{n\to\infty} n^{1/n} = 1$.

    Entonces, por el criterio de la raíz, proposición 27.6, tenemos que la serie diverge para toda $z\neq z_0$. Por lo tanto, la primera serie de potencias converge solo para $z=z_0$.

    Por otra parte, para la segunda serie de potencias es claro que la serie converge si $\zeta=0$. Mientras que para $\zeta \neq 0$ tenemos que: \begin{equation*} \lim_{n \to \infty} n! \zeta^n = \infty, \end{equation*} desde que $\lim\limits_{n\to\infty} n! = \infty$ y $|\zeta^n| \geq r >0$ para toda $n\in\mathbb{N}$, es decir, la sucesión $\{\zeta^n\}_{n\geq 0}$, con $\zeta\neq 0$, está separada de cero, proposición 8.2(5).

    Por lo tanto, la segunda serie solo converge para $\zeta = 0$.
  3. Consideremos a las series de potencias: \begin{equation*} \displaystyle \sum_{n=0}^\infty (-2)^n \frac{(z+2)^n}{n+1} \quad \text{y} \quad \displaystyle \sum_{n=0}^\infty \zeta^n. \end{equation*}Para la primera serie tenemos que $z_0 = -2$. Es claro que para $z=z_0$ la serie de potencias converge. Si $z\neq z_0$, tenemos: \begin{align*} \lambda = \lim_{n\to \infty} \dfrac{\left|(-2)^{n+1} \dfrac{(z+2)^{n+1}}{n+2}\right|}{\left|(-2)^n \dfrac{(z+2)^n}{n+1}\right|} & = \lim_{n\to \infty} \left|-2\right| \left|\dfrac{(n+1)(z+2)^{n+1}}{(n+2)(z+2)^{n}}\right|\\ & = \lim_{n\to \infty} \left(2\right) \left|z+2\right| \frac{n+1}{n+2}\\ & = 2 \left|z+2\right|. \end{align*}Entonces, por el criterio del cociente de D’Alembert, proposición 27.5, tenemos que la serie converge si $\lambda = 2 \left|z+2\right| < 1$, es decir, para todo $z\in\mathbb{C}$ tal que $\left|z+2\right| < 1/2$, mientras que la serie diverge si $\left|z+2\right| > 1/2$.

    Por último, para la segunda serie de potencias, por el ejemplo 27.3 sabemos que la serie geométrica es convergente para todo $\zeta\in\mathbb{C}$ tal que $\left|\zeta\right|<1$ y divergente si $\left|\zeta\right|\geq 1$.

Observación 29.3.
Al trabajar con una serie de potencias, ya sea de la forma (29.1) ó (29.3), debemos ser cuidadosos al identificar los coeficientes de la serie, puesto que no siempre están dados de forma explícita y esto puede llegar a causar errores al manipular a las series de potencias y/o al deducir algo relacionado con su convergencia.

Una vez que estemos seguros de que los coeficientes de la serie corresponden con la regla explícita dada en la serie, podemos trabajar con dicha regla para obtener los coeficientes.

Ejemplo 29.2.
Identifiquemos los coeficientes de las siguientes series de potencias.
a) $\displaystyle \sum_{n=0}^\infty \frac{(-1)^n}{2^n} z^{2n}$.
b) $\displaystyle \sum_{n=1}^\infty \frac{z^n}{n}$.
c) $\displaystyle \sum_{n=1}^\infty \frac{(-1)^n z^{n-1}}{n(n+1)}$.

Solución. Es claro que las tres series están centradas en $z_0 = 0$. Procedemos a escribir a las series de potencias de acuerdo con la definición 29.1.

a) Tenemos que:
\begin{equation*}
\sum_{n=0}^\infty \frac{(-1)^n}{2^n} z^{2n} = \sum_{k=0}^\infty c_k z^{k},
\end{equation*} de donde:
\begin{equation*}
c_k = \left\{ \begin{array}{lc}
\dfrac{(-1)^{n}}{2^n}, & \text{si existe} \,\, n\in\mathbb{N} \,\, \text{tal que} \,\, k = 2n,\\
\\ 0, & \text{en otro caso.}\\
\end{array}
\right.
\end{equation*}

Por lo que:
\begin{equation*}
c_0 = 1, \quad c_1 = 0,\quad c_2 = -\frac{1}{2}, \quad c_3 = 0, \quad \ldots, \quad c_{2n} = \dfrac{(-1)^{n}}{2^n}, \quad c_{2n+1} = 0,
\end{equation*}

es decir:
\begin{equation*}
c_k = \left\{ \begin{array}{lcc}
\dfrac{(-1)^{n}}{2^n}, & \text{si} & k = 2n,\\
\\ 0, & \text{si} & k = 2n+1,\\
\end{array}
\right. \quad \text{con} \,\, n\in\mathbb{N}.
\end{equation*}

b) Tenemos que:
\begin{equation*}
\sum_{n=1}^\infty \frac{z^n}{n} = \sum_{k=0}^\infty c_k z^{k},
\end{equation*} de donde:
\begin{equation*}
c_k = \left\{ \begin{array}{lc}
\dfrac{1}{n}, & \text{si existe} \,\, n\in\mathbb{N} \,\, \text{tal que} \,\, k = n,\\
\\ 0, & \text{en otro caso.}\\
\end{array}
\right.
\end{equation*}

Por lo que:
\begin{equation*}
c_0 = 0, \quad c_1 = 1,\quad c_2 = \frac{1}{2}, \quad c_3 = \frac{1}{3}, \quad \ldots, \quad c_{n} = \dfrac{1}{n},
\end{equation*}es decir:
\begin{equation*}
c_k = \left\{ \begin{array}{lcc}
\dfrac{1}{k}, & \text{si} & k \geq 1,\\
\\ 0, & \text{si} & k = 0.\\
\end{array}
\right.
\end{equation*}

c) Tenemos que:
\begin{equation*}
\sum_{n=1}^\infty \frac{(-1)^n z^{n-1}}{n(n+1)} = \sum_{k=0}^\infty c_k z^{k},
\end{equation*}de donde:
\begin{equation*}
c_k = \left\{ \begin{array}{lc}
\dfrac{(-1)^{n}}{n(n+1)}, & \text{si existe} \,\, n\in\mathbb{N} \,\, \text{tal que} \,\, k = n-1,\\
\\ 0, & \text{en otro caso.}\\
\end{array}
\right.
\end{equation*}

Por lo que:
\begin{equation*}
c_0 = \dfrac{(-1)^{1}}{1(1+1)} = -\frac{1}{2}, \quad c_1 = \dfrac{(-1)^{2}}{2(2+1)} = \frac{1}{6},\quad c_2 = \dfrac{(-1)^{3}}{3(3+1)} = -\frac{1}{12}, \quad \ldots,
\end{equation*} es decir:
\begin{equation*}
c_k = \dfrac{(-1)^{k+1}}{(k+1)(k+2)}, \quad k\in\mathbb{N}.
\end{equation*}

Nuestra primera tarea es determinar bajo qué condiciones una serie de potencias converge, pues como vimos en el ejemplo 29.1, existen series de potencias que convergen en todo $\mathbb{C}$, en un sólo punto o en alguna región del plano complejo. Es claro que un ejemplo no es una prueba de este hecho, por lo que procedemos a verificarlo de manera formal.

Proposición 29.1. (Lema de Abel.)
Si la serie de potencias $\displaystyle \sum_{n=0}^\infty c_n z^n$ converge para algún $z=z_0 \neq 0$, entonces la serie converge absolutamente para todo $z\in\mathbb{C}$ tal que $|z| < |z_0|$.

Más aún, si la serie diverge para algún $z=z_1 \neq 0$, entonces la serie diverge para todo $z\in\mathbb{C}$ tal que $|z_1| < |z|$.

Demostración. Dadas las hipótesis, procedemos a verificar la primera parte de la proposición.

Si la serie $\displaystyle \sum_{n=0}^\infty c_n z_0^n$ converge, con $z_0 \neq 0$, entonces, por el corolario 27.1, se cumple que:
\begin{equation*}
\lim_{n\to\infty} c_n z_0^n = 0,
\end{equation*}

es decir, la sucesión $\{c_n z_0^n\}_{n\geq 0}$ converge a 0, por lo que, proposición 8.1, es una sucesión acotada. Entonces, existe $M>0$ tal que:
\begin{equation*}
|c_n| \, |z_0|^n = |c_n z_0^n| \leq M, \quad \forall n\in\mathbb{N}.
\end{equation*}

Como $z_0\neq 0$, tenemos que:
\begin{equation*}
|c_n| \leq \frac{M}{|z_0|^n}, \quad \forall n\in\mathbb{N},
\end{equation*}

de donde:
\begin{equation*}
|c_n z^n | \leq M \left|\frac{z}{z_0}\right|^n, \quad \forall n\in\mathbb{N}.
\end{equation*}

Si $|z|<|z_0|$, entonces la serie geométrica $\displaystyle \sum_{n=0}^\infty M \left|\frac{z}{z_0}\right|^n$ es convergente, por lo que, se sigue del criterio de comparación, proposición 27.4, que la serie $\displaystyle \sum_{n=0}^\infty c_n z^n$ es absolutamente convergente.

Por último, para la segunda parte procedemos por reducción al absurdo. Supongamos que $\displaystyle \sum_{n=0}^\infty c_n z_1^n$ diverge. Si $|z_1| < |z|$ y la serie $\displaystyle \sum_{n=0}^\infty c_n z^n$ converge, entonces de la primera parte se sigue que $\displaystyle \sum_{n=0}^\infty c_n z_1^n$ converge, lo cual claramente es una contradicción. Por lo tanto $\displaystyle \sum_{n=0}^\infty c_n z^n$ diverge si $|z|>|z_1|$.

$\blacksquare$

El lema de Abel es de suma importancia para poder establecer el siguiente resultado, el cual será un parteaguas para los resultados de esta entrada.

Proposición 29.2. (Radio de convergencia.)
Sea $\displaystyle \sum_{n=0}^\infty c_n (z-z_0)^n$ una serie de potencias, entonces existe un número $R\in[0,\infty]$ tal que:

  1. la serie es absolutamente convergente si $|z-z_0| < R$;
  2. la serie converge absoluta y uniformemente en todo disco cerrado $\overline{B}(z_0, r)$, con $r$ fijo tal que $r<R$;
  3. si $|z-z_0| > R$ la serie diverge.

Demostración. Sea $\displaystyle \sum_{n=0}^\infty c_n (z-z_0)^n$ una serie de potencias, definimos:
\begin{equation*}
S:= \left\{\rho \in [0, \infty) : \sum_{n=0}^\infty c_n \rho^n \,\, \text{converge}\right\}.
\end{equation*}

Notemos que $S \neq \emptyset$ desde que $0\in S$.

Afirmamos que el número $R$ que cumple lo anterior está dado por $ R:= \sup S$.

  1. De acuerdo con el enunciado de la proposición, debe ser claro que podemos tener dos casos extremos: si $R = 0$ ó si $R = \infty$, los cuales están dados por la definición de $R$ como sigue.

    Si $S$ no es acotado superiormente, adoptamos la convención $R = \infty$. Veamos que en tal caso, la serie $\displaystyle \sum_{n=0}^\infty c_n (z-z_0)^n$ converge absoluta y uniformemente en $\overline{B}(z_0, r)$, para cualquier $r\geq 0$.

    Si elegimos a $\rho\in S$ tal que $|z-z_0| \leq r <\rho$, entonces la serie $\displaystyle \sum_{n=0}^\infty c_n \rho^n$ es convergente y de la proposición 27.4(1) tenemos que la serie $\displaystyle \sum_{n=0}^\infty c_n r^n$ es absolutamente convergente. Dado que: \begin{equation*}|c_n(z-z_0)^n| \leq |c_n r^n| = |c_n| r^n, \quad \forall n\in\mathbb{N}, \end{equation*} entonces del criterio $M$ de Weierstrass, proposición 28.3, se sigue que la serie $\displaystyle \sum_{n=0}^\infty c_n (z-z_0)^n$ converge absoluta y uniformemente en $\overline{B}(z_0, r)$. Como $r$ es arbitario, entonces tenemos el caso $R=\infty$.

    Supongamos que $S$ es acotado superiormente. Si $R=0$, entonces la serie solo converge si $z=z_0$, por lo que, lema de Abel, la serie converge absolutamente solo en el centro.

    Si $R>0$ y $|z-z_0|<R$, entonces, por la definición de $R$, existe $r\in S$ tal que: \begin{equation*}|z-z_0| < r \leq R. \end{equation*}Dado que $r\in S$, entones la serie $\displaystyle \sum_{n=0}^\infty c_n r^n$ es convergente. Notemos que la serie $\displaystyle \sum_{n=0}^\infty c_n (z-z_0)^n$ converge para $z = r+z_0$, por lo que, lema de Abel, la serie converge absolutamente para $|z-z_0| < r \leq R$, lo cual completa el caso $|z-z_0| < R$.
  2. Sea $z \in \overline{B}(z_0, r)$, con $r$ fijo tal que $r<R$, entonces, por la definición de $R$, podemos elegir $\rho \in S$ tal que $r<\rho \leq R$. Como la serie $\displaystyle \sum_{n=0}^\infty c_n \rho^n$ converge, entonces, proposición 27.4(1), la serie $\displaystyle \sum_{n=0}^\infty |c_n| r^n$ converge, por lo que, criterio $M$ de Weierstrass, la serie $\displaystyle \sum_{n=0}^\infty c_n (z-z_0)^n$ es absoluta y uniformemente convergente en $\overline{B}(z_0, r)$.
  3. Supongamos que $|z-z_0| > R$, entonces, por la definición de $R$, existe $r\not\in S$ tal que: \begin{equation*} R \leq r < |z-z_0|. \end{equation*} Como la serie $\displaystyle \sum_{n=0}^\infty c_n r^n$ diverge, entonces la serie $\displaystyle \sum_{n=0}^\infty c_n (z-z_0)^n$ diverge para $z=z_0+r$, por lo que, por lema de Abel, la serie diverge para todo $z\in\mathbb{C}$ tal que $R \leq r < |z-z_0|$.

$\blacksquare$

Definición 29.2. (Radio de convergencia.)
Se llama radio de convergencia de la serie de potencias $\displaystyle \sum_{n=0}^\infty c_n (z-z_0)^n$ al número $R$ dado en la proposición 29.2.

Al conjunto $B(z_0, R) = \{z\in\mathbb{C} : |z-z_0| < R\}$ se le llama su disco de convergencia asociado, figura 108. En algunos textos suele hablarse del círculo de convergencia de la serie, el cual se asocia al conjunto $\overline{B}(z_0, R) = \{z\in\mathbb{C} : |z-z_0| \leq R\}$, ya que geométricamente corresponde con el interior y la frontera de una circunferencia de radio $R$ centrada en $z_0$.

