Teorema de existencia y unicidad de ecuaciones diferenciales

Por Lizbeth Fernández Villegas

Introducción

En la entrada anterior trabajamos con la ecuación diferencial $\dfrac{d \, y(x)}{dx} = y(x)$ con condición inicial $y(0)=1.$ Al identificar propiedades enunciadas en el teorema de punto fijo de Banach encontramos su solución. En esta ocasión repetiremos el proceso para demostrar que la solución a una ecuación diferencial general existe y es única.

Primeramente, veamos un concepto.

Definición. Función localmente Lipschitz continua en la segunda variable. Sea $(a,b) \subset \mathbb{R}$ y sea $\Omega \subset \mathbb{R}$ tal que $\Omega$ es abierto. Si $F:(a,b) \times \Omega \to \mathbb{R}$ es una función que satisface que para cada $x_0 \in (a,b)$ y $y_0 \in \Omega \, $ existen $\delta_0 >0$ y $c>0$ tales que $[x_0 – \delta_0, x_0 + \delta_0] \subset (a,b), \, [y_0 – \delta_0, y_0 + \delta_0] \subset \Omega$ y además que si $x \in [x_0 – \delta_0, x_0 + \delta_0] $ y si $y_1,y_2 \in [y_0 – \delta_0, y_0 + \delta_0]$ entonces
$$|F(x,y_1)-F(x,y_2)| \leq c |y_1-y_2|$$
diremos que $F$ es localmente Lipschitz continua en la segunda variable.

Solución a la ecuación diferencial $\dfrac{d \, y(x)}{dx}=F(x,y(x))$

Sea $\dfrac{d \, y(x)}{dx}=F(x,y(x))$ una ecuación diferencial con condición inicial $y(x_0)=y_0$ donde:

  1. $F$ es una función localmente Lipschitz continua en la segunda variable.
  2. $y$ es una función, al menos derivable, de variable $x$ que manda valores reales en valores reales.
  3. $x_0$ es un punto donde la $\, y \,$ buscada toma valor $y_0.$

Plan para resolverla con el teorema de punto fijo de Banach: Propondremos un espacio métrico completo $(X,d)$ de funciones entre las cuales deberá estar la $\, y \,$ buscada y una contracción $\phi:X \to X$ cuyo punto fijo sea la solución de la ecuación diferencial.

Sean $\delta_0>0$ y $c>0$ para $F$ localmente Lipschitz continua como en la definición. Se dejará como ejercicio al lector probar que $F$ restringida en $[x_0 \, – \, \delta_0, x_0 + \delta_0] \times [y_0 \, – \, \delta_0, y_0 + \delta_0]$ es continua. Como este conjunto es compacto, se sigue que $F$ está acotada en este conjunto. Por lo tanto existe $M>0$ tal que para toda $(x,y) \in [x_0 \, – \, \delta_0, x_0 + \delta_0] \times [y_0 \, – \, \delta_0, y_0 + \delta_0]$ se cumple
$$|f(x,y)| \leq M.$$

Sea $\delta$ tal que $0< \delta < min\{\frac{1}{c}, \frac{\delta_0}{M}\}$

Considera $X:= \{ f \in \mathcal{C}^0([x_0 \, – \, \delta, x_0 + \delta],\mathbb{R}): d_{\infty}(f,y_0) \leq \delta M \}$
donde $y_0$ representa, en este caso, a la función constante que arroja el valor $y_0.$ Nota que $X$ es un espacio cerrado en el espacio métrico $\mathcal{C}^0([x_0 \, – \, \delta, x_0 + \delta],\mathbb{R})$ que recordemos, tiene la propiedad de ser completo. Por lo visto en la última proposición de la entrada Espacios métricos completos concluimos que $X$ también es completo.

Propongamos la contracción $\phi$ deseada

Si $f \in X$ satisface la ecuación diferencial entonces para todo $x \in [x_0 \, – \, \delta, x_0 + \delta]$ se sigue:

\begin{align*}
&&\dfrac{d \, f(x)}{dx}&= F(x,f(x))\\
&\Rightarrow & \int_{x_0}^{x} \dfrac{d \, f(t)}{dt} \, dt &= \int_{x_0}^{x} F(t,f(t)) \, dt\\
&\Rightarrow & f(x) \, – \, f(x_0) &=\int_{x_0}^{x} F(t,f(t)) \, dt\\
&\Rightarrow & f(x) &=f(x_0) + \int_{x_0}^{x} F(t,f(t)) \, dt\\
&\Rightarrow & f(x) &= y_0 + \int_{x_0}^{x} F(t,f(t)) \, dt
\end{align*}

Como buscamos que esta solución sea punto fijo de una contracción $\phi$ en $X$ entonces $\phi(f(x)) = f(x).$ La última igualdad nos lleva a proponer:

$$\phi(f(x)) := y_0 + \int_{x_0}^{x} F(t,f(t)) \, dt$$

Nota que $\phi(f(x))$ pertenece a $\mathcal{C}^0([x_0 – \delta, x_0 + \delta],\mathbb{R}).$ Probaremos que también pertenece a $X.$ Si $x \in [x_0 – \delta, x_0 + \delta],$ tenemos dos casos:

Si $x_0 \leq x$

\begin{align*}
|\phi(f(x)) \, – \, y_0|&= \left|\int_{x_0}^{x} F(t,f(t)) \, dt \right| \\
&\leq \int_{x_0}^{x} |F(t,f(t))| \, dt \\
&\leq (x-x_0) M \\
&= \delta M
\end{align*}