Observación 29.4.
Notemos que la proposición no nos dice nada sobre la convergencia o divergencia de la serie para el caso en que $R=|z-z_0|$. Como veremos en la proposición 29.3, no podemos afirmar nada sobre tal caso.

La proposición 29.2 nos da la prueba de la afirmación hecha en el ejemplo 29.1.

Corolario 29.1.
Sea $\displaystyle \sum_{n=0}^\infty c_n\left(z-z_0\right)^n$ una serie de potencias y sea $R$ su radio de convergencia. Entonces:

  1. Si $R=\infty$, la serie converge absolutamente para todo $z\in\mathbb{C}$.
  2. Si $R=0$, la serie converge solo para $z=z_0$.
  3. Si $0<R<\infty$, la serie converge solo para los $z\in\mathbb{C}$ tales que $|z-z_0|<R$ y diverge para $|z-z_0|>R$.

Demostración. Es inmediato de la proposición 29.2.

Ejemplo 29.3.
Analicemos la siguiente serie y determinemos su radio de convergencia.
\begin{equation*}
\sum_{n=0}^\infty \frac{(-1)^n}{2^n} z^{2n} = 1 – \frac{z^2}{2} + \frac{z^4}{2^2} – \frac{z^6}{2^3} + \ldots .
\end{equation*}

Solución. Por el ejemplo 29.2 sabemos que se trata de una serie de potencias con centro en $z_0 = 0$ y coeficientes:
\begin{equation*}
c_k = \left\{ \begin{array}{lcc}
\dfrac{(-1)^{n}}{2^n}, & \text{si} & k = 2n,\\
\\ 0, & \text{si} & k = 2n+1,\\
\end{array}
\right. \quad \text{con} \,\, n\in\mathbb{N}.
\end{equation*}

Notemos que si hacemos $w = \dfrac{-z^2}{2}$ entonces:
\begin{equation*}
\sum_{n=0}^\infty \frac{(-1)^n}{2^n} z^{2n} = \sum_{n=0}^\infty \left(\frac{-z^2}{2}\right)^n = \sum_{n=0}^\infty w^n.
\end{equation*}

Entonces, tenemos una serie geométrica convergente si $|w|<1$, es decir, si $|z^2| < 2$. En tal caso la serie converge a:
\begin{equation*}
\frac{1}{1-w} = \frac{2}{2-z^2}.
\end{equation*}

Para esta serie es claro que su radio de convergencia es $R = \sqrt{2}$.

En general, obtener el radio de convergencia de una serie de potencias no es una tarea fácil, el ejemplo anterior resultó sencillo pues conocemos bien a la serie geométrica, pero en general las series de potencias pueden resultar más complejas. Por ello, procedemos a establecer una serie de resultados que nos permitan determinar el radio de convergencia de una serie de potencias a través de la sucesión de números complejos $\{c_n\}_{n\geq 0}$, correspondiente con los coeficientes de la serie.

Primeramente, recordemos los siguientes conceptos y resultados estudiados y probados en nuestros cursos de Cálculo y/o Análisis.

Definición 29.3.
Sea $\{a_n\}_{n\geq0}\subset\mathbb{R}$ una sucesión de números reales acotada. Se define:
\begin{align*}
l_{0} = \sup \{ a_n : n\geq 0\} & = \sup \{a_0 , a_1,\ldots, a_n ,\ldots\},\\
l_{1} = \sup \{ a_n : n\geq 1\} &= \sup \{a_1 , a_2,\ldots, a_n ,\ldots\},\\
l_{2} = \sup \{ a_n : n\geq 2\} &= \sup \{a_2 , a_3,\ldots, a_n ,\ldots\},\\
& \,\,\, \vdots\\
l_{k} = \sup \{ a_n : n\geq k\} &= \sup \{ a_k , a_{k+1},\ldots, a_n ,\ldots\}.
\end{align*}

Es claro que:
\begin{equation*}
\{ a_n : n\geq k+1\} \subset \{ a_n : n\geq k\}, \quad \forall k\in\mathbb{N},
\end{equation*}

por lo que:
\begin{equation*}
l_{k+1} = \sup \{ a_n : n\geq k+1\} \leq l_{k} = \sup \{ a_n : n\geq k\},
\end{equation*}

es decir, la sucesión $\{ l_{k}\}_{k\geq0}$ es decreciente.

Dado que $\{a_n\}_{n\geq0}$ es acotada, entonces existe $M>0$ tal que $|a_n| \leq M$ para todo $n\in\mathbb{N}$, es decir:
\begin{equation*}
– M \leq a_n \leq M, \quad \forall n\in\mathbb{N},
\end{equation*}

de donde:
\begin{equation*}
– M \leq l_k \leq M, \quad \forall k\in\mathbb{N},
\end{equation*} es decir, la sucesión $\{ l_{k}\}_{k\geq0}$ también es acotada.

Por lo tanto, se sigue del teorema de la convergencia monótona para sucesiones, teorema 27.1, que la sucesión $\{ l_{k}\}_{k\geq0}$ converge.

Si la sucesión $\{a_n\}_{n\geq0}$ no es acotada superiormente, tenemos que $l_k = \infty$ para todo $k\in\mathbb{N}$, en tal caso se define:
\begin{equation*}
\lim_{k \to \infty} l_k = \infty. \tag{29.4}
\end{equation*}

Análogamente, se define a la sucesión:
\begin{equation*}
m_k = \inf \{a_n : n\geq k\}, \quad k\in\mathbb{N}.
\end{equation*}

Claramente $m_k \leq m_{k+1}$ para todo $k\in\mathbb{N}$ y $\{m_k\}_{k\geq 0}$ es acotada, entonces, teorema 27.1, la sucesión $\{m_k\}_{k\geq 0}$ converge.

Si la sucesión $\{a_n\}_{n\geq0}$ no es acotada inferiormente, tenemos que $m_k = -\infty$ para todo $k\in\mathbb{N}$, en tal caso se define:
\begin{equation*}
\lim_{k \to \infty} m_k = -\infty. \tag{29.5}
\end{equation*}

Definición 29.4. (Límite superior e inferior de una sucesión.)
Sea $\{a_n\}_{n\geq0}\subset\mathbb{R}$ una sucesión de números reales arbitraria. Considerando a las sucesiones $\{l_k\}_{k\geq 0}$ y $\{m_k\}_{k\geq 0}$, dadas como en la definición 29.3, se define el límite inferior y superior de $\{a_n\}_{n\geq0}$, respectivamente, como:
\begin{align*}
\lim_{k\to\infty} m_k & = \lim_{k\to\infty} \inf\{a_n : n\geq k\},\\
\lim_{k\to\infty} l_k & = \lim_{k\to\infty} \sup\{a_n : n\geq k\},
\end{align*}

a los cuales se denota, respectivamente, como:
\begin{align*}
\liminf_{n\to\infty} a_n = \lim_{k\to\infty} m_k,\\
\limsup_{n\to\infty} a_n = \lim_{k\to\infty} l_k.
\end{align*}

Observación 29.5.
Dado que una sucesión monótona (acotada) siempre tiene límite, entonces si permitimos que se cumplan (29.4) y (29.5), es claro que $ \lim\limits_{k\to\infty} m_k$ y $\lim\limits_{k\to\infty} l_k$ siempre existen y por tanto los límites inferior y superior de una sucesión arbitraria de números reales $\{a_n\}_{n\geq0}$ siempre existen.

Más aún, de acuerdo con las definiciones 29.3 y 29.4 es claro que se cumple:
\begin{align*}
m_0 &\leq m_1 \leq \cdots \leq m_k \leq \cdots,\\
\cdots &\leq l_k \leq \cdots \leq l_1 \leq l_0,
\end{align*} y $m_i \leq l_j$, por lo que:
\begin{equation*}
\liminf_{n\to\infty} a_n \leq \limsup_{n\to\infty} a_n.
\end{equation*}

Observación 29.6.
Dada una sucesión arbitraria de números reales $\{a_n\}_{n\geq0}$, de acuerdo con la definición 7.7 de la entrada 7, tenemos que $\liminf\limits_{n\to\infty} a_n$ y $\limsup\limits_{n\to\infty} a_n$ corresponden, respectivamente, con el menor y mayor punto de acumulación del conjunto $\{a_n : n\in\mathbb{N}\}$.

Es importante notar que $\liminf\limits_{n\to\infty} a_n$ y $\limsup\limits_{n\to\infty} a_n$ no son necesariamente, el valor más pequeño o más grande, respectivamente, del conjunto $\{a_n : n\in\mathbb{N}\}$.

Ejemplo 29.4.
a) Para la sucesión $\{(-1)^n\}_{n\geq 0} = \{1, -1, 1, -1, \ldots\}$ tenemos que:
\begin{equation*}
\sup\{(-1)^n : n\geq k\} = 1 \quad \text{e} \quad \inf\{(-1)^n : n\geq k\} = -1 \quad \forall k\in\mathbb{N},
\end{equation*}

por lo que:
\begin{equation*}
\liminf_{n\to\infty} (-1)^n = -1 \quad \text{y} \quad \limsup_{n\to\infty} (-1)^n = 1.
\end{equation*}

b) Para la sucesión $\{(-1)^n n\}_{n\geq 0} = \{0, -1, 2, -3, \ldots\}$ tenemos que:
\begin{equation*}
\sup\{(-1)^n n : n\geq k\} = \infty \quad \text{e} \quad \inf\{(-1)^n n : n\geq k\} = -\infty \quad \forall k\in\mathbb{N},
\end{equation*}

por lo que:
\begin{equation*}
\liminf_{n\to\infty} (-1)^n n = -\infty \quad \text{y} \quad \limsup_{n\to\infty} (-1)^n n = \infty.
\end{equation*}

c) Para la sucesión $\left\{\dfrac{1}{n}\right\}_{n\geq 1} = \left\{1, \dfrac{1}{2}, \dfrac{1}{3}, \ldots\right\}$ tenemos que:
\begin{equation*}
\sup\left\{\frac{1}{n} : n\geq k\right\} = \frac{1}{k} \quad \text{e} \quad \inf\left\{\frac{1}{n} : n\geq k\right\} = 0, \quad \forall k\in\mathbb{N},
\end{equation*}por lo que:\begin{equation*}
\liminf_{n\to\infty} \dfrac{1}{n} = 0 = \limsup_{n\to\infty} \dfrac{1}{n},
\end{equation*}

aún cuando cada término de la sucesión es más mayor que $0$.

Teorema 29.1.
Una sucesión de números reales $\{a_n\}_{n\geq 0} \subset\mathbb{R}$ converge si y solo si $ \liminf\limits_{n\to\infty} a_n$ y $ \limsup\limits_{n\to\infty} a_n$, existen, son finitos y son iguales. En tal caso:
\begin{equation*}
\liminf\limits_{n\to\infty} a_n = \limsup\limits_{n\to\infty} a_n = \lim\limits_{n\to\infty} a_n.
\end{equation*}

Teorema 29.2.
Una sucesión $\{a_n\}_{n\geq 0} \subset\mathbb{R}$ converge a $L\in\mathbb{R}$ si y solo si toda subsucesión de $\{a_n\}_{n\geq 0}$ converge a $L$.

Lema 29.1.
Una sucesión $\{a_n\}_{n\geq 0} \subset\mathbb{R}$ converge a $L\in\mathbb{R}$ si y solo si las subsucesiones $\{a_{2n}\}_{n\geq 0}$ y $\{a_{2n+1}\}_{n\geq 0}$ convergen ambas a $L$.

Demostración. Dadas las hipótesis.

$\Rightarrow)$ Si $\lim\limits_{n\to\infty} a_n = L$, entonces, por el teorema 29.2, ambas subsucesiones $\{a_{2n}\}_{n\geq 0}$ y $\{a_{2n+1}\}_{n\geq 0}$ convergen a $L$.

$(\Leftarrow$ Supongamos que ambas subsucesiones $\{a_{2n}\}_{n\geq 0}$ y $\{a_{2n+1}\}_{n\geq 0}$ convergen a $L$. Sea $\varepsilon>0$, entonces existen $N_1, N_2\in\mathbb{N}$ tales que:
\begin{align*}
\left|a_{2n} – L \right| & <\varepsilon, \quad \text{para todo} \,\,\, n\geq N_1,\\
\left|a_{2n+1} – L \right| & < \varepsilon, \quad \text{para todo} \,\,\, n\geq N_2.
\end{align*}

Sea $N=\max\{2N_1, 2N_2 +1 \}$. Para $n \geq N $, tenemos que $n \geq 2N_1$ y $n \geq 2N_2+1$.

Si $n = 2k$, para algún $k\in\mathbb{N}$, y $n \geq N$, entonces $k \geq N_1$, por lo que:
\begin{equation*}
|a_n – L| = |a_{2k} – L| < \varepsilon.
\end{equation*}

Análogamente, si $n = 2k+1$, para algún $k\in\mathbb{N}$, y $n \geq N$, entonces $k \geq N_2$, por lo que:
\begin{equation*}
|a_{n} – L| = |a_{2k+1} – L| < \varepsilon.
\end{equation*}

De ambos casos concluimos que, dado $\varepsilon>0$ existe $N\in\mathbb{N}$, tal que si $n\geq N$, entonces $ |a_{n} – L| < \varepsilon$.

$\blacksquare$

Ejemplo 29.5.
a) Para la sucesión $\left\{a_n\right\}_{n\geq 1}$, con $a_n = \dfrac{(-1)^n +n}{n}$, tenemos que:
\begin{equation*}
a_{2n} = \dfrac{(-1)^{2n} +2n}{2n} = 1 + \frac{1}{2n} \quad \Longrightarrow \quad \lim_{n\to\infty} a_{2n} = 1,
\end{equation*}

\begin{equation*}
a_{2n+1} = \dfrac{(-1)^{2n+1} +(2n+1)}{2n+1} = 1 – \frac{1}{2n+1} \quad \Longrightarrow \quad \lim_{n\to\infty} a_{2n+1} = 1,
\end{equation*}

por lo que, del lema 29.1 y el teorema 29.1 se sigue que:
\begin{equation*}
\lim_{n\to\infty} a_{n} = 1 = \limsup_{n\to\infty} a_{n} = \liminf_{n\to\infty} a_{n}.
\end{equation*}

Figura 106: Gráfica de puntos de la sucesión $\{a_n\}_{n\geq 1}$.