Si $x < x_0$

\begin{align*}
|\phi(f(x)) \, – \, y_0|&= \left|\int_{x_0}^{x} F(t,f(t)) \, dt \right| \\
&= \left|- \int_{x}^{x_0} F(t,f(t)) \, dt \right| \\
&= \left| \int_{x}^{x_0} F(t,f(t)) \, dt \right| \\
&\leq \int_{x}^{x_0} |F(t,f(t))| \, dt \\
&\leq (x_0 \, – \, x) M\\
&= \delta M
\end{align*}

De ambos casos podemos concluir que $d_{\infty}(f,y_0) \leq \delta M,$ por lo tanto $\phi(f) \in X.$

$\phi$ es contracción en $X$

Sean $f,g \in X.$ Considera $I = [x_0 – \delta, x_0 + \delta]$ entonces si $x \in I,$ tenemos dos casos.

Si $x_0 \leq x.$

\begin{align*}
|\phi(f(x))- \phi(g(x))|&=\left|y_0 + \int_{x_0}^{x} F(t,f(t)) \, dt-(y_0 + \int_{x_0}^{x} F(t,g(t)) \, dt) \right|\\
&=\left|\int_{x_0}^{x} F(t,f(t)) \, dt- F(t,g(t)) \, dt \right|\\
&\leq \int_{x_0}^{x} |F(t,f(t)) \, dt- F(t,g(t))| \, dt\\
&\leq \int_{x_0}^{x} c|f(t)- g(t)| \, dt \\
&\leq (x-x_0) c \, d_{\infty}(f,g) \\
&\leq (\delta c) \, d_{\infty}(f,g)
\end{align*}

Si $x < x_0.$

\begin{align*}
|\phi(f(x))- \phi(g(x))|&=\left|y_0 + \int_{x_0}^{x} F(t,f(t)) \, dt-(y_0 + \int_{x_0}^{x} F(t,g(t)) \, dt) \right|\\
&=\left|\int_{x_0}^{x} F(t,f(t)) \, dt- F(t,g(t)) \, dt \right|\\
&=\left|- \int_{x}^{x_0} F(t,f(t)) \, dt- F(t,g(t)) \, dt \right|\\
&=\left| \int_{x}^{x_0} F(t,f(t)) \, dt- F(t,g(t)) \, dt \right|\\
&\leq \int_{x}^{x_0} |F(t,f(t)) \, dt- F(t,g(t))| \, dt\\
&\leq \int_{x}^{x_0} c|f(t)- g(t)| \, dt \\
&\leq (x_0-x) c \, d_{\infty}(f,g) \\
&\leq (\delta c) \, d_{\infty}(f,g)
\end{align*}

Por lo tanto, la distancia entre $\phi(f)$ y $\phi(g)$ se puede estimar como

\begin{align*}
d_\infty(\phi(f(x)), \phi(g(x))) &= \underset{x \in I}{Sup} \, \{|\phi(f(x))- \phi(g(x))| \} \\
&\leq \underset{x \in I}{Sup} \, \{ \delta c \, d_{\infty}(f,g) \} \\
&=(\delta c)d_{\infty}(f,g)
\end{align*}

Sea $\alpha := \delta c$ entonces $\alpha<1,$ por lo tanto $\phi$ es contracción en $X.$

Lo que hemos visto en esta entrada demuestra el siguiente:

Teorema. Picard-Lindelöf. Sea $F:(a,b) \times \Omega \to \mathbb{R}$ una función continua y localmente Lipschitz continua en la segunda variable. Entonces, dados $x_0 \in (a,b)$ y $y_0 \in \Omega$ existe $\delta >0$ tal que la ecuación diferencial
$$\dfrac{d \, y(x)}{dx}=F(x,y(x)), \, y(x_0)=y_0$$
tiene una única solución en el intervalo $[x_0 \, – \, \delta, x_0 + \delta].$

Generalización en $\mathbb{R}^n$

Si $\Omega \subset \mathbb{R}^n$ y $F$ tiene su contradominio en $\mathbb{R}^n$ entonces la definición y el teorema quedan como sigue:

Definición. Función localmente Lipschitz continua en la segunda variable. Sea $(a,b) \subset \mathbb{R}$ y sea $\Omega \subset \mathbb{R}^n$ tal que $\Omega$ es abierto. Si $F:(a,b) \times \Omega \to \mathbb{R}^n$ es una función que satisface que para cada $x_0 \in (a,b)$ y $y_0 \in \Omega \, $ existen $\delta_0 >0$ y $c>0$ tales que $[x_0 – \delta_0, x_0 + \delta_0] \subset (a,b), \, \overline{B}(y_0, \delta_0) \subset \Omega$ y además que si $|x-x_0| \leq \delta_0$ y si $y_1,y_2 \in \overline{B}(y_0,\delta_0)$ entonces
$$\norm{F(x,y_1)-F(x,y_2)} \leq c \norm{y_1-y_2}$$
diremos que $F$ es localmente Lipschitz continua en la segunda variable.

Teorema. Picard-Lindelöf. Sea $F:(a,b) \times \Omega \to \mathbb{R}^n$ una función continua y localmente Lipschitz continua en la segunda variable. Entonces, dados $x_0 \in (a,b)$ y $y_0 \in \Omega$ existe $\delta >0$ tal que la ecuación diferencial
$$\dfrac{d \, y(x)}{dx}=F(x,y(x)), \, y(x_0)=y_0$$
tiene una única solución en el intervalo $[x_0 \, – \, \delta, x_0 + \delta].$

En este caso el espacio completo donde podemos encontrar la solución es

$$X:= \{ f \in \mathcal{C}^0([x_0 \, – \, \delta, x_0 + \delta], \mathbb{R}^n) : \norm{f \, – \, y_0}_\infty \leq \delta M\}$$

Donde $\delta$ y $M$ se definen de forma análoga a la demostración anterior.

Más adelante

Pasaremos a la siguiente sección de esta asignatura con temas de compacidad. Aunque ya se han usado algunos resultados para el caso del espacio métrico euclidiano, mostraremos cómo el concepto puede generalizarse en otros espacios a partir de la topología que la métrica induce en ellos.

Tarea moral

  1. Sean $\delta_0>0$ y $c>0$ para $F$ localmente Lipschitz continua como en la definición. Prueba que $F$ restringida en $[x_0 \, – \, \delta_0, x_0 + \delta_0] \times [y_0 \, – \, \delta_0, y_0 + \delta_0]$ es continua.
  2. Sea $F: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ tal que $F(x,y)= 3y^{2/3}.$
    a) Prueba que $F$ no es localmente Lipschitz continua en la segunda variable.
    b) Prueba que para cualesquiera $\alpha < 0 < \beta,$ la función
    \begin{equation*}
    f_{\alpha, \beta}(x) = \begin{cases}
    (x \, – \, \alpha)^3 & \text{si x $\leq \alpha,$} \\
    0 & \text{si $\alpha \leq x \leq \beta,$}\\
    (x \, – \, \beta)^3 & \text{si $x \geq \beta.$}
    \end{cases}
    \end{equation*}
    Es diferenciable en $\mathbb{R}$ y es solución de
    $$\dfrac{d \, y(x)}{dx}=3y^{2/3}, \, y(0)=0.$$
    Así, si $F$ no es localmente Lipschitz continua en la segunda variable la ecuación puede tener una infinidad de soluciones.
  3. Sea $F: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ tal que $F(x,y)= -y^2.$
    a) Prueba que $F$ es localmente Lipschitz continua en la segunda variable.
    b) Para $\alpha \neq 0$ considera la ecuación
    $$\dfrac{d \, y(x)}{dx}=-y^2, \, y(0)= – \, \frac{1}{\alpha}.$$
    Prueba que $f(x)= \dfrac{1}{x \, – \, \alpha}$ es su solución en algún intervalo que contiene a $0$.
    c) ¿Cuál es el intervalo máximo para el que esta ecuación tiene solución?

Enlaces

Teoría de los Conjuntos I: Conjuntos infinitos no numerables.

Por Gabriela Hernández Aguilar

Introducción

Al hablar de conjuntos infinitos, resulta natural pensar que entre cualesquiera dos de ellos debería existir una manera de «emparejar» sus elementos, es decir, establecer una biyección entre tales conjuntos, ya que, al fin y al cabo, ambos contienen infinitos elementos. Esta idea puede deberse a que, cuando uno piensa en conjuntos infinitos, lo primero que viene a la mente es el conjunto de los números naturales o el de los enteros, los cuales están ordenados de una manera bastante agradable y nos resulta «fácil» ubicarlos en una recta, como si fueran números colocados sobre una cinta métrica infinita.

Sin embargo, no todos los conjuntos infinitos poseen un orden tan agradable como el de estos dos conjuntos, y muchos de ellos presentan propiedades considerablemente diferentes. Por ejemplo, algunos conjuntos infinitos pueden no tener un buen orden como el de los naturales, o quizás exista tal orden pero nos resulte extremadamente difícil de identificar.

El teorema de Cantor demuestra que, efectivamente, la idea de que se pueden emparejar los elementos de cualesquiera dos conjuntos infinitos es incorrecta. Un ejemplo específico es el conjunto de los números naturales $\mathbb{N}$ y su conjunto potencia $\mathcal{P}(\mathbb{N})$; es imposible emparejar cada elemento de $\mathcal{P}(\mathbb{N})$ con uno y solo un elemento de $\mathbb{N}$. Este hecho muestra que existen conjunto infinitos más grandes que otros.

Esta entrada está dedicada precisamente a esta cuestión: exhibir conjuntos infinitos con «diferentes tamaños», específicamente, conjuntos que no sean numerables, es decir, que no sean equipotentes con $\mathbb{N}$. Como hemos venido haciendo, también emplearemos el muy importante teorema de Cantor-Schröder-Bernstein para probar ciertas equipotencias.

Conjuntos más grandes que $\mathbb{N}$

Por el teorema de Cantor sabemos que para cada conjunto $A$ se tiene $|A|<|\mathcal{P}(A)|$, es decir, que existe una función inyectiva de $A$ en $\mathcal{P}(A)$ pero no una función biyectiva. Así pues, por ejemplo, $\mathcal{P}(\mathbb{N})$ además de ser un conjunto infinito, tiene «más» elementos que $\mathbb{N}$, el cual es también infinito. Esto es una muestra de que existen conjuntos infinitos que no son equipotentes. En lo subsecuente exhibiremos algunos otros conjuntos infinitos que sí se pueden biyectar con $\mathcal{P}(\mathbb{N})$ y que por tanto no son numerables.