Consideremos a la sucesión $\{b_n\}_{n\geq 1}$ dada por:
\begin{equation*}
b_n = \left\{ \begin{array}{lcc}
\dfrac{n}{n+1} & \text{si} & n=2k, \\
\\ \dfrac{1}{n+1} & \text{si} & n=2k+1,
\end{array}
\right. \quad k\in\mathbb{N}^{+}.
\end{equation*}

Tenemos que:
\begin{equation*}
\{b_n\}_{n\geq 1} = \left\{\frac{1}{2}, \frac{2}{3}, \frac{1}{4}, \frac{4}{5}, \frac{1}{6}, \ldots\right\}.
\end{equation*}

Notemos que para dicha sucesión, los puntos $1$ y $0$ son de acumulación del conjunto $\{b_n : n\in\mathbb{N}^{+}\}$, proposición 8.6, ya que existen las subsucesiones $\left\{b_{2k}\right\}_{k\geq 1}$ y $\left\{b_{2k+1}\right\}_{k\geq 1}$ de la sucesión original tales que $1\neq b_{2k}$ y $0\neq b_{2k+1}$ para todo $k\in\mathbb{N}^{+}$ y se cumple que:
\begin{equation*}
b_{2k} = \dfrac{2k}{2k+1} \quad \Longrightarrow \quad \lim_{k\to\infty} b_{2k} = 1,
\end{equation*}
\begin{equation*}
b_{2k+1} = \dfrac{1}{2k+1} \quad \Longrightarrow \quad \lim_{k\to\infty} b_{2k+1} = 0.
\end{equation*}

Más aún, es claro que la sucesión está acotada superiormente e inferiormente por $1$ y $0$, respectivamente, por lo que:
\begin{equation*}
\limsup_{n\to\infty} b_n = 1 \quad \text{y} \quad \liminf_{n\to\infty} b_n = 0.
\end{equation*}

De acuerdo con el teorema 29.1, tenemos que la sucesión no converge ya que estos límites son distintos.

Figura 107: Gráfica de puntos de la sucesión $\{b_n\}_{n\geq 1}$.

Teorema 29.3.
Sea $\{a_n\}_{n\geq 1} \subset\mathbb{R}$ una sucesión de números reales positivos, entonces:
\begin{equation*}
\liminf_{n\to \infty} \frac{a_{n+1}}{a_{n}} \leq \liminf_{n\to \infty} a_{n}^{1/n} \leq \limsup_{n\to \infty} a_{n}^{1/n} \leq \limsup_{n\to \infty} \frac{a_{n+1}}{a_{n}}. \tag{29.6}
\end{equation*}

Corolario 29.2.
Si $\{a_n\}_{n\geq 1} \subset\mathbb{R}$ es una sucesión de números reales positivos tales que $\lim_{n\to \infty} \dfrac{a_{n+1}}{a_{n}}$ existe, entonces las cuatro cantidades dadas en (29.6) son iguales, por lo que:
\begin{equation*}
\lim_{n\to \infty} \frac{a_{n+1}}{a_{n}} = \lim_{n\to \infty} a_{n}^{1/n}.
\end{equation*}

Observación 29.7.
Puede suceder que la sucesión $\left\{\sqrt[n]{a_{n}}\right\}_{n\geq 1}$ sea convergente, pero que la sucesión $\left\{\dfrac{a_{n+1}}{a_n}\right\}_{n\geq 1}$ sea divergente.

Ejemplo 29.6.
Sea $\{a_n\}_{n\geq 1}$ dada por:
\begin{equation*}
a_{2n} = a_{2n-1} = \frac{1}{2^n}, \quad n\in\mathbb{N}^+,
\end{equation*}

es decir:
\begin{equation*}
\{a_n\}_{n\geq 1} = \left\{ \frac{1}{2}, \frac{1}{2}, \frac{1}{4}, \frac{1}{4}, \frac{1}{8}, \frac{1}{8}, \ldots , \frac{1}{2^n}, \frac{1}{2^n}, \ldots\right\}.
\end{equation*}

Tenemos que:
\begin{equation*}
\sqrt[2n]{a_{2n}} = \left(\frac{1}{2^n}\right)^{1/2n} = \frac{1}{\sqrt{2}} \quad \Longrightarrow \quad \lim_{n\to\infty} \sqrt[2n]{a_{2n}} = \frac{1}{\sqrt{2}},
\end{equation*}
\begin{equation*}
\sqrt[2n-1]{a_{2n-1}} = \left(\frac{1}{2^n}\right)^{\frac{1}{2n-1}} = \frac{1}{2^{\frac{n}{2n-1}}} \quad \Longrightarrow \quad \lim_{n\to\infty} \sqrt[2n-1]{a_{2n-1}} = \frac{1}{\sqrt{2}}.
\end{equation*}

Entonces, por el lema 29.1, tenemos que:
\begin{equation*}
\lim_{n\to\infty} a_n = \frac{1}{\sqrt{2}},
\end{equation*} es decir, la sucesión $\left\{\sqrt[n]{a_{n}}\right\}_{n\geq 1}$ converge.

Por otra parte, notemos que:
\begin{equation*}
\frac{a_{2n}}{a_{2n-1}} =\dfrac{\dfrac{1}{2^n}}{\dfrac{1}{2^n}} = 1 \quad \Longrightarrow \quad \lim_{n\to\infty} \frac{a_{2n}}{a_{2n-1}} = 1,
\end{equation*}
\begin{equation*}
\frac{a_{2n+1}}{a_{2n}} =\dfrac{\dfrac{1}{2^{n+1}}}{\dfrac{1}{2^n}} = \frac{1}{2} \quad \Longrightarrow \quad \lim_{n\to\infty} \frac{a_{2n+1}}{a_{2n}} = \frac{1}{2},
\end{equation*} por lo tanto, del lema 29.1 se sigue que $\left\{\dfrac{a_{n+1}}{a_n}\right\}_{n\geq 1}$ no converge.

Puede consultarse la prueba de estos resultados en alguno de los siguientes textos:

  • Elementary Analysis: The Theory of Calculus de Kenneth A. Ross.
  • An Introduction to Analysis de William R. Wade.

Una vez recordados estos resultados, procedemos a establecer el resultado esperado para poder determinar el radio de convergencia a través de la sucesión de números complejos dada por los coeficientes de una serie de potencias.

Proposición 29.3. (Fórmula de Cauchy-Hadamard para el radio de convergencia.)
Sea $\displaystyle \sum_{n=0}^\infty c_n\left(z-z_0\right)^n$ una serie de potencias y sea $\lambda = \limsup\limits_{n\to\infty} \sqrt[n]{|c_n|}$. Definimos a $R\in[0,\infty]$ como el radio de convergencia de la serie dado por $R = 1/\lambda$, con la definición de $R = 0$ si $\lambda=\infty$ y $R = \infty$ si $\lambda=0$. Entonces:

  1. Si $R=\infty$, la serie converge absolutamente para todo $z\in \mathbb{C}$.
  2. Si $R=0$, la serie solo converge para $z=z_0$.
  3. Si $0<r<R<\infty$ entonces la serie es absolutamente convergente para $|z-z_0|< R$ y uniformemente convergente en $\overline{B}(z_0, r)$. La serie diverge si $|z-z_0|> R$ y no podemos afirmar nada para $|z-z_0|=R$.

Demostración. Dadas las hipótesis.

  1. Si $R=\infty$, entonces tenemos que $\lambda = \limsup\limits_{n\to\infty} \sqrt[n]{|c_n|} = 0$. Notemos que para todo $z\in \mathbb{C}$ se cumple: \begin{equation*} \limsup\limits_{n\to\infty} \sqrt[n]{|c_n(z-z_0)^n|} = |z-z_0| \limsup\limits_{n\to\infty} \sqrt[n]{|c_n|} = |z-z_0| \lambda = 0. \end{equation*} Dado que la sucesión $\left\{\sqrt[n]{|c_n(z-z_0)^n|}\right\}_{n\geq1}$ es una sucesión de números reales no negativos, entonces: \begin{equation*} 0\leq \liminf\limits_{n\to\infty} \sqrt[n]{|c_n(z-z_0)^n|} \leq \limsup\limits_{n\to\infty} \sqrt[n]{|c_n(z-z_0)^n|} = 0, \end{equation*} es decir: \begin{equation*} \liminf\limits_{n\to\infty} \sqrt[n]{|c_n(z-z_0)^n|} = \limsup\limits_{n\to\infty} \sqrt[n]{|c_n(z-z_0)^n|} = 0. \end{equation*} Considerando lo anterior, por el teorema teorema 29.1, tenemos que: \begin{equation*} \lim_{n\to\infty} \sqrt[n]{|c_n(z-z_0)^n|} = 0 < 1, \end{equation*} por lo que, se sigue del criterio de la raíz, proposición 27.6, que la serie $\displaystyle \sum_{n=0}^\infty c_n\left(z-z_0\right)^n$ es absolutamente convergente para todo $z\in\mathbb{C}$.
  2. Si $R=0$, entonces tenemos que $\lambda = \limsup\limits_{n\to\infty} \sqrt[n]{|c_n|} = \infty$. Es claro que para $z = z_0$ la serie converge: \begin{equation*} \sum_{n=0}^\infty c_n(z-z_0)^n = \sum_{n=0}^\infty c_n(z_0-z_0)^n = c_0. \end{equation*} Veamos que la serie no puede converger en ningún otro punto. Procedamos por contradicción, supongamos que la serie converge para $z=a\neq z_0$, entonces, corolario 27.1, se cumple que: \begin{equation*} \lim_{n\to\infty} c_n(a-z_0)^n = 0, \end{equation*} lo cual es equivalente, considerando el ejercicio 6 de la entrada 8, a que: \begin{equation*} \lim_{n\to\infty} \sqrt[n]{|c_n|}|a-z_0| = 0, \end{equation*} es decir, para todo $\varepsilon>0$ existe $N\in\mathbb{N}$ tal que si $n\geq N$, entonces: \begin{equation*} \sqrt[n]{|c_n|}|a-z_0| = |\sqrt[n]{|c_n|}|a-z_0|| <\varepsilon, \end{equation*} por lo que: \begin{equation*} \sqrt[n]{|c_n|} < \frac{\varepsilon}{|a-z_0|}, \quad \forall n \geq N, \end{equation*} de donde, teorema 29.1:\begin{equation*} \lim_{n \to \infty} \sqrt[n]{|c_n|} = \limsup_{n \to \infty } \sqrt[n]{|c_n|}= \lambda < \infty, \end{equation*} lo cual contradice nuestro supuesto de que $\lambda = \infty$. Por lo que, la serie solo converge para $z=z_0$.
  3. Supongamos que $|z-z_0|< R$. De acuerdo con la definición 29.3: \begin{equation*} \lambda = \limsup\limits_{n\to\infty} \sqrt[n]{|c_n|} = \lim_{k\to\infty} \sup\left\{\sqrt[n]{|c_n|} : n\geq k\right\}, \end{equation*} por lo que, de la definición del límite tenemos que para todo $\varepsilon>0$ existe $N\in\mathbb{N}$ tal que si $k\geq N$, entonces:\begin{equation*} \left| \sup\left\{\sqrt[n]{|c_n|} : n\geq k\right\} – \lambda\right| <\varepsilon \quad \Longleftrightarrow \quad – \varepsilon + \lambda < \sup\left\{\sqrt[n]{|c_n|} : n\geq k\right\} <\varepsilon + \lambda, \end{equation*} de donde: \begin{equation*} -\varepsilon + \lambda < \sqrt[n]{|c_n|} < \varepsilon + \lambda, \quad \forall n\geq N. \end{equation*} Sea $\rho = \dfrac{|z-z_0| + R}{2}>0$, entonces $|z-z_0| < \rho < R$. Tenemos que: \begin{equation*} 0< \rho < R = \dfrac{1}{\lambda} \quad \Longrightarrow \quad \lambda < \frac{1}{\rho}, \end{equation*} por lo que, para $\varepsilon = \dfrac{1}{\rho} – \lambda >0$ existe $N\in\mathbb{N}$ tal que:
    \begin{equation*} \sqrt[n]{|c_n|} < \frac{1}{\rho} – \lambda + \lambda, \quad \forall n\geq N, \end{equation*} es decir: \begin{equation*}|c_n| < \frac{1}{\rho^n}, \quad \forall n\geq N. \end{equation*} De lo anterior se sigue que: \begin{equation*}|c_n(z-z_0)^n| = |c_n| |z-z_0|^n < \left(\frac{|z-z_0|}{\rho}\right)^n, \quad \forall n\geq N. \end{equation*} Dado que $|z-z_0| < \rho$, entonces la serie geométrica: \begin{equation*} \sum_{n=0}^\infty \left(\frac{|z-z_0|}{\rho}\right)^n, \end{equation*} es convergente. Por tanto, del criterio de comparación, proposición 27.4, se sigue que la serie: \begin{equation*} \sum_{n=0}^\infty c_n(z-z_0)^n, \end{equation*} es absolutamente convergente para todo $z\in\mathbb{C}$ tal que $|z-z_0|< R$.

    Supongamos que $0<r<R$. Sea $\rho = \dfrac{r+R}{2}>0$, entonces $r< \rho < R =\dfrac{1}{\lambda}$, por lo que $\lambda < \dfrac{1}{\rho}$. Entonces, para $\varepsilon = \dfrac{1}{\rho} – \lambda >0$ existe $N\in\mathbb{N}$ tal que:\begin{equation*}|c_n| < \frac{1}{\rho^n}, \quad \forall n\geq N. \end{equation*} Como $r < \rho$, tenemos que la serie geométrica es convergente:\begin{equation*} \sum_{n=0}^\infty \left(\frac{r}{\rho}\right)^n. \end{equation*} Si $|z-z_0| \leq r$, de lo anterior se sigue que:\begin{equation*}|c_n(z-z_0)^n| = |c_n| |z-z_0|^n \leq \left(\frac{r}{\rho}\right)^n, \quad \forall n\geq N, \end{equation*} por lo que, se sigue del criterio $M$ de Weierstrass, proposición 28.3, que la serie: \begin{equation*} \sum_{n=0}^\infty c_n(z-z_0)^n, \end{equation*} es absoluta y uniformemente convergente en $\overline{B}(z_0, r)$, para $0<r<R$.

    Supongamos ahora que $|z-z_0|> R$. Sea $r=\dfrac{|z-z_0|+ R}{2}>0$ tal que $R< r < |z-z_0|$, de donde $\dfrac{1}{r}<\dfrac{1}{R} = \lambda$. Entonces, para $\varepsilon=\lambda – \dfrac{1}{r} >0$ existe $N\in\mathbb{N}$ tal que:\begin{equation*}\frac{1}{r} = -\varepsilon + \lambda < \sqrt[n]{|c_n|}, \quad \forall n\geq N, \end{equation*} de donde: \begin{equation*} \left(\frac{|z-z_0|}{r}\right)^n < |c_n| |z-z_0|^n = |c_n (z-z_0)^n|, \quad \forall n\geq N. \end{equation*} Como $0 < r < |z-z_0|$, entonces la serie geométrica:\begin{equation*} \sum_{n=0}^\infty \left(\frac{|z-z_0|}{r}\right)^n, \end{equation*} es divergente. Por el criterio de comparación, proposición 27.4, concluimos que la serie de potencias diverge.

    Por último, consideremos a la serie de potencias: \begin{equation*}\sum_{n=1}^\infty \frac{z^n}{n}.\end{equation*} Es claro que dicha serie está centrada en $z_0 = 0$ y del ejemplo 29.2(b) tenemos que:\begin{equation*}c_n = \left\{ \begin{array}{lcc}\dfrac{1}{n}, & \text{si} & n \geq 1,\\ \\ 0, & \text{si} & n = 0.\\ \end{array} \right. \end{equation*} Dado que: \begin{equation*} \sup\left\{\sqrt[n]{|c_n|} : n\geq k\right\} = \left(\frac{1}{k}\right)^{1/k}, \quad \forall k \geq 1, \end{equation*} entonces:\begin{equation*} \lambda = \limsup\limits_{n\to\infty} \sqrt[n]{|c_n|} = \lim\limits_{k\to\infty} \left(\frac{1}{k}\right)^{1/k} = 1.\end{equation*} Notemos que, para $z=1$ tenemos que $|z-z_0| = 1 = R = \dfrac{1}{\lambda}$ y en ese caso tenemos a la serie armónica: \begin{equation*} \sum_{n=1}^\infty \frac{1}{n}, \end{equation*} la cual diverge.

    Mientras que, para $z=-1$ tenemos que $|z-z_0| = 1 = R = \dfrac{1}{\lambda}$ y la serie es convergente:\begin{equation*}\sum_{n=1}^\infty \frac{(-1)^n}{n}. \end{equation*} Por lo tanto, no podemos afirmar nada para el caso $|z-z_0|=R$.

$\blacksquare$

Considernado lo anterior, podemos dar de manera equivalente la siguiente:

Definición 29.5. (Radio de convergencia.)
Sea $\displaystyle \sum_{n=0}^\infty c_n\left(z-z_0\right)^n$ una serie de potencias y sea $\lambda = \limsup\limits_{n\to\infty} \sqrt[n]{|c_n|}$. Entonces definimos a $R \in[0,\infty]$ como el radio de convergencia de la serie de potencias, dado por:

  1. $R = \infty$ si $\lambda = 0$.
  2. $R = 0$ si $\lambda = \infty$.
  3. $R = 1/\lambda$ si $0< \lambda < \infty$.
Figura 108: Disco de convergencia $B(z_0, R)$, de una serie de potencias $\displaystyle\sum_{n=0}^\infty c_n\left(z-z_0\right)^{n}$.

Definición 29.6. (Dominio de convergencia.)
Sea $\displaystyle \sum_{n=0}^\infty c_n\left(z-z_0\right)^n$ una serie de potencias. El conjunto de valores de $z\in\mathbb{C}$ para los cuales la serie de potencias converge es llamado su dominio de convergencia.

Ejemplo 29.7.
Determinemos el radio de convergencia de las siguientes series de potencias y veamos dónde la convergencia es uniforme.
a) $\displaystyle \sum_{n=0}^\infty c_n z^n = 1 + 4z + 5^2 z^2 + 4^3 z^3 + 5^4 z^4 + 4^5 z^5 + \cdots$.
b) $\displaystyle \sum_{n=0}^\infty \dfrac{(z-1+i)^n}{(2-i)^n}$.
c) $\displaystyle \sum_{n=1}^\infty z^{n^2}$.

Solución.
a) Tenemos que:
\begin{equation*}
c_0 = 1, \quad c_n = \left\{ \begin{array}{lcc}
5^n, & \text{si} & n = 2k,\\
\\ 4^n, & \text{si} & n = 2k+1,\\
\end{array}
\right. \quad \text{con} \,\, k\in\mathbb{N}^+,
\end{equation*}

por lo que:
\begin{equation*}
\sup\{|c_n|^{1/n} : n\geq k\} = 5, \quad \forall k\geq 1.
\end{equation*}

Entonces:
\begin{equation*}
\lambda = \limsup_{n\to\infty} |c_n|^{1/n} = \lim_{k\to\infty} \sup\{|c_n|^{1/n} : n\geq k\} = 5, \quad \Longrightarrow \quad R = \frac{1}{\lambda} = \frac{1}{5}.
\end{equation*}

De la proposición 29.3 se sigue que la serie converge uniformemente en todo disco cerrado $\overline{B}(0,r)$, con $r < R$.

b) Tenemos que:
\begin{equation*}
z_0 = 1-i, \quad c_0 = 1 \quad \text{y} \quad c_n = \frac{1}{(2-i)^n}, \quad \forall n\in\mathbb{N}^+,
\end{equation*}

por lo que:
\begin{equation*}
\sup\{|c_n|^{1/n} : n\geq k\} = \left(\frac{1}{|2-i|^{k}}\right)^{1/k} = \frac{1}{|2-i|} = \frac{1}{\sqrt{5}}, \quad \forall k \geq 1.
\end{equation*}

Entonces:
\begin{equation*}
\lambda = \limsup_{n\to\infty} |c_n|^{1/n} = \lim_{k\to\infty} \sup\{|c_n|^{1/n} : n\geq k\} = \frac{1}{\sqrt{5}}, \quad \Longrightarrow \quad R = \frac{1}{\lambda} = \sqrt{5}.
\end{equation*}

De la proposición 29.3 se sigue que la serie converge uniformemente en todo disco cerrado $\overline{B}(1-i,r)$, con $r < \sqrt{5}$.

c) Tenemos que:
\begin{equation*}
\sum_{n=0}^\infty z^{n^2} = \sum_{k=0}^\infty c_k z^{k},
\end{equation*}

de donde:
\begin{equation*}
c_k = \left\{ \begin{array}{lc}
1, & \text{si existe} \,\, n\in\mathbb{N} \,\, \text{tal que} \,\, k = n^2,\\
\\ 0, & \text{en otro caso,}\\
\end{array}
\right.
\end{equation*}

es decir:
\begin{equation*}
c_0 = 1, \quad c_1 = 1, \quad c_2 =0, \quad c_3 = 0, \quad c_4 = 1, \quad \ldots .
\end{equation*}

Considerando lo anterior es claro que la serie tiene un número infinitos de coeficientes que son $0$. Sin embargo, notemos que:
\begin{equation*}
\sup\{|c_n|^{1/n} : n\geq k\} = |1|^{1/k} = 1, \quad \forall k \geq 1.
\end{equation*}

Entonces:
\begin{equation*}
\lambda = \limsup_{n\to\infty} |c_n|^{1/n} = \lim_{k\to\infty} \sup\{|c_n|^{1/n} : n\geq k\} = 1, \quad \Longrightarrow \quad R = \frac{1}{\lambda} = 1.
\end{equation*}

De la proposición 29.3 se sigue que la serie converge uniformemente en todo disco cerrado $\overline{B}(0,r)$, con $r < 1$.

Corolario 29.3. (Determinación del radio de convergencia de una serie de potencias.)
El radio de convergencia $R\in[0,\infty]$, de una serie de potencias $\displaystyle\sum_{n=0}^\infty c_n\left(z-z_0\right)^{n}$ puede determinarse por alguno de los siguientes métodos.

  1. Criterio de D’Alembert del radio de convergencia. Si $\lambda = \lim\limits_{n\to\infty} \dfrac{|c_{n+1}|}{|c_n|}$ existe o es infinito, entonces:\begin{equation*} R = \frac{1}{\lambda}.\end{equation*}
  2. Criterio de la raiz de Cauchy. Si $\lambda = \lim\limits_{n\to\infty} |c_n|^{1/n}$ existe o es infinito, entonces:\begin{equation*} R = \frac{1}{\lambda}. \end{equation*}

En ambos casos consideramos la definición natural de $R=0$ si $\lambda =\infty$ y $R=\infty$ si $\lambda =0$.

Demostración. Los dos casos son una consecuencia de la proposición 29.3, de los teoremas 29.1 y 29.3 y del corolario 29.1, por lo que los detalles se dejan como ejercicio al lector.

$\blacksquare$

Observación 29.8.
Es posible dar una formulación de los criterios de convergencia de D’Alembert y de la raíz, proposiciones 27.5 y 27.6 respectivamente, en términos del límite superior, es decir, considerando:
\begin{align*}
\lambda = \limsup\limits_{n\to\infty} \frac{|z_{n+1}|}{|z_{n}|},\\
\lambda = \limsup\limits_{n\to\infty} \sqrt[n]{|z_n|},
\end{align*} respectivamente, en cada caso. Esta formulación de dichos criterios es de gran utilidad cuando los límites $\lim\limits_{n\to\infty}\dfrac{|z_{n+1}|}{|z_{n}|}$, $\lim\limits_{n\to\infty}\sqrt[n]{|z_{n}|}$ no existen.

Ejemplo 29.8.
Veamos que la serie:
\begin{equation*}
\sum_{n=1}^\infty z_n, \quad \text{con} \,\,\, z_n = \frac{1}{2^n}\left[1+(-1)^n\right] + \frac{1}{3^n}\left[1-(-1)^n\right],
\end{equation*} converge.

Solución. Tenemos que:
\begin{equation*}
z_{2n} = \frac{2}{2^{2n}} \quad \text{y} \quad z_{2n+1} = \frac{2}{3^{2n+1}}.
\end{equation*}

Entonces, el límite $\lim\limits_{n\to\infty} \dfrac{|z_{n+1}|}{|z_{n}|} = \lim\limits_{n\to\infty} \dfrac{z_{n+1}}{z_{n}}$ no existe, lema 29.1, ya que las subsucesiones:
\begin{equation*}
\frac{z_{2n+2}}{z_{2n}} = \frac{z_{2n+2}}{z_{2n+1}} \frac{z_{2n+1}}{z_{2n}} \quad \text{y} \quad \frac{z_{2n+3}}{z_{2n+1}} = \frac{z_{2n+3}}{z_{2n+2}} \frac{z_{2n+2}}{z_{2n+1}},
\end{equation*}

tienen diferentes límites:
\begin{align*}
\lim_{n\to\infty} \dfrac{z_{2n+2}}{z_{2n}} = \lim_{n\to\infty} \dfrac{2(2^{-2(n+1)})}{2(2^{-2n})} = \dfrac{1}{4},\\
\lim_{n\to\infty} \frac{z_{2n+3}}{z_{2n+1}} = \lim_{n\to\infty} \frac{2(3^{-(2n+3)})}{2(3^{-(2n+1)})} = \frac{1}{9}.
\end{align*}

Sin embargo, notemos que:
\begin{equation*}
\limsup_{n\to \infty} \frac{|z_{n+1}|}{|z_{n}|} = \limsup_{n\to \infty} \frac{z_{n+1}}{z_{n}} = \frac{1}{4} < 1,
\end{equation*}

por lo que, de acuerdo con el criterio de D’Alembert, la serie converge.

Ejemplo 29.9.
Determinemos el radio de convergencia de las siguientes series de potencias.

a) $\displaystyle \sum_{n=1}^\infty \left(1+\dfrac{1}{n}\right)^{n^2} z^n$.
b) $\displaystyle \sum_{n=1}^\infty \dfrac{(n+1) z^n}{(n+2)(n+3)}$.
c) $\displaystyle \sum_{n=1}^\infty \left(a+ib\right)^{n} z^n$, con $a,b\in\mathbb{R}$ no ambos cero.
d) $\displaystyle \sum_{n=1}^\infty \left(\dfrac{n+2}{3n+1}\right)^{n} (z-4)^n$.

Solución. Para las cuatro series utilizaremos el corolario 29.3.
a) Tenemos que:
\begin{equation*}
\sum_{n=1}^\infty \left(1+\dfrac{1}{n}\right)^{n^2} z^n = \sum_{k=0}^\infty c_k z^{k},
\end{equation*}

de donde:
\begin{equation*}
c_k = \left\{ \begin{array}{lc}
\left(1+\dfrac{1}{n}\right)^{n^2}, & \text{si existe} \,\, n\in\mathbb{N} \,\, \text{tal que} \,\, k = n,\\
\\ 0, & \text{en otro caso,}\\
\end{array}
\right.
\end{equation*}

es decir:
\begin{equation*}
c_0 = 0 \quad \text{y} \quad c_n = \left(1+\dfrac{1}{n}\right)^{n^2}, \quad \forall n\geq 1.
\end{equation*}

Entonces:
\begin{equation*}
\lambda = \lim_{n\to\infty} |c_n|^{1/n} = \lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e, \quad \Longrightarrow \quad R = \frac{1}{\lambda} = \frac{1}{e}.
\end{equation*}

b) Tenemos que:
\begin{equation*}
c_n = \dfrac{n+1}{(n+2)(n+3)}, \quad \forall n\in\mathbb{N},
\end{equation*}

por lo que:
\begin{equation*}
c_{n+1} = \dfrac{n+2}{(n+3)(n+4)}.
\end{equation*}

Entonces:
\begin{align*}
\lambda = \lim_{n\to\infty} \frac{|c_{n+1}|}{|c_n|}
& = \lim_{n\to\infty} \frac{(n+2)^2(n+3)}{(n+1)(n+3)(n+4)}\\
& = \lim_{n\to\infty} \frac{n^2+4n+4}{n^2+5n+4}\\
& = 1,
\end{align*} de donde $R = 1/\lambda = 1$.

c) Tenemos que:
\begin{equation*}
c_n = \left(a+ib\right)^{n} \quad \forall n\in\mathbb{N},
\end{equation*} con $a,b\in\mathbb{R}$ no ambos cero, por lo que:
\begin{equation*}
c_{n+1} = \left(a+ib\right)^{n+1}.
\end{equation*}

Entonces:
\begin{equation*}
\lambda = \lim_{n\to\infty} \frac{|c_{n+1}|}{|c_n|} = \lim_{n\to\infty} \left| \frac{\left(a+ib\right)^{n+1}}{\left(a+ib\right)^{n}}\right| = \lim_{n\to\infty} |a+ib| = \sqrt{a^2 + b^2},
\end{equation*} de donde $R = 1/\lambda$.

d) Tenemos que:
\begin{equation*}
z_0 = 4, \quad c_0 = 1 \quad \text{y} \quad c_n = \left(\dfrac{n+2}{3n+1}\right)^{n} \quad \forall n\in\mathbb{N}^+.
\end{equation*}

Entonces:
\begin{equation*}
\lambda = \lim_{n\to\infty} \sqrt[n]{|c_n|} = \lim_{n\to\infty} \left(\left| \dfrac{n+2}{3n+1}\right|^n\right)^{1/n} = \lim_{n\to\infty} \dfrac{n+2}{3n+1} = \dfrac{1}{3},
\end{equation*} de donde $R = 1/\lambda = 3$.