Comenzaremos proporcionando ejemplos que involucran conceptos que hemos visto en la entrada anterior.

Ejemplo.

El conjunto de sucesiones en $\mathbb{N}$, que denotaremos por $\mathbb{N}^{\mathbb{N}}$, es equipotente a $\mathcal{P}(\mathbb{N})$.

Demostración.

En la entrada anterior probamos que para cada $A\subseteq\mathbb{N}$ infinito, existe una única función biyectiva $F_A:\mathbb{N}\to A$ tal que $F_A(0)=\textnormal{min}(A)$ y que $F_A(n)<F_A(n+1)$ para cada $n\in\mathbb{N}$. Lo mismo mencionamos respecto a conjuntos finitos no vacíos, es decir, si $A\subseteq\mathbb{N}$ es un conjunto finito no vacío, digamos $|A|=n+1$ con $n\in\mathbb{N}$, existe una única función biyectiva $f_A:n+1\to A$ tal que $f_A(0)=\textnormal{min}(A)$ y que $f_A(m)<f_A(k)$ si y sólo si $m<k$ para cualesquiera $m,k\in n+1$.
Si $A\subseteq\mathbb{N}$ es finito, podemos extender la función $f_A$ a todo $\mathbb{N}$ de la siguiente manera: si $f_A:n+1\to A$ es la única función biyectiva que satisface $f_A(0)=\textnormal{min}(A)$ y $f_A(m)<f_A(k)$ si y sólo si $m<k$ para cualesquiera $m,k\in n+1$, definimos $F_A:\mathbb{N}\to A$ por medio de $$F_A(m)=\left\{\begin{array}{lcc}
f_A(m) & \textnormal{si}\ m\in n+1\\
\textnormal{min}(A) & \textnormal{si}\ m\notin n+1
\end{array}
\right.$$

Lo anterior nos permite asociar a cada elemento de $\mathcal{P}(\mathbb{N})\setminus\{\emptyset\}$ una única sucesión en $\mathbb{N}^{\mathbb{N}}$ por medio de la siguiente función: definamos $F:\mathcal{P}(\mathbb{N})\setminus\{\emptyset\}\to\mathbb{N}^{\mathbb{N}}$ como $F(A)=F_A$ para cada $A\in\mathcal{P}(\mathbb{N})$. Debido a la definición de las funciones $F_A$, en cualquier caso, ya sea que $A\subseteq\mathbb{N}$ es finito o infinito, se cumple que $F_A[\mathbb{N}]=A$; en consecuencia, si $A$ y $B$ son conjuntos no vacíos tales que $F(A)=F(B)$ tendríamos que para cada $k\in\mathbb{N}$, $F_A(k)=F_B(k)$ y, por ende, que $A=F_A[\mathbb{N}]=F_B[\mathbb{N}]=B$, lo cual muestra que $F$ es inyectiva.

Ahora bien, para cada $x\in\mathbb{N}^{\mathbb{N}}$ definamos $x+1:\mathbb{N}\to\mathbb{N}$ por medio de $(x+1)(n):=x(n)+1$ para cada $n\in\mathbb{N}$. La función $g:\mathbb{N}^{\mathbb{N}}\to\mathbb{N}^{\mathbb{N}}$ definida por medio de $g(x)=x+1$ es una función inyectiva, pues si $g(x)=g(y)$ para algunas $x,y\in\mathbb{N}^{\mathbb{N}}$, entonces, $x(n)+1=y(n)+1$ para cada $n\in\mathbb{N}$ y, por tanto, $x(n)=y(n)$ para cada $n\in\mathbb{N}$, es decir, $x=y$. Observemos además que $g(x)\not=x_0$ para cada $x\in\mathbb{N}^{\mathbb{N}}$, donde $x_0(n)=0$ para cada $n\in\mathbb{N}$; en efecto, si $x\in\mathbb{N}^{\mathbb{N}}$, entonces, $g(x)(n)=(x+1)(n)=x(n)+1\not=0$ para cada $n\in\mathbb{N}$ ya que $0$ no es sucesor de ningún número natural. Así, la función $g\circ F:\mathcal{P}(\mathbb{N})\setminus\set{\emptyset}\to\mathbb{N}^{\mathbb{N}}$ es inyectiva y $(g\circ F)(A)\not=x_0$ para cada $A\in\mathcal{P}(\mathbb{N})\setminus\{\emptyset\}$. Por tanto la función $h:\mathcal{P}(\mathbb{N})\to\mathbb{N}^{\mathbb{N}}$ definida como \[h(A)=\left\{\begin{array}{lcc}
(g\circ F)(A) & \textnormal{si}\ A\not=\emptyset\\
x_0 & \textnormal{si}\ A=\emptyset
\end{array}
\right.\] es inyectiva.

Para dar una función inyectiva de $\mathbb{N}^{\mathbb{N}}$ en $\mathcal{P}(\mathbb{N})$ retomaremos al conjunto de números primos $\mathbb{P}=\{p_n:n\in\mathbb{N}\}$ enumerado de tal forma que $p_n<p_{n+1}$ para cada $n\in\mathbb{N}$. Definamos ahora $T:\mathbb{N}^{\mathbb{N}}\to\mathcal{P}(\mathbb{N})$ por medio de $T(x)=\{p_n^{x(n)}:n\in\mathbb{N}\}$. Notemos que $T$ es una función inyectiva, pues si $T(x)=T(y)$, entonces, $\{p_n^{x(n)}:n\in\mathbb{N}\}=\{p_n^{y(n)}:n\in\mathbb{N}\}$ y así $p_n^{x(n)}=p_n^{y(n)}$ y $x(n)=y(n)$ para cada $n\in\mathbb{N}$, pues de otro modo se contradice al teorema fundamental de la aritmética. Por lo tanto, $x=y$ y $T$ es inyectiva.

Por el teorema de Cantor-Schröder-Bernstein concluimos que $|\mathcal{P}(\mathbb{N})|=|\mathbb{N}^{\mathbb{N}}|$.

$\square$

Al contrario de los conjuntos finitos, existen ejemplos de conjuntos infinitos que poseen subconjuntos propios equipotentes a ellos mismos, es decir, existe una biyección entre el subconjunto propio y el conjunto original. Un ejemplo de lo anterior es el conjunto de los números naturales, pues cualquier subconjunto propio de $\mathbb{N}$ que sea infinito resulta ser numerable. A continuación vamos a proporcionar otro de estos ejemplos, pero esta vez con un conjunto infinito no numerable.

Ejemplo.

El conjunto $2^{\mathbb{N}}:=\{f\in\mathbb{N}^{\mathbb{N}}:f(n)\in\{0,1\}\ \textnormal{para cada}\ n\in\mathbb{N}\}$ es equipotente a $\mathcal{P}(\mathbb{N})$.

Demostración.

Para demostrar la equipotencia de este ejemplo vamos a exhibir una biyección entre tales conjuntos. Para ello haremos lo siguiente, si $A\in\mathcal{P}(\mathbb{N})$ definimos $\chi_{A}:\mathbb{N}\to\mathbb{N}$ por medio de $\chi_{A}(n)=\left\{\begin{array}{lcc}
1 & \textnormal{si}\ n\in A\\
0 & \textnormal{si}\ n\in\mathbb{N}\setminus A
\end{array}
\right.$

Lo anterior nos permite establecer una función entre $\mathcal{P}(\mathbb{N})$ y $2^{\mathbb{N}}$, función que de hecho resulta ser biyectiva. Veamos primero la inyectividad. Si para $A,B\in\mathcal{P}(\mathbb{N})$ se cumple $\chi_A=\chi_B$, entonces $\chi_A(n)=\chi_B(n)$ para cada $n\in\mathbb{N}$. En consecuencia, si $n\in A$, $1=\chi_A(n)=\chi_B(n)$ y por ende $n\in B$; análogamente, si $n\in B$, $1=\chi_B(n)=\chi_A(n)$ y por tanto $n\in A$. Por consiguiente $A=B$, lo que demuestra la inyectividad de la función.
Resta probar la sobreyectividad. Consideremos $\chi\in 2^{\mathbb{N}}$ un elemento arbitrario. Definamos $A:=\{n\in\mathbb{N}:\chi(n)=1\}$ y veamos que $\chi_A=\chi$. Si $n\in A$, entonces $\chi(n)=1$ por definición del conjunto $A$ y, por otro lado, $\chi_A(n)=1$ por definición de la función $\chi_A$. Si ahora $n\in\mathbb{N}\setminus A$, $\chi(n)=0$ por definición del conjunto $A$ mientras que $\chi_A(n)=0$ por definición de la función $\chi_A$. Esto muestra que $\chi(n)=\chi_A(n)$ para cada $n\in\mathbb{N}$ y por ende que $\chi=\chi_A$. Así pues, la función $F:\mathcal{P}(\mathbb{N})\to2^{\mathbb{N}}$ definida por medio de $F(A)=\chi_A$ para cada $A\in\mathcal{P}(\mathbb{N})$ es una biyección y, por tanto, $|\mathcal{P}(\mathbb{N})|=|2^{\mathbb{N}}|$.

$\square$

Como lo mencionamos previamente, ahora contamos con un ejemplo de un conjunto infinito no numerable que posee un subconjunto propio equipotente a él, específicamente $\mathbb{N}^{\mathbb{N}}$ y $2^{\mathbb{N}}$ son equipotentes y $2^{\mathbb{N}}\subsetneq\mathbb{N}^{\mathbb{N}}$. Conjuntos de este tipo, es decir, conjuntos que poseen subconjuntos propios equipotentes a ellos, reciben un nombre particular que anotamos en la siguiente definición.

Definición. Un conjunto $X$ se llama infinito según Dedekind si existe una función inyectiva $f:X\to X$ tal que $f[X]\not=X$.

Que un conjunto sea infinito según Dedekind implica que dicho conjunto es infinito. Y ya que contamos con algunos ejemplos de conjuntos infinitos que también son infinitos según Dedekind, surge de manera natural la pregunta: ¿todo conjunto infinito es infinito según Dedekind? Dicha cuestión no la podemos responder con lo que hemos visto hasta ahora y es por eso que la dejaremos para más adelante.

Una consecuencia inmediata del último ejemplo es el siguiente corolario.

Corolario. Sean $a_0,a_1,\ldots,a_n\in\mathbb{N}$ naturales distintos con $n\geq1$. El conjunto $\{f\in\mathbb{N}^{\mathbb{N}}:f[\mathbb{N}]\subseteq\{a_0,a_1,\ldots,a_n\}\}$ es equipotente a $\mathbb{N}^{\mathbb{N}}$.

Demostración.