Ejemplo 29.10.
Determinemos el dominio de convergencia de la siguiente serie de potencias e identifiquemos gráficamente a dicho conjunto en el plano complejo.
\begin{equation*}
\displaystyle\sum_{n=1}^\infty \frac{1\cdot3\cdot5 \cdot \ldots \cdot (2n-1)}{n!}\left(\dfrac{1-z}{z}\right)^{n}.
\end{equation*}

Solución. Sea $w = \dfrac{1-z}{z}$, entonces:
\begin{equation*}
\sum_{n=1}^\infty \frac{1\cdot3\cdot5 \cdot \ldots \cdot (2n-1)}{n!} w^{n} = \sum_{k=0}^\infty c_k w^k,
\end{equation*}

de donde:
\begin{equation*}
c_k = \left\{ \begin{array}{lc}
\dfrac{1\cdot3\cdot5 \cdot \ldots \cdot (2n-1)}{n!}, & \text{si existe} \,\, n\in\mathbb{N} \,\, \text{tal que} \,\, k = n,\\
\\ 0, & \text{en otro caso,}\\
\end{array}
\right.
\end{equation*}

es decir:
\begin{equation*}
c_0 = 0 \quad \text{y} \quad c_n = \dfrac{1\cdot3\cdot5 \cdot \ldots \cdot (2n-1)}{n!} \quad \forall n\geq 1.
\end{equation*}

Tenemos que:
\begin{equation*}
c_{n+1} = \dfrac{1\cdot3\cdot5 \cdot \ldots \cdot (2n-1)(2n+1)}{(n+1)!},
\end{equation*}

por lo que:
\begin{align*}
\lambda = \lim_{n\to\infty} \frac{|c_{n+1}|}{|c_n|} & = \lim_{n\to\infty} \left|\dfrac{\dfrac{1\cdot3\cdot5 \cdot \ldots \cdot (2n-1)(2n+1)}{(n+1)!}}{\dfrac{1\cdot3\cdot5 \cdot \ldots \cdot (2n-1)}{n!}}\right|\\
& = \lim_{n\to\infty} \left|\dfrac{(2n+1)n!}{(n+1)!}\right|\\
& = \lim_{n\to\infty} \dfrac{2n+1}{n+1}\\
& = 2,
\end{align*} de donde $R = 1/\lambda = 1/2$.

Entonces, el dominio de convergencia de la serie está dado por la condición $|w|<1/2$, es decir:
\begin{align*}
\left|\frac{1-z}{z}\right| < \frac{1}{2} \quad & \Longrightarrow \quad 2 |1-z|< |z|,\\
& \Longrightarrow \quad 4 |1-z|^2< |z|^2,\\
& \Longrightarrow \quad 4 (1-z)\overline{(1-z)}< z \overline{z},\\
& \Longrightarrow \quad 4 -4\overline{z} – 4z + 3z \overline{z}< 0,\\
& \Longrightarrow \quad z \overline{z} -\frac{4}{3}\overline{z} – \frac{4}{3}z + \frac{4}{3}< 0 \tag{29.7}.
\end{align*}

De acuerdo con los resultados de la entrada 6, sabemos que la ecuación general de una circunfernecia en el plano complejo $\mathbb{C}$ es:
\begin{equation*}
z \overline{z} +a \overline{z} + \overline{a} z + b = 0,
\end{equation*} cuyo centro es el punto $-a$ y $r = \sqrt{|a|^2-b}$ su radio.

De (29.7) tenemos:
\begin{equation*}
z \overline{z} + \left(-\frac{4}{3}\right)\overline{z} + \left(-\frac{4}{3}\right) z + \frac{4}{3} = 0,
\end{equation*}

de donde:
\begin{equation*}
-a = \frac{4}{3}, \quad b= \frac{4}{3} \quad \text{y} \quad r = \sqrt{|a|^2-b} = \sqrt{\frac{4}{9}} = \frac{2}{3}.
\end{equation*}

Por lo que, la expresión en (29.7) corresponde con el interior de la circunferencia $C\left(\dfrac{4}{3}, \dfrac{2}{3}\right)$, es decir, el disco abierto $B\left(\dfrac{4}{3}, \dfrac{2}{3}\right)$ es el dominio de convergencia de la serie de potencias, figura 109.

Figura 109: Dominio de convergencia de la serie de potencias del ejemplo 29.10.

Tarea moral

  1. Muestra que el radio de convergencia de la serie de potencias: \begin{equation*} \sum_{n=0}^\infty \frac{(-1)^n}{n} z^{n(n+1)},\end{equation*} es 1 y analiza la convergencia para $z=1$, $z=-1$ y $z=i$.

    Hint: Observa que el $(n+1)$-ésimo coeficiente de la serie no es $\dfrac{(-1)^n}{n}$. Procede como en el ejemplo 29.1.
  2. Determina el dominio de convergencia de las siguientes series de potencias y gráficalo.
    a) $\displaystyle \sum_{n=0}^\infty \left[\dfrac{(iz-1)}{3+4i}\right]^n$.
    b) $\displaystyle \sum_{n=0}^\infty \dfrac{(z+2)^{n-1}}{(n+1)^3 4^n}$.
  3. Muestra que el radio de convergencia de las siguientes series de potencias es infinito.
    a) $\displaystyle \sum_{n=0}^\infty \dfrac{z^n}{n!}$.
    b) $\displaystyle \sum_{n=0}^\infty \dfrac{(-1)^n z^{2n}}{(2n)!}$.
    c) $\displaystyle \sum_{n=0}^\infty \dfrac{(-1)^n z^{2n+1}}{(2n+1)!}$.
  4. Considera las tres series del ejemplo 29.2 y obtén su radio de convergencia, ¿en qué conjuntos la convergencia es uniforme?
  5. Prueba el corolario 29.3.
  6. Sean $\displaystyle \sum_{n=0}^\infty c_n (z-z_0)^n$ y $\displaystyle \sum_{n=0}^\infty d_n (z-z_0)^n$ dos series de potencias con radio de convergencia $R_1$ y $R_2$, respectivamente.
    a) ¿Cuál es el radio de convergencia de la serie $\displaystyle \sum_{n=0}^\infty (c_n+d_n)(z-z_0)^n$?
    b) ¿Cuál es el radio de convergencia de la serie $\displaystyle \sum_{n=0}^\infty (c_n \cdot d_n)(z-z_0)^n$?
  7. Obtén el radio de convergencia de las siguientes series de potencias:
    a) $\displaystyle \sum_{n=1}^\infty \dfrac{z^n}{n}$.
    b) $\displaystyle \sum_{n=0}^\infty \dfrac{z^{4n}}{4n+1}$.
    c) $\displaystyle \sum_{n=0}^\infty n^2\left(\dfrac{z^{2}+1}{1+i}\right)^n$.
    d) $\displaystyle \sum_{n=0}^\infty \left(\dfrac{2i}{x+i+1}\right)^n$.
    e) $\dfrac{1}{2} z + \dfrac{1 \cdot 3}{2\cdot5} z^2 + \dfrac{1 \cdot 3 \cdot 5}{2\cdot 5 \cdot 8} z^3 + \cdots$
    f) $\displaystyle \sum_{n=1}^\infty (\operatorname{ln}(n))^n z^n$.
  8. Si $\displaystyle \sum_{n=0}^\infty c_n z^n$ tiene radio de convergencia $R$, determina el radio de convergencia de las siguientes series de potencias:
    a) $\displaystyle \sum_{n=0}^\infty c_n z^{2n}$.
    b) $\displaystyle \sum_{n=0}^\infty c_n^2 z^{n}$.
    c) $\displaystyle \sum_{n=0}^\infty n^d c_n z^{n}$, para cualquier $d\in\mathbb{N}^+$.
    d) $\displaystyle \sum_{n=0}^\infty (-1)^n c_n z^{n}$.

Más adelante…

En esta entrada definimos de manera formal el concepto de serie de potencias y establecimos una serie de resultados relacionados con su convergencia. En particular, vimos que a través del concepto del radio de convergencia de una serie de potencias es posible establecer su dominio de convergencia, que geométricamente corresponde con discos abiertos, a los cuales comúnmente se les llama círculos de convergencia.

En la siguiente entrada estudiaremos algunas propiedades importantes de las series de potencias como la continuidad y analicidad de las mismas, propiedades que nos serán de utilidad en el estudio de las funciones complejas, pues como veremos, toda función compleja que es analítica en un dominio $D\subset\mathbb{C}$ puede tener un desarrollo en series de potencias en todo disco abierto completamente contenido en $D$.

Entradas relacionadas

Cálculo Diferencial e Integral III: Formas lineales y formas bilineales

Por Alejandro Antonio Estrada Franco

Introducción

Hasta ahora hemos cubierto a modo de repaso varios temas de álgebra lineal relacionados con sistemas de ecuaciones lineales, transformaciones lineales, sus matrices asociadas y más. En esta y las entradas que siguen recordaremos más herramientas de álgebra lineal que serán de utilidad para nuestro contenido de diferenciabilidad. Hablaremos de las formas lineales de $\mathbb{R}^n$, de sus formas bilineales y de sus formas cuadráticas.

Como es usual, este contenido cubre sólo por encima lo que se vería en un curso completo de álgebra lineal, en donde se ahonda en varias demostraciones, se dan más ejemplos y se tratan espacios vectoriales más generales. Para estos temas en específico, las siguientes entradas pueden ser un buen punto de partida:

Formas lineales

Las formas lineales son transformaciones lineales, pero son unas muy específicas: las que caen en $\mathbb{R}$.

Definición. Una transformación lineal $\bar{\phi} :\mathbb{R}^n\to \mathbb{R}$ se le llama forma lineal o funcional lineal.

Definición. Llamaremos al espacio vectorial $\mathcal{L}(\mathbb{R}^n,\mathbb{R})$ el espacio dual de $\mathbb{R}^n$ y lo denotamos por ${\mathbb{R}^n}^\ast$.

Hay una relación directa entre las bases de $\mathbb{R}^n$ y las de ${\mathbb{R}^n}^\ast$. Como los elementos de ${\mathbb{R}^n}^\ast$ son transformaciones lineales, basta decir qué les hacen a los elementos de una base. De aquí se motiva la siguiente definición.

Definición. Tomemos una base $\beta=\{ \bar{e}_{1},\dots ,\bar{e}_{n} \}$ para $\mathbb{R}^n$. Sean $\bar{\phi} _{1},\dots ,\bar{\phi} _{n}\in {\mathbb{R}^n}^\ast$ definidas como sigue: \[ \bar{\phi} _{i}(\bar{e}_{j})=\left\lbrace\begin{array}{c} 1\hspace{1cm}si\hspace{1cm}i=j \\ 0\hspace{1cm}si\hspace{1cm}i\neq j. \end{array}\right. \]

A $\bar{\phi} _{1},\dots ,\bar{\phi} _{n}$ le llamamos la base dual a $\beta$ y la denotamos por $\beta^\ast$.

El nombre queda justificado por el siguiente resultado.

Teorema. Se tiene que $\beta^\ast=\{\bar{\phi} _{1},\dots ,\bar{\phi} _{n}\}$ es una base para ${\mathbb{R}^n}^\ast$.

Demostración. Debemos mostrar que $\beta^\ast$ es generador e independiente. Veremos que es generador, y la independencia lineal quedará de tarea moral. Tomemos $\bar{\alpha} \in {\mathbb{R}^n}^\ast$. Supongamos que para cada $j$ se tiene $\bar{\alpha} (\bar{e}_{j})=r_{j}$. Afirmamos que $\bar{\alpha} = r_{1}\bar{\phi} _{1} +\dots +r_{n}\bar{\phi} _{n}$.

Para mostrar la igualdad anterior, que es una igualdad de formas lineales, veremos la igualdad vector a vector. Sea $\bar{v}\in \mathbb{R}^n$. Calcularemos $\bar{\alpha} (\bar{v})$. Para ello, expresamos a $\bar{v}$ como combinación de elementos de $\beta$: $$\bar{v}=\sum _{i=1}^{n}x_{i}\bar{e}_{i}.$$

Al aplicar $\alpha$ obtenemos:

\begin{align*}
\bar{\alpha} (\bar{v})&=\bar{\alpha} \left( \sum _{i=1}^{n}x_{i}\bar{e}_{i} \right)\\
&=\sum_{i=1}^{n}x_{i}\bar{\alpha} (\bar{e}_{i})\\
&=\sum_{i=1}^{n}x_{i}r_{i}\\
&=\sum_{i=1}^{n}x_{i}r_{i}\bar{\phi} _{i}(\bar{e}_{i})\\
&= \sum_{i=1}^{n}r_{i}\bar{\phi }_{i}(x_{i}\bar{e}_{i})\\
&=\sum_{i=1}^{n}r_{i}\bar{\phi} _{i}\left( \sum_{k=1}^{n}x_{k}\bar{e}_{k} \right) \quad \text{(agregando varios $0$)}\\
&=\left( r_{1}\bar{\phi} _{1}+\dots +r_{n}\bar{\phi} _{n}\right)\left( \sum_{k=1}^{n}x_{k}\bar{e}_{k}\right)\\
&=\left( r_{1}\bar{\phi} _{1}+\dots +r_{n}\bar{\phi} _{n}\right)(\bar{v})\\
\end{align*}

Así se da la igualdad $\bar{\alpha} = r_{1}\bar{\phi} _{1} +\dots +r_{n}\bar{\phi} _{n}$, por lo tanto $\beta^\ast$ es un conjunto generador ${\mathbb{R}^n}^\ast$

$\square$

De la demostración podemos obtener algo más. Supongamos que tomamos $\bar{v}\in \mathbb{R}^n$ y una base $\beta=\{\bar{e}_1,\ldots,\bar{e}_n\}$. Supongamos que $\bar{v}=\sum_{i=1}^{n}x_{i}\bar{e}_{i}$. A partir de aquí, podemos construir una forma lineal $\psi(\bar{v})$ que cumple $\psi(\bar{v})=\sum_{i=1}^n x_i \bar{\phi}_i$. Se puede verificar que la asignación $\psi: \mathbb{R}^n\to {\mathbb{R}^n}^\ast$ es un isomorfismo. De aquí, obtenemos que $\mathbb{R}^n\cong {\mathbb{R}^n}^\ast$.

Hasta ahora, de cualquier base de $\mathbb{R}^n$ se puede obtener una base dual, que es base de ${\mathbb{R}^n}^\ast$. ¿Podemos hacer lo inverso? El siguiente resultado dice que sí, si tenemos una base para ${\mathbb{R}^n}^\ast$, podemos construir una para $\mathbb{R}^n$ muy conveniente.