Dado que $j:\{f\in\mathbb{N}^{\mathbb{N}}:f[\mathbb{N}]\subseteq\{a_0,a_1,\ldots,a_n\}\}\to\mathbb{N}^{\mathbb{N}}$ definida por medio de $j(f)=f$ es una función inyectiva, basta exhibir una función inyectiva de $\mathbb{N}^{\mathbb{N}}$ en $\{f\in\mathbb{N}^{\mathbb{N}}:f[\mathbb{N}]\subseteq\{a_0,a_1,\ldots,a_n\}\}$.

Denotemos $A:=\{f\in\mathbb{N}^{\mathbb{N}}:f[\mathbb{N}]\subseteq\{a_0,a_1,\ldots,a_n\}\}$. Si denotamos $B:=\{f\in\mathbb{N}^{\mathbb{N}}:f[\mathbb{N}]\subseteq\{a_0,a_1\}\}$, entonces $B\subseteq A$. Para cada $\chi\in2^{\mathbb{N}}$ definamos $f_\chi:\mathbb{N}\to\mathbb{N}$ de la siguiente manera $f_\chi(n)=\left\{\begin{array}{lcc}
a_0 & \textnormal{si}\ \chi(n)=0\\
a_1 & \textnormal{si}\ \chi(n)=1
\end{array}
\right.$
A partir de la definición anterior tenemos que $f_{\chi}\in B$ para cada $\chi\in2^{\mathbb{N}}$, lo cual nos permite definir $F:2^{\mathbb{N}}\to B$ por medio de $F(\chi)=f_{\chi}$. Resulta que $F$ es una biyección. En efecto, por un lado es inyectiva ya que si $F(\chi)=F(\chi’)$, entonces $f_{\chi}(n)=f_{\chi’}(n)$ para cada $n\in\mathbb{N}$, de modo que si $\chi(n)=0$ se tiene que $a_0=f_{\chi}(n)=f_{\chi’}(n)$ y por tanto $\chi'(n)=0$; asimismo, si $\chi(n)=1$ se tiene que $a_1=f_{\chi}(n)=f_{\chi’}(n)$ por lo que $\chi'(n)=1$. Por tanto $\chi(n)=\chi'(n)$ para cada $n\in\mathbb{N}$ y así $\chi=\chi’$.
Ahora para mostrar que $F$ es sobreyectiva tomemos $f\in B$ elemento arbitrario y definamos $\chi:\mathbb{N}\to\mathbb{N}$ por medio de $\chi(n)=\left\{\begin{array}{lcc}
1 & \textnormal{si}\ f(n)=a_1\\
0 & \textnormal{si}\ f(n)=a_0
\end{array}
\right.$
Luego, $f_{\chi}=f$, pues si $n\in\mathbb{N}$ es tal que $f(n)=a_1$ se tiene que $\chi(n)=1$ por definición de $\chi$ y así $f_{\chi}(n)=a_1$; por otro lado, si $n\in\mathbb{N}$ es tal que $f(n)=a_0$ se tiene que $\chi(n)=0$ por definición de $\chi$ y por ende $f_{\chi}(n)=a_0$. Podemos concluir entonces que $F( \chi)=f_{\chi}=f$, lo que demuestra que $F$ es sobreyectiva. Por tanto $F$ es una biyección y $|2^{\mathbb{N}}|=|B|$.
Ahora, sean $h:\mathbb{N}^{\mathbb{N}}\to2^{\mathbb{N}}$ una función biyectiva (la cual sabemos que existe pues $|\mathbb{N}^{\mathbb{N}}|=|\mathcal{P}(\mathbb{N})|=|2^{\mathbb{N}}|$) y $\iota:B\to A$ la función inclusión, es decir, $\iota(f)=f$ para cada $f\in B$. Luego, $\iota\circ h:\mathbb{N}^{\mathbb{N}}\to A$ es una función inyectiva.
Por el teorema de Cantor-Schröder-Bernstein concluimos que $|\mathbb{N}^{\mathbb{N}}|=|A|$.

$\square$

Observemos que el corolario muestra que existen una infinidad de subcojuntos propios de $\mathbb{N}^{\mathbb{N}}$ equipotentes a él. Dado que $|\mathcal{P}(\mathbb{N})|=|\mathbb{N}^{\mathbb{N}}|$, entonces $\mathcal{P}(\mathbb{N})$ también posee una cantidad infinita de subconjuntos propios equipotentes a él. El siguiente ejemplo es uno de tales subconjuntos.

Ejemplo.

El conjunto $[\mathbb{N}]^{\mathbb{N}}:=\{A\subseteq\mathbb{N}:|A|=|\mathbb{N}|\}$ es equipotente a $\mathcal{P}(\mathbb{N})$.

Demostración.

Dado que $[\mathbb{N}]^{\mathbb{N}}\subseteq\mathcal{P}(\mathbb{N})$ lo único que hace falta es exhibir una función inyectiva de $\mathcal{P}(\mathbb{N})$ en $[\mathbb{N}]^{\mathbb{N}}$.