Teorema. Dada $\beta^\ast =\{\bar{\phi} _{1},\dots ,\bar{\phi} _{n}\}$ base para ${\mathbb{R}^n}^\ast$, existe $\beta =\{\bar{w}_{1},\dots , \bar{w}_{n}\}$ base para $\mathbb{R}^n$; tal que $\bar{\phi} _{i}(\bar{w}_{j})=\delta _{ij}$ donde: \[ \delta_{ij}= \left\lbrace\begin{array}{c} 1\hspace{1cm}si\hspace{1cm}i=j \\ 0\hspace{1cm}si\hspace{1cm}i\neq j, \end{array} \right . \]

es decir, tal que $\beta^\ast$ es justo la base dual de $\beta$.

Demostración. Para construir la base deseada, hacemos los siguientes pasos. Cada paso está esbozado. Los detalles quedan como tarea moral.

  1. Primero notemos que para cada $i=1,\dots ,n$ se tiene, por el teorema de la dimensión, que:
    \begin{align*}
    n&=\dim\mathbb{R}^n\\
    &=\dim(\ker(\bar{\phi}_{i}))+\dim(\text{Im}(\bar{\phi} _{i}))\\
    &=\dim(\ker(\bar{\phi}_{i}))+1,
    \end{align*}
    en donde usamos que $\bar{\phi}_i$ es forma lineal no cero (por estar en una base), de donde su imagen tiene dimensión $1$. De aquí $\dim(\ker(\bar{\phi} _{i}))=n-1$. Si tomamos una base de $\ker(\bar{\phi}_i)$, tiene $n-1$ elementos y por lo tanto podemos completarla a una base de $\mathbb{R}^n$ agregando un cierto vector $\bar{v}_i$.
  2. Afirmamos que $\bar{v}_1,\bar{v}_2,\ldots,\bar{v}_n$ elegidos de la manera anterior son un conjunto linealmente independiente. En efecto, al tener una combinación lineal $$\alpha_1\bar{v}_1+\ldots + \alpha_n\bar{v}_n=\bar{0},$$ podemos para cada $i=1,\ldots,n$ aplicar $\bar{\phi}_i$ a ambos lados. Del lado izquierdo se eliminarán todos términos excepto $\alpha_i\bar{\phi}_i(\bar{v}_i)$. Como $\bar{\phi}_i(\bar{v}_i)\neq 0$, entonces $\alpha_i=0$ para todo $i=1,\ldots,n$. Como $\bar{v}_1,\ldots,\bar{v}_n$ son linealmente independientes, y son $n$, entonces son una base de $\mathbb{R}^n$.
  3. Ahora, pensemos que $\bar{\phi}_i(\bar{v}_i)=r_i\neq 0$. Podemos dividir entre $r_i$ para obtener $\bar{\phi}_i\left(\frac{\bar{v}_i}{r_i}\right)=1$.
  4. De todo lo anterior, $\{\bar{v}_{1}/r_{1},\dots ,\bar{v}_{n}/r_{n} \}$ es la base buscada.

$\square$

A la base conformada por los vectores $\bar{w}_1,\ldots,\bar{w}_n$ le llamamos la base primal de $\beta^\ast$.

En estos dos teoremas hemos desarrollado técnicas para construir bases para un espacio y su dual que se coordinan haciendo simples las evaluaciones de las funciones de la base dual sobre las de la base del espacio original. Entre estas dos bases para el espacio y su dual tenemos un par de ecuaciones que las correlacionan muy convenientemente.

Teorema. Sean $\{ \bar{v}_{1},\dots \bar{v}_{n}\}$ una base de $\mathbb{R}^n$ y $\{ \bar{\phi} _{1},\dots \bar{\phi} _{n} \}$ la base dual de ${\mathbb{R}^n}^\ast$. Para todo $\bar{u}\in \mathbb{R}^n$ tenemos $$\bar{u}=\sum_{i=1}^n\bar{\phi} _{i}(\bar{u})\bar{v}_{i}, $$ y para todo $\Phi \in {\mathbb{R}^n}^\ast$ tenemos $$\Phi =\sum_{i=1}^n\Phi (\bar{v}_{i})\bar{\phi} _{i}.$$

Demostración. Sea $\bar{u}\in \mathbb{R}^n$, supongamos $\bar{u}=\sum_{i}x_{i}\bar{v}_{i}$. Para cada $j$ entre $1$ y $n$, tenemos
\begin{align*}
\bar{\phi} _{j}(\bar{u})&=\sum_{i=1}^n x_{i}\bar{\phi} _{j}(\bar{v}_{i})\\
&=x_{j}\bar{\phi} _{j}(\bar{v}_{j})\\
&=x_{j}.
\end{align*}

De esta manera $x_{j}=\bar{\phi} _{j}(\bar{u})$, por tanto obtenemos $\bar{u}=\sum_{i=1}^n\bar{\phi} _{i}(\bar{u})\bar{v}_{i}$.

De manera similar, sea $\Phi \in {\mathbb{R}^n}^\ast$, supongamos $\Phi =\sum_{i}y_{i}\bar{\phi} _{i}$. Para cada $j$ entre $1$ y $n$, tenemos
\begin{align*}
\Phi (\bar{v}_{j})&=\sum_{i=1}^n y_{i}\bar{\phi} _{i}(\bar{v}_{j})\\
&=y_{j}\bar{\phi} _{j}(\bar{v}_{j})\\
&=y_{j}.
\end{align*}

Así hemos obtenido $\Phi (\bar{v}_{j})=y_{j}$, con lo que concluimos $\Phi = \sum_{i=1}^n \Phi (\bar{v}_{i})\bar{\phi} _{i}$.

$\square$

Formas bilineales

Este desarrollo teórico nos permite abordar las formas bilineales tal y como las usaremos mas adelante.

Definición. Sea $\mathbb{R}^n$ un espacio vectorial sobre $\mathbb{R}$. Una forma bilineal es una función $b:\mathbb{R}^n\times \mathbb{R}^n\to \mathbb{R}$ que satisface:

  1. $b(r\bar{u}_{1}+\bar{u}_{2},\bar{v})=rb(\bar{u}_{1},\bar{v})+b(\bar{u}_{2},\bar{v})$ para todo real $r$ y vectores $\bar{u}_1,\bar{u}_2,\bar{v}$ en $\mathbb{R}^n$, a lo que llamamos linealidad en la primera entrada.
  2. $b(\bar{u},r\bar{v}_{1}+\bar{v}_{2})=rb(\bar{u},\bar{v}_{1})+b(\bar{u},\bar{v}_{2})$ para todo real $r$ y vectores $\bar{v}_1,\bar{v}_2,\bar{u}$ en $\mathbb{R}^n$ a lo que llamamos linealidad en la segunda entrada.

Ejemplo. Sea $A\in M_n\left( \mathbb{R}\right)$. A partir de la matriz $A$ puede construirse una forma bilineal $b_{A}$ sobre $\mathbb{R}^{n}$. Para los vectores $\bar{x}=(x_{1},\dots ,x_{n})$ y $\bar{y}=(y_{1},\dots ,y_{n})$, queda definida como sigue

$$b_{A}(\bar{x},\bar{y})=\bar{x}^{T}A\bar{y}.$$

Realizando las cuentas matriciales, tenemos:

\begin{align*}
b_{A}(\bar{x},\bar{y})&=\begin{pmatrix}x_{1}\dots x_{n}\end{pmatrix} \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix}\begin{pmatrix}y_{1} \\ \vdots \\ y_{n} \end{pmatrix}\\
&=\sum_{i,j=1}^{n}x_{i}a_{ij}y_{j}.
\end{align*}

Queda como tarea moral verificar que $f_{A}$ en efecto es bilineal, lo que se recomienda verificar en la expresión $\bar{x}^{T}A\bar{y}$.

Un ejemplo todavía más concreto sería tomar la matriz $A=\begin{pmatrix} 2 & 5 \\ 3 & 4 \end{pmatrix}$. Al realizar las cuentas matriciales obtenemos:

$$\begin{pmatrix} x_1 & x_2 \end{pmatrix}\begin{pmatrix} 2 & 5 \\ -3 & 4 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = 2x_1y_1 + 5x_1y_2 – 3x_2y_1 + 4 x_2y_2.$$

$\triangle$

El espacio de formas bilineales

Denotaremos por $B(\mathbb{R}^n)$ al conjunto de las formas bilineales en $\mathbb{R}^n$. Le damos a $B(\mathbb{R}^n)$ estructura de espacio vectorial con las operaciones siguientes: $$(b_1+b_2)(\bar{u},\bar{v})=b_1(\bar{u},\bar{v})+b_2(\bar{u},\bar{v}),$$ y $$(rb)(\bar{u},\bar{v})=rb(\bar{u},\bar{v}),$$ para todos los $b_1,b_2,b\in B(\mathbb{R}^n)$ y $r\in \mathbb{R}$.

Con la teoría que tenemos hasta ahora, podemos construir fácilmente una base para el espacio $B(\mathbb{R}^n)$.

Teorema. Sea $\{\bar{\phi} _{1},\dots ,\bar{\phi} _{n}\}$ una base del espacio dual ${\mathbb{R}^n}^\ast$. Entonces $$\mathbb{B}=\{b_{ij}|i,j=1,\dots ,n \}$$ es una base para $B(\mathbb{R}^n)$, donde $$b_{ij}(\bar{u},\bar{v})=\bar{\phi} _{i}(\bar{u})\bar{\phi} _{j}(\bar{v}).$$ De este modo $\dim B(\mathbb{R}^n)=n^{2}$.

Demostración. Para $\{ \bar{\phi} _{1},\dots ,\bar{\phi} _{n}\}$ podemos construir su base primal $\{\bar{v}_{1},\dots ,\bar{v}_{n}\}$,es decir, base de $\mathbb{R}^n$ tal que $\bar{\phi} _{i}(\bar{v}_{j})=\delta _{ij}$, para todo $i,j$.

Veamos que las formas bilineales propuestas en efecto son un conjunto generador. Sea $b\in B(\mathbb{R}^n)$. Para $\bar{u},\bar{v}$ arbitrarios en $\mathbb{R}^n$, calculemos $b(\bar{u},\bar{v})$. Para ello recordemos que $$\bar{u}=\sum_{i=1}^n\bar{\phi}_{i}(\bar{u})\bar{v}_{i}$$ y $$\bar{v}=\sum_{j=1}^n\bar{\phi} _{j}(\bar{v})v_{ij}.$$ Usando esto:

\begin{align*}
b(\bar{u},\bar{v})&=b\left( \sum_{i=1}^n\phi _{i}(\bar{u})\bar{v}_{i}, \sum_{j=1}^n\bar{\phi} _{j}(\bar{v})\bar{v}_{j} \right)\\
&=\sum_{i=1}^n\bar{\phi} _{i}(\bar{u})b\left( \bar{v}_{i}, \sum_{j=1}^n\bar{\phi} _{j}(\bar{v})\bar{v}_{j} \right)\\
&=\sum_{i=1}^n\bar{\phi} _{i}(\bar{u})\sum_{j=1}^n\bar{\phi} _{j}(\bar{v})b(\bar{v}_{i}, \bar{v}_{j})\\
&=\sum_{i=1}^n\sum_{j=1}^n\bar{\phi} _{i}(\bar{u})\bar{\phi} _{j}(\bar{v})b(\bar{v}_{i}, \bar{v}_{j})\\
&=\sum_{i=1}^n\sum_{j=1}^n b_{ij}(\bar{u},\bar{v})b(\bar{v}_{i},\bar{u}_{j}).
\end{align*}

Así vemos que $b$ es combinación lineal del conjunto $\mathbb{B}$. Concluimos que $\mathbb{B}$ es un conjunto generador de $B(\mathbb{R}^n)$. Para calcular la dimensión de $B(\mathbb{R}^n)$, falta todavía ver que $\mathbb{B}$ es linealmente independiente, lo cual queda como tarea moral (en la lista de ejercicios hay una sugerencia). Tras probar que $\mathbb{B}$ es linealmente independiente, se tiene que $\dim B(\mathbb{R}^n)=n^{2}$.

$\square$

Forma matricial de formas bilineales

En el ejemplo anterior vimos cómo a partir de una matriz $A$ podemos construir una forma bilineal $(\bar{x},\bar{y})\to \bar{x}^T A \bar{y}$ de $\mathbb{R}^n$. En realidad así se pueden obtener todas las formas bilineales.

Definición. Consideremos una forma bilineal $b:\mathbb{R}^n\times \mathbb{R}^n \to \mathbb{R}$. Tomemos una base $\beta=\{\bar{u}_1,\ldots ,\bar{u}_n\}$. Tomemos la matriz $\text{Mat}_\beta(b)$ en $M_n(\mathbb{R})$ cuya entrada $(i,j)$ es $f(\bar{u}_{i},\bar{v}_{j})$. Llamaremos a esta matriz la representación matricial de $f$ relativa a la base $\beta$.

La matriz $A:=\text{Mat}_\beta(b)$ representa a $f$ en el siguiente sentido. Se tiene que, para cualesquiera $\bar{u},\bar{v}$ en $\mathbb{R}^n$ se cumple que si los vectores de coordenadas de $\bar{u}$ y $\bar{v}$ en la base $\beta$ son $X=(x_1,\ldots,x_n)$ y $Y=(y_1,\ldots,y_n)$, entonces:

\begin{align*}
b(\bar{u},\bar{v})&=\sum_{i=1}^n\sum_{j=1}^n x_{i}y_{j}b(\bar{u}_{i},\bar{u}_{j})\\
&=\begin{pmatrix} x_{1} & \dots & x_{n}\end{pmatrix}A\begin{pmatrix}y_{1} \\ \vdots \\ y_{n} \end{pmatrix}\\
&=X^{T}A Y.
\end{align*}

Ejemplo. Tomemos la forma bilineal $b$ de $\mathbb{R}^2$ dada por $$b((x_1,x_2),(y_1,y_2))=5x_1y_2+3x_2y_1$$ (verifica que es forma bilineal). Tomemos la base $(1,1)$ y $(1,-1)$ de $\mathbb{R}^2$. Para encontrar la representación matricial de $b$ en esta base, debemos hacer los siguientes cálculos:

\begin{align*}
b((1,1),(1,1))&=8\\
b((1,1),(1,-1))&=-2\\
b((1,-1),(1,1))&=2\\
b((1,-1)(1,-1))&=-8\\
\end{align*}

De esta manera, la representación matricial es $$\begin{pmatrix} 8 & -2 \\ 2 & -8 \end{pmatrix}.$$

$\triangle$

Matrices congruentes y rango

Recordemos dos definiciones más.

Definición. El rango de una matriz es el número máximo de columnas (tratadas como vectores columna) linealmente independientes. La notación para una matriz $A$ será $\rank(A)$.

Definición. Sean $A$ y $B$ matrices en $M_n(\mathbb{R})$. Se dice que $B$ es congruente a $A$ si existe una matriz invertible $P$ tal que $B=P^{t}AP$.

Es sencillo mostrar que esta relación «es congruente a» es una relación de equivalencia, lo cual queda como tarea moral revisar.

Por resultados de rango de matrices, se cumple que el rango de una matriz no cambia si la multiplicamos por una matriz invertible. Si $A$ y $B$ son congruentes mediante la matriz $P$, tenemos que $B=P^t A P$. Como $P$ es invertible, $P^t$ también. Así, $B$ tiene el mismo rango que $A$.

Al igual que con las transformaciones lineales, la representación matricial de las formas bilineales depende de la base del espacio dominio que se considere. Pero tenemos una relación importante entre distintas representaciones matriciales de formas bilineales.

Teorema. Cualesquiera dos representaciones matriciales de una misma forma bilineal son congruentes.

Demostración. Consideremos $b:\mathbb{R}^n\times \mathbb{R}^n\to \mathbb{R}$ una forma bilineal. Tomemos $\beta=\{\bar{v}_{1},\dots ,\bar{v}_{n}\}$ y $\beta’=\{\bar{u}_{1},\dots ,\bar{u}_{n}\}$ dos bases para $\mathbb{R}^n$. Supongamos que para cada $i$ tenemos $$\bar{v}_{i}=\sum_{k=1}^{n}c_{ik}\bar{u}_{k}.$$

Así:
\begin{align*}
b(\bar{v}_{i},\bar{v}_{j})&=b\left( \sum_{k=1}^{n}c_{ik}\bar{u}_{k},\sum_{t=1}^{n}c_{jt}\bar{u}_{t} \right)\\
&=\sum_{k=1}^n\sum_{t=1}^n c_{ik}c_{jt}b(\bar{u}_{k},\bar{u}_{t}).
\end{align*}

Definamos $a’_{kt}=b(\bar{u}_{k},\bar{u}_{t})$, y tomemos $A’$ como la matriz en $M_n(\mathbb{R})$ cuya entrada $(k,t)$ es $a’_{kt}$. Tenemos entonces:

\[b(\bar{v}_{i},\bar{v}_{j})=\begin{pmatrix}c_{i1} & \dots & c_{in} \end{pmatrix}A’\begin{pmatrix}c_{j1} \\ \vdots \\ c_{jn} \end{pmatrix}. \]

Definamos a la matriz $C$ en $M_n(\mathbb{R})$ a aquella con entradas $(k,t)$ iguales a $c_{kt}$. Al variar sobre los posibles valores de $(i,j)$, la igualdad anterior nos dice que la entrada $(i,j)$ de la forma matricial $A$ de $b$ en la base $\beta$ es igual a la entrada $(i,j)$ de la matriz $C^tA’C$, en donde notamos que $A’$ es la forma matricial de $b$ en la base $\beta’$. Esto nos dice que $A=C^{t}A’C$. Así $A$ y $A’$ son congruentes.

$\square$

Con esto, podemos establecer la siguiente definición sin ambigüedades.

Definición. El rango de una forma bilineal $b$ en $\mathbb{R}^n$, escrito $\rank(b)$ se define como el rango de cualquiera de sus representaciones matriciales. Además decimos que $b$ es degenerada o no degenerada según sea $\rank(b)<\dim\mathbb{R}^n$ o $\rank(b)=\dim\mathbb{R}^n$, respectivamente.

Más adelante…

Esta entrada repasa los conceptos de formas lineales y bilineales. La siguiente entrada será nuestra última entrada de repaso de álgebra lineal. Lo que haremos es recordar cómo a partir de las formas bilineales podemos definir a las formas cuadráticas. Las formas cuadráticas también nos ayudarán a establecer ciertas propiedades de funciones al combinarlas con la noción de diferenciabilidad.

En esta entrada hablamos del rango de una matriz. Más adelante retomaremos este concepto, y lo usaremos cuando enunciemos el teorema del rango, un resultado crucial en diferenciabilidad.

Tarea moral

  1. Realiza los siguientes dos problemas:
    • Encuentra la base dual de la base $\{(1,2,3),(3,2,1),(1,-1,0)\}$ de $\mathbb{R}^3$ explícitamente.
    • Encuentra una base de $\mathbb{R}^3$ cuya base dual sean las formas lineales $l_1(x,y,z)=x$, $l_2(x,y,z)=3x-2$, $l_3(x,y,z)=x+y-z$.
  2. Completa los detalles en cada paso del teorema que nos dice cómo obtener una base primar para una base dual.
  3. En el teorema de bases para el espacio de formas bilineales, verifica que el conjunto de formas lineales propuestas es linealmente independiente. Sugerencia. Toma una combinación lineal igual a cero; luego evalúa en los vectores de la base $\{\bar{v}_{1},\dots ,\bar{v}_{n}\}$. Recuerda la definición de $b_{ij}$ y el efecto de evaluar $\bar{\phi} _{j}$ en $\bar{v}_{i}$.
  4. Revisa este enlace correspondiente al curso de Álgebra Lineal I de este blog para profundizar en el tema del rango de una transformación lineal y cómo se relaciona con el rango de una matriz.
  5. Demuestra que la relación «es congruente a» es una relación de equivalencia en $M_n(\mathbb{R})$.

Entradas relacionadas

Nota 24. El triángulo de Pascal y el binomio de Newton.

Por Julio César Soria Ramírez

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

En esta nota usaremos el concepto de combinaciones visto en la nota anterior para construir el famoso triángulo de Pascal, y probar cómo elevar un binomio a la $n$-ésima potencia, mediante la conocida fórmula del binomio de Newton. Empecemos la nota con un resultado que será la clave para ambos resultados.

Teorema

Sean $n,m\in \mathbb N,m+1\leq n$. Tenemos que:

$\binom{n}{m}+ \binom{n}{m+1}= \binom{n+1}{m+1} .$

Esta fórmula se conoce como la formula del triángulo de Pascal.

Demostración

Sean $n,m\in \mathbb N,m+1\leq n$ y $A=\set{a_1,\dotsc,a_{n+1}}$, un conjunto con $n+1$ elementos. Sabemos que:

$\binom{n+1}{m+1}=\#\set{C\subseteq A\mid \#C=m+1}.$

Pero si $C$ es un subconjunto de $A$ con $m+1$ elementos hay dos opciones, que $a_{n+1}\in C$ o que $a_{n+1}\notin C$, así:

$ \set{C\subseteq A\mid \#C=m+1}= $

$= \set{C\subseteq A\mid \#C=m+1, a_{n+1}\in C }\cup \set{C\subseteq A\mid \#C=m+1, a_{n+1}\notin C }.$

Y como la unión es disjunta :

$\# \set{C\subseteq A\mid \#C=m+1}=$

$= \# \set{C\subseteq A\mid \#C=m+1, a_{n+1}\in C }+ \# \set{C\subseteq A\mid \#C=m+1, a_{n+1}\notin C }$.

Pero todo subconjunto de $A$ con $m+1$ elementos tal que $a_{n+1}\in C$, es de la forma $B\cup \set{a_{n+1}}$, donde $B$ es un subconjunto de $\set{a_1,\dotsc,a_n}$ con $m$ elementos, por lo tanto:

$ \# \set{C\subseteq A\mid \#C=m+1, a_{n+1}\in C }=\binom{n}{m}.$

Por otro lado, todo subconjunto de $A$ con $m+1$ elementos tal que $a_{n+1}\notin C$ será un subconjunto de $\set{a_1,\dotsc,a_n}$ con $m+1$ elementos, así:

$ \# \set{C\subseteq A\mid \#C=m+1, a_{n+1}\notin C }=\binom{n}{m+1}.$

Concluimos que:

$\binom{n+1}{m+1}=\#\set{C\subseteq A\mid \#C=m+1}$

$= \# \set{C\subseteq A\mid \#C=m+1, a_{n+1}\in C } + \# \set{C\subseteq A\mid \#C=m+1, a_{n+1}\notin C } $

$= \binom{n}{m} + \binom{n}{m+1} .$

Y por lo tanto:

$ \binom{n+1}{m+1} = \binom{n}{m} + \binom{n}{m+1} $

que es lo que queríamos probar.

$\square$

El triángulo de Pascal

El triángulo de Tartaglia-Pascal fue estudiado por Niccolò Fontana, conocido como Tartaglia (1501-1557), y popularizado por Blaise Pascal (1623-1662), aunque ya se conocía desde siglos atrás en China y Persia. En este triángulo cada fila empieza y termina en 1 y los elementos intermedios son la suma de los que están arriba a la izquierda y arriba a la derecha. Si n es el número de la fila, empezando por 0 para el 1 del vértice, y m es la posición dentro de la fila, éste coincide con $\binom{n}{m}$.

Observa en los siguientes videos cómo se usa el teorema que acabamos de mostrar $ \binom{n+1}{m+1} = \binom{n}{m} + \binom{n}{m+1} $, para construir el triángulo de Pascal.

Revisa el siguiente enlace donde hay una construcción en geogebra del triángulo de Pascal.

https://www.geogebra.org/m/usruvfhg

Ve el siguiente video para conocer más sobre está maravillosa sucesión milenaria.

El binomio de Newton

Sean $a,b\in \mathbb R$, $n\in \mathbb N$, entonces se cumple que:

$(a+b)^n=\binom{n}{0}\, a^n\; b^0 + \binom{n}{1} a^{n-1} b^{1}+\dotsc+ \binom{n}{n-1} a^{1}b^{n-1}+\binom{n}{n} a^{0} b^{n} $ .

Demostración

La demostración se hará por inducción sobre $n$. Sean $a,b\in \mathbb R$, $n\in \mathbb N$.

Base de inducción

Si $n=0$ se cumple la fórmula:

$(a+b)^0=1=\binom{0}{0} a^0 b^0.$

Hipótesis de inducción

Supongamos que se vale para $n$.

$(a+b)^n=\binom{n}{0} a^n b^0 + \binom{n}{1} a^{n-1} b^{1}+\dotsc+ \binom{n}{n-1} a^{1} b^{n-1}+\binom{n}{n} a^{0} b^{n} $ .

Vamos a demostrar que se vale para $n+1$

Tenemos que:

$(a+b)^{n+1}=(a+b) (a+b)^{n}$, y por la hipótesis de inducción tenemos que

$(a+b)^{n+1}=(a+b)(a+b)^{n}=(a+b)\bigg[ \binom{n}{0} a^n b^0 + \binom{n}{1} a^{n-1} b^{1}+\dotsc+ \binom{n}{n-1} a^{1} b^{n-1}+\binom{n}{n} a^{0}b^{n}\bigg].$

Desarrollando tenemos que:

$(a+b)^{n+1}=a\bigg[\binom{n}{0}a^n b^0 + \binom{n}{1}a^{n-1}b^{1}+\dotsc+ \binom{n}{n-1} a^{1} b^{n-1}+\binom{n}{n} a^{0} b^{n} \bigg ]$ $+$

$b \bigg[\binom{n}{0} a^n b^0 + \binom{n}{1} a^{n-1} b^{1}+\dotsc+ \binom{n}{n-1} a^{1}b^{n-1}+\binom{n}{n} a^{0} b^{n} \bigg ]$

Multiplicando todos los términos tenemos que:

$(a+b)^{n+1}=$$\binom{n}{0} a^{n+1}b^0+$$\binom{n}{1} a^{n} b^{1}+$$\dotsc+$$\binom{n}{n} a^{1}b^{n}+$
$+$$\binom{n}{0}a^{n} b^{1}+$$\dotsc+$$\binom{n}{n-1} a^{1} b^{n}+$$\binom{n}{n}a^0b^{n+1}$

Asociando los términos semejantes, tenemos que sus coeficientes son de la forma $\binom{n}{k+1}$ y $\binom{n}{k}$, y en virtud del teorema probado al inicio de esta nota tenemos que $\binom{n}{k+1}+ \binom{n}{k}= \binom{n+1}{k+1} $, y por lo tanto:

$(a+b)^{n+1}=\binom{n}{0} a^{n+1} + \binom{n+1}{1} a^{n} b^{1}+\dotsc+ \binom{n+1}{n} a^{1} b^{n}+\binom{n}{n} b^{n+1} $ .

Pero, dado que $\binom{n}{0}=1=\binom{n+1}{0}$ y que $\binom{n}{n}=1=\binom{n+1}{n+1} $ podemos reescribir lo anterior como

$(a+b)^{n+1}=\binom{n+1}{0} a^{n+1} + \binom{n+1}{1} a^{n} b^{1}+\dotsc+ \binom{n+1}{n} a^{1} b^{n}+\binom{n+1}{n+1} b^{n+1} $

y por lo tanto la fórmula también se cumple para $n+1$. Concluimos por el quinto axioma de Peano que se cumple para todo $n\in \mathbb N$.

Tarea Moral

Más adelante

Con esta nota hemos terminado la unidad 2. En la siguiente unidad veremos el importante concepto de espacio vectorial.

Enlaces relacionados

Página principal del curso.

Nota anterior. Nota 23. Combinaciones.

Nota siguiente. Nota 25. Espacios vectoriales.

Nota 23. Combinaciones.

Por Julio César Soria Ramírez

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

En la presente nota veremos el concepto de combinaciones, que considera todos los subconjuntos de un tamaño dado de un conjunto finito, esta idea es ampliamente usada en matemáticas, particularmente en probabilidad, y relacionada también íntimamente en cómo elevar un binomio a un exponente natural.

Demos formalmente la definición de combinaciones.

Definición

Sean $n,m\in \mathbb N^+$ con $m\leq n$, $A$ un conjunto con $n$ elementos. Las combinaciones de los elementos de $A$ tomados de $m$ en $m$ son los subconjuntos de $A$ de $m$ elementos. Denotamos por $\binom{n}{m}$ al número de combinaciones de un conjunto de $n$ elementos tomados de $m$ en $m$.

Ejemplo

Considera el conjunto $A=\set{a,b,c,d}$, con $a$, $b$, $c$ y $d$ elementos distintos. Obtengamos todas las combinaciones de $A$.

Sólo hay una combinación de los elementos de $A$ tomados de $0$ en $0$, el conjunto vacío, y sólo una combinación de los elementos de $A$ tomados de $4$ en $4$, el conjunto $A$, entonces

$\binom{4}{0}= \binom{4}{4}=1. $

Las combinaciones de los elementos de $A$ tomados de $1$ en $1$ son: $\set{a}$, $\set{b}$, $\set{c}$, $\set{d}$.