Consideremos al conjunto de números primos $\mathbb{P}=\{p_n:n\in\mathbb{N}\}$ donde $p_n<p_{n+1}$ para cada $n\in\mathbb{N}$. Definamos $g:\mathbb{N}^{\mathbb{N}}\to[\mathbb{N}]^{\mathbb{N}}$ como $g(x)=\{p_n^{x(n)+1}:n\in\mathbb{N}\}$. Dado que para cada $x\in\mathbb{N}^{\mathbb{N}}$, $x(n)+1\not=0$ para toda $n\in\mathbb{N}$, tenemos que $\{p_n^{x(n)+1}:n\in\mathbb{N}\}$ es un conjunto infinito, por lo que $g$ tiene el codominio adecuado. Por otro lado, $g$ es inyectiva ya que si $g(x)=g(y)$, entonces $p_n^{x(n)+1}=p_n^{y(n)+1}$ para cada $n\in\mathbb{N}$ por el teorema fundamental de la aritmética y, más aún, $x(n)+1=y(n)+1$ para cada $n\in\mathbb{N}$, lo que demuestra que $x=y$. Si $h:\mathcal{P}(\mathbb{N})\to\mathbb{N}^{\mathbb{N}}$ es una biyección se sigue que $g\circ h:\mathcal{P}(\mathbb{N})\to[\mathbb{N}]^{\mathbb{N}}$ es una función inyectiva. Por el teorema de Cantor-Schröder-Bernstein concluimos que $|\mathcal{P}(\mathbb{N})|=|[\mathbb{N}]^{\mathbb{N}}|$.

$\square$

Como un ejercicio para esta entrada dejaremos el siguiente ejemplo.

Ejemplo.

$\mathbb{N}^{\nearrow\mathbb{N}}:=\{f\in\mathbb{N}^{\mathbb{N}}:f(n)<f(n+1)\ \textnormal{para cada}\ n\in\mathbb{N}\}$ es equipotente a $[\mathbb{N}]^{\mathbb{N}}$, y por tanto equipotente a $\mathcal{P}(\mathbb{N})$.

Para finalizar con esta serie de ejemplos de conjuntos no numerables y equipotentes a $\mathcal{P}(\mathbb{N})$ hablaremos del conjunto de números reales.
Para lo que sigue vamos a suponer que ya conocemos todas las propiedades básicas del conjunto de números reales, y si no se conocen dichas propiedades o lo que es un número real, puedes consultar cualquier libro introductorio a la teoría de conjuntos como el de Hernández1, o también puedes consultarlo en un libro de cálculo como el de Spivak2.
Además de lo dicho en el párrafo precedente, estaremos haciendo un abuso de notación escribiendo las contenciones $\mathbb{N}\subseteq\mathbb{Z}\subseteq\mathbb{Q}\subseteq\mathbb{R}$.
Dicho lo anterior tenemos la siguiente proposición.

Proposición. El intervalo abierto $(0,1)=\{r\in\mathbb{R}:0<r<1\}$ es equipotente a $\mathbb{R}$.

Demostración.

Definamos $f:\mathbb{R}\to(0,1)$ por medio de $f(x)=\left\{\begin{array}{lcc}
\frac{4x+1}{4x+2} & \textnormal{si}\ x\geq0\\
\frac{1}{2(1-2x)} & \textnormal{si}\ x<0
\end{array}
\right.$
Lo primero que se debe observar es que la función $f$ tiene el codominio adecuado, es decir, $f(x)\in(0,1)$ para cada $x\in\mathbb{R}$. Si $x\geq0$, entonces, $0<4x+1<4x+2$ y por tanto $0<\frac{4x+1}{4x+2}<1$, es decir, $f(x)\in(0,1)$; por otro lado, si $x<0$, entonces $0<-2x$ y así $1<1-2x$, lo cual implica que $0<\frac{1}{1-2x}<1$ y que $0<\frac{1}{2(1-2x)}<\frac{1}{2}<1$, es decir, $f(x)\in(0,1)$. Por tanto, $f(x)\in(0,1)$ para cada $x\in\mathbb{R}$. Es importante notar que para $x<0$ vimos que no sólo se cumple $0<f(x)<1$, sino también que $0<f(x)<\frac{1}{2}$. Por otro lado, para $x\geq0$, tenemos que $0<1+2x\leq1+4x$ por lo que $1\leq\frac{4x+1}{2x+1}$ y por tanto $\frac{1}{2}\leq\frac{4x+1}{4x+2}$; de modo que para $x\geq0$ no sólo se cumple que $f(x)\in(0,1)$, sino también que $f(x)\in[\frac{1}{2},1)$.
Veamos ahora que $f$ es una función inyectiva. Sean $x,y\in\mathbb{R}$ con $x\not=y$. Debido a que $\mathbb{R}$ posee un orden lineal podemos suponer que $y<x$. Tenemos los siguientes casos.
Caso 1. $y<0\leq x$. En este caso se tiene que $f(y)\in(0,\frac{1}{2})$ mientras que $f(x)\in[\frac{1}{2},1)$, razón por la cual $f(x)\not=f(y)$.
Caso 2. $0\leq y<x$. En este caso se tiene que $f(y)=\frac{4y+1}{4y+2}$ y $f(x)=\frac{4x+1}{4x+2}$. Luego, si ocurriera que $\frac{4y+1}{4y+2}=\frac{4x+1}{4x+2}$, entonces $(4y+1)(4x+2)=(4x+1)(4y+2)$, lo cual implica $(4y+1)(2x+1)=(4x+1)(2y+1)$, es decir, $8xy+4y+2x+1=8xy+4x+2y+1$ y por ende $2y=2x$, lo cual contradice que $x\not=y$. Por tanto, $f(x)\not=f(y)$.
Caso 3. $y<x<0$. Si ocurriera que $f(x)=f(y)$, entonces $\frac{1}{2(1-2x)}=\frac{1}{2(1-2y)}$ y por ende, $1-2x=1-2y$, de donde $x=y$ y eso contradice la elección de $x$ y $y$. Por tanto $f$ es una función inyectiva.