Las combinaciones de los elementos de $A$ tomados de $2$ en $2$ son $\set{a,b}$, $\set{a,c}$, $\set{a,d}$, $\set{b,c}$, $\set{b,d}$, $\set{c,d}$. Así

$\binom{4}{2}=6.$

Las combinaciones de los elementos de $A$ tomados de $3$ en $3$ son $\set{a,b,c}$, $\set{a,b,d}$, $\set{a,c,d}$, $\set{b,c,d}$, por lo que

$\binom{4}{3}=4.$

Observación 1

$\binom{n}{0}= \binom{n}{n}=1.$

Observación 2

$\binom{n}{1}= \binom{n}{n-1}=n.$

Considera que para obtener todos los subconjuntos de $n-1$ elementos de un conjunto $A$ con $n$ elementos, debemos tomar todos los elementos de $A$ salvo uno, y como $A$ tiene $n$ elementos entonces eso se puede hacer de $n$ formas distintas, una por cada elemento de $A$ que dejemos fuera del subconjunto. Por lo tanto existen $n$ subconjuntos de $A$ de $n-1$ elementos.

Teorema

Sean $n,m\in \mathbb N^+$, $m\leq n$, entonces $\binom{n}{m}P_m=O_{m}^{n}$.

Demostración

Sea $\mathscr O$ el conjunto de ordenaciones de $A$ tomados de $m$ en $m$, $\mathscr C$ el conjunto de las combinaciones de los elementos de $A$ tomados de $m$ en $m$.

Definimos $\varphi: \mathscr O\to \mathscr C $ como:

$\varphi(f)=\varphi\bigg(\begin{pmatrix}1 & \dotsi & m\\ f(1) & \dotsi & f(m)\end{pmatrix}\bigg)=\set{f(1),\dotsc,f(m)}$.

Veamos que $\varphi$ es suprayectiva. Si $c\in \mathscr C$, entonces $c$ es un subconjunto de $A$ con $m$ elementos, es decir $c=\set{b_1,\dotsc,b_m}$, con $ b_1,\dotsc,b_m\in A$ distintos. Así:

$f=\begin{pmatrix}1 & \dotsi & m\\ b_1 & \dotsi & b_m\end{pmatrix}\in \mathscr O$.

y entonces:

$\varphi(f)=\varphi\bigg(\begin{pmatrix}1 & \dotsi & m\\ b_1 & \dotsi & b_m\end{pmatrix}\bigg)=\set{b_1,\dotsc,b_m}$.

Y por lo tanto $\varphi$ es suprayectiva.

Sean $C_1,\dotsc,C_k$ los distintos subconjuntos de $A$ con $m$ elementos, donde $k=\binom{n}{m}$. Para cada $i\in\set{1,\dotsc,k}$ consideremos:

$O_i=\set{f\in \mathscr O\mid \varphi(f)=C_i}$

$\mathscr O$ es la unión disjunta de $O_1,\dotsc, O_k$ y entonces, por ser disjuntos y por el principio de la suma tenemos que:

$\#\mathscr O=\#(O_1\cup\dotsc,\cup O_k)=\#O_1+\dotsc+\#O_k.$

Pero si $f=\begin{pmatrix}1 & \dotsi & m\\ f(1) & \dotsi & f(m)\end{pmatrix}\in \mathscr O$, es tal que $\varphi(f)=C_1$, entonces las funciones de $O_1$ se obtendrán colocando en el segundo renglón del arreglo que describe la función, las distintas permutaciones de $\set{f(1),\dotsc,f(m)}$ que son $P_m$, y así:

$\#O_1=P_m.$

Y análogamente $\#O_i=P_m\,\,\, \,\,\, \forall i\in\set{1,\dotsc,k}.$

Por lo tanto:

$\#\mathscr O=\#O_1+\dotsc+\#O_k$, es decir la suma de $P_m$ $k$ veces, en consecuencia:

$\#\mathscr O= k P_m$,

y como $k=\binom{n}{m}$, entonces:

$\#\mathscr O= \binom{n}{m} P_m.$

Observa que $O_{n}^{m}=\#\set{f:\set{1,\dotsc, m}\to \set{a_1,\dotsc ,a_n}\mid \text{$f$ es inyectiva}}=\#\mathscr O.$

Por lo tanto $\binom{n}{m}P_m=O_{m}^{n}$ que es justamente lo que queríamos probar.

$\square$

Corolario

Sean $n,m\in \mathbb N^+$, $m\leq n$, entonces $\binom{n}{m}=\frac{ n! }{m!(n-m)!}$.

Demostración

Por el teorema anterior por lo que vimos en las entradas previas tenemos que:

$\binom{n}{m}=\frac{ O_{n}^{m} }{P_m}=\frac{n(n-1)\dotsc(n-m+1)}{m!}$.

Multiplicando arriba y abajo por $(n-m)!$ tenemos que:

$= \frac{n(n-1)\dotsc(n-m+1)(n-m)!}{m!(n-m)!}$

$= \frac{n(n-1)\dotsc(n-m+1)(n-m)\dotsc2\cdot1}{m!(n-m)!} $

$=\frac{n!}{m!(n-m)!}.$

$\square$

Tarea Moral

1. ¿Cuántas diagonales se pueden trazar en un polígono regular de $n$ lados?

2. Un club de Voleyball tiene $12$ jugadoras, una de ellas es la capitana María. ¿Cuántos equipos diferentes de $6$ jugadoras se pueden formar, sabiendo que en todos ellos siempre estará la capitana María.

3. Encuentra a qué es igual la expresion \[\sum_{k=0}\binom{n}{k}\] e interpreta tu respuesta en términos de subconjuntos.

4. Revisa el siguiente video.

Mas adelante

En la siguiente nota usaremos estos resultados para obtener el triángulo de Pascal, y probar la fórmula del binomio de Newton.

Enlaces relacionados.

Página principal del curso.

Nota anterior. Nota 22. Conteo. Ordenaciones.

Nota siguiente. Nota 24. El triángulo de Pascal y el binomio de Newton.

Nota 22. Conteo. Ordenaciones.

Por Julio César Soria Ramírez

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

En esta nota veremos como cuantificar el número de ordenaciones de $n$ objetos cuando son tomadas de $m$ en $m$ de ellos, para ello obtendremos el cardinal del número de funciones inyectivas del conjunto de los primeros $m$ naturales, en el conjunto de $n$ objetos.

Definición

Sean $n,m\in \mathbb N$. Dado un conjunto $A=\set{a_1,\dotsc ,a_n}$ con $n$ elementos, las ordenaciones de los elementos de $A$ tomados de $m$ en $m$ son las funciones inyectivas de $\set{1,\dotsc, m}$ en $A$. Al número de ordenaciones de los elementos de un conjunto con $n$ elementos, tomados de $m$ en $m$, lo denotaremos por $O_{n}^{m}$.

$O_{n}^{m}=\#\set{f\mid f:\set{1,\dotsc, m}\to A=\set{a_1,\dotsc ,a_n}, con\\\ f \\\ inyectiva}$

Observa que si $m>n$ entonces $O_{n}^{m}$ es cero.

Ejemplo

¿Cuántas banderas tricolores se pueden formar con rojo, naranja, verde, azul y morado?

Consideremos la bandera tricolor rojo, azul, naranja.

En el lugar $1$ asignamos el rojo, en el $2$ el azul y en el $3$ el naranja. Podemos verla como una función de $\set{1,2,3}$ en $A$, con $A$ el conjunto formado por los colores rojo, naranja, verde, azul y morado, es decir $A=\{rojo, naranja, verde, azul,morado\}$. En este caso la función sería:

$f: \set{1,2,3} \to A$ con $f(1)=rojo$, $f(2)=azul$, $f(3)=naranja.$

Veamos primero cuántas banderas tricolor hay que terminen en naranja.

Para ello debemos considerar todas las posibles maneras de iniciar una bandera que termine en naranja, lo cual corresponde a todas las formas de crear una bandera bicolor con los colores restantes. Las banderas bicolores formadas con rojo, verde, azul o morado son:

Hay 12 banderas bicolor con estos $4$ colores.

Fíjate que entonces hay $12$ banderas tricolor que terminan en naranja. De manera similar hay 12 que terminan rojo, 12 en verde, 12 en azul y 12 en morado, doce por cada color. Éstas son el total de las ordenaciones de 4 elementos tomadas de 2 en 2, $O_{4}^{2}$, el número de banderas tricolor es entonces:

$5\cdot 12=5\cdot O_{4}^{2}= O_{5}^{3}=60.$

Observa que $ O_{5}^{3} =5\cdot O_{4}^{2}$, probaremos que esto es válido en general y que $ O_{n+1}^{m+1} =(n+1)\cdot O_{n}^{m}$.

Lema

Sean $n,m\in \mathbb N^+$, $n\geq m$, entonces $O_{n+1}^{m+1}=(n+1)\cdot O_{n}^{m} $.

Demostración

Sean $n,m\in \mathbb N^+$, $n\geq m$ y $A=\set{a_1\dotsc,a_n,a_{n+1}}$ con $n+1$ elementos.

$O_{n+1}^{m+1}=\#\set{f:\set{1,\dotsc, m,m+1}\to A=\set{a_1,\dotsc ,a_n,a_{n+1}}\mid f \\\ es\\\ inyectiva}$.

Para cada $i\in \set{1,\dotsc,n+1}$ consideremos el siguiente conjunto:

$B_{i}=\set{ f:\set{1,\dotsc, m,m+1}\to A=\set{a_1,\dotsc ,a_n,a_{n+1}} \mid f \\\ es \\\ inyectiva\\\ y \\\ f(m+1)=a_i }$.

Estamos considerando sólo aquellas funciones que mandan al último elemento del dominio, $m+1$, a $a_i\in A$.

Cada una de estas funciones está determinada por su restricción a $\set{1,\dotsc, m}$, que es una función inyectiva de $\set{1,\dotsc, m}$ en $A$, y como en la imagen no aparecerá el elemento $a_i$, se puede considerar como una función inyectiva de $\set{1,\dotsc, m}$ en $A\setminus \set{a_i}$ (conjunto que tiene $n$ elementos). Entonces por la notación establecida para el número de ordenaciones:

$\#B_i=O_{n}^{m}$

Pero $ \set{ f:\set{1,\dotsc, m,m+1}\to A=\set{a_1,\dotsc ,a_n,a_{n+1}} \mid f \\\ es \\\ inyectiva}$ es la unión disjunta de $B_1,\dotsc, B_{n+1}$, es decir:

$B_1\cup \dotsc \cup B_{n+1}= \set{ f:\set{1,\dotsc, m,m+1}\to A=\set{a_1,\dotsc ,a_n,a_{n+1}} \mid f \\\ es \\\ inyectiva}$.

Por lo que

$\#(B_1\cup \dotsc \cup B_{n+1})= \# \set{ f:\set{1,\dotsc, m,m+1}\to A=\set{a_1,\dotsc ,a_n,a_{n+1}}\mid f \\\ es \\\ inyectiva}.$

Y por el principio generalizado de la suma tenemos que:

$\#B_1+ \dotsc + \# B_{n+1}= \# \set{ f:\set{1,\dotsc, m,m+1}\to A=\set{a_1,\dotsc ,a_n,a_{n+1}}\mid f \\\ es \\\ inyectiva}.$

Como $\#B_i=O_{n}^{m}$, para todo $i\in\set{1,\dotsc,n+1}$, entonces

$(n+1)\cdot O_{n}^{m}= \# \set{ f:\set{1,\dotsc, m,m+1}\to A=\set{a_1,\dotsc ,a_n,a_{n+1}} \mid f \\\ es \\\ inyectiva}.$

Y por lo tanto:

$ O_{n+1}^{m+1} =(n+1)\cdot O_{n}^{m} .$

$\square$

Ejemplo

En la fila de un avión hay $3$ lugares, ¿de cuántas formas podemos llenarla eligiendo a personas de una familia de 6 integrantes? o bien, ¿Cuántas ordenaciones hay de un conjunto con $6$ elementos tomados de $3$ en $3$?

Sabemos que:

$O_{6}^{3}=6\cdot O_{2}^{5}= 6\cdot5 \cdot O_{4}^{1}.$

Pero si $A=\set{a_1,a_2,a_3,a_4}$ es un conjunto con cuatro elementos, habrá $4$ funciones inyectivas de $\set{1}$ en $A$ y por lo tanto $ O_{4}^{1} =4$. Así:

$O_{6}^{3}=6\cdot5 \cdot 4=120$, y por lo tanto hay $120$ maneras de llenar la fila.

Teorema

Sean $n,m\in \mathbb N^+$, $n\geq m$, entonces $O_{n}^{m}=n(n-1)\dotsc(n-m+1)$

Demostración

Sean $n,m\in \mathbb N^+$, $n\geq m$

Haremos la prueba por inducción sobre $m$

Si $m=1$ consideremos $A=\set{a_1,\dotsc,a_n}$ con $n$ elementos. Tenemos que hay $n$ funciones inyectivas de $\set{1}$ en $A$, así:

$O_{n}^{1}=n=n-1+1$ y en este caso se cumple la fórmula.

Supongamos que resultado se cumple para $m$, es decir que $O_{t}^{m}=t(t-1)\dotsc (t-m+1)$ para toda $t\geq m$, que es nuestra hipótesis de inducción.

Sea $n\geq m+1$.

Si consideramos $O_{n}^{m+1}= O_{(n-1)+1}^{m+1} $, por el lema anterior esto es igual a

$ O_{(n-1)+1}^{m+1}=[(n-1)+1] O_{n-1}^{m} .$

Como $n-1\geq m$ usando la hipótesis de inducción tenemos que

$ O_{n-1}^{m} = (n-1)(n-2)\dotsc ((n-1)-m+1)$

de donde

$ O_{(n-1)+1}^{m+1}=[(n-1)+1] O_{n-1}^{m} = [(n-1)+1] (n-1)(n-2)\dotsc ((n-1)-m+1)$

Así $ O_{n}^{m+1}=[(n-1)+1] O_{n-1}^{m} = n(n-1)(n-2)\dotsc (n-m)$, probando con ello que el resultado se cumple para $m+1$.

Por el principio de inducción la fórmula se cumple para toda $m$.

$\square$

Tarea Moral

1. Entre un grupo de 7 personas se debe elegir una mesa directiva con un presidente, un secretario, un vocal y un suplente ¿de cuántas maneras se puede elegir esa mesa directiva?

2. En un concurso participan 30 alumnos y se decidirá quién se lleva cada uno de los tres primeros lugares ¿cuántos posibles resultados se tienen como ganadores del concurso?

3. i) ¿De cuántas maneras pueden posar tres hombres y dos mujeres en línea para una fotografía de grupo?
ii) ¿De cuántas maneras pueden colocarse en línea si una mujer debe estar en cada extremo?
iii) ¿De cuántas maneras las personas del mismo sexo están juntas?

Más adelante

En la siguiente nota continuaremos el estudio de las técnicas de conteo, daremos la definición formal de combinaciones, que son el número de subconjuntos de un conjunto dado.

Enlaces relacionados

Página principal del curso.

Enlace a la nota anterior. Nota 21. Conteo, ordenaciones con repetición.

Enlace a la nota siguiente. Nota 23. Combinaciones.