Veamos ahora que $f$ es sobreyectiva. Sea $r\in(0,1)$. Si $r\in(0,\frac{1}{2})$, entonces $2<\frac{1}{r}$, lo cual implica $\frac{1}{2}<\frac{1}{4r}$ y así $x:=\frac{1}{2}-\frac{1}{4r}$ es un número real menor a $0$; luego, para tal $x$ tenemos que $f(x)=\frac{1}{2(1-2x)}=\frac{1}{2(1-(1-\frac{1}{2r}))}=\frac{1}{2\cdot\frac{1}{2r}}=r$. Si ahora $r\in[\frac{1}{2},1)$, entonces $2r-1\geq0$ y $1-r>0$, por lo que $x:=\frac{2r-1}{4(1-r)}$ es un número real mayor o igual a $0$ para el cual se cumple $f(x)=\frac{4x+1}{4x+2}=\frac{4(\frac{2r-1}{4(1-r)})+1}{4(\frac{2r-1}{4(1-r)})+2}=\frac{\frac{2r-1}{1-r}+1}{\frac{2r-1}{1-r}+2}=\frac{\frac{2r-1+1-r}{1-r}}{\frac{2r-1+2-2r}{1-r}}=\frac{r}{1}=r$. Lo anterior prueba que $f$ es sobreyectiva.

Por lo tanto $f$ es una biyección y $|\mathbb{R}|=|(0,1)|$.

$\square$

Una consecuencia de la proposición anterior es el siguiente corolario.

Corolario. El intervalo $[0,1]:=\{r\in\mathbb{R}:0\leq r\leq1\}$ es equipotente a $\mathbb{R}$.

Demostración.

Dado que $[0,1]\subseteq\mathbb{R}$, basta mostrar que existe una función inyectiva de $\mathbb{R}$ en $[0,1]$. Por la proposición anterior existe una función biyectiva $f:\mathbb{R}\to(0,1)$ y así la función $F:\mathbb{R}\to[0,1]$ definida como $F(x)=f(x)$ para cada $x\in\mathbb{R}$ es inyectiva. Por el teorema de Cantor-Schröder-Bernstein concluimos que $|\mathbb{R}|=|[0,1]|$.

$\square$

Si bien la demostración del corolario anterior fue muy rápida y utilizamos el importante teorema de Cantor-Schröder-Bernstein, siempre resulta interesante determinar una biyección explícita, y precisamente en el caso del corolario anterior lo podemos hacer.

Definamos $S:=\{\frac{1}{n}:n\in\mathbb{N}\setminus\set{0}\}\cup\{0\}$. Definamos $g:[0,1]\to(0,1)$ por medio de $g(x)=\left\{\begin{array}{lcc}
x & \textnormal{si}\ x\notin S\\
\frac{1}{n+2} & \textnormal{si}\ x=\frac{1}{n},\ n\in\mathbb{N}\setminus\{0\}\\
\frac{1}{2} & \textnormal{si}\ x=0
\end{array}
\right.$

La función anterior resulta ser una biyección entre $[0,1]$ y $(0,1)$. Primero veremos que $g$ es inyectiva. Sean $x,y\in[0,1]$ con $x\not=y$. Tenemos algunos casos.

Caso 1. $x,y\notin S$. En este caso $g(x)=x\not=y=g(y)$.
Caso 2. $x\in S$, $y\notin S$. Dado que para cada $z\in S$ se tiene $g(z)\in S$, entonces, $g(x)\in S$ mientras que $g(y)=y\notin S$. Por tanto $g(x)\not=g(y)$.
Caso 3. $x\notin S$, $y\in S$. Análogo al caso $2$.
Caso 4. $x,y\in S$. Si $x=0$ y $y=\frac{1}{n}$ con $n\in\mathbb{N}\setminus\{0\}$, entonces $g(x)=\frac{1}{2}$ y $g(y)=\frac{1}{n+2}$. Como $n\geq1$ se tiene que $n+2\geq3$ y por tanto $\frac{1}{2}\not=\frac{1}{n+2}$, es decir, $g(x)\not=g(y)$. Análogamente, si $y=0$ y $x=\frac{1}{n}$ con $n\in\mathbb{N}\setminus\{0\}$, $g(x)\not=g(y)$. Supongamos ahora que $x=\frac{1}{n}$ y $y=\frac{1}{m}$ con $n,m\in\mathbb{N}\setminus\{0\}$ con $n\not=m$.
Luego, $g(x)=\frac{1}{n+2}\not=\frac{1}{m+2}=g(y)$ pues de lo contrario tendríamos $n+2=m+2$ y $n=m$, lo cual contradice $n\not=m$.
Los cuatro casos anteriores muestran que $g$ es inyectiva.

Veamos ahora que $g$ es sobreyectiva. Sea $x\in(0,1)$. Si $x\in S$, entonces $x=\frac{1}{n}$ con $n\in\mathbb{N}$, $n\geq2$, por lo que existe $m\in\mathbb{N}$ tal que $m+2=n$; si $m=0$, entonces $x=\frac{1}{2}=g(0)$ y si $m>0$, entonces, $g(\frac{1}{m})=\frac{1}{m+2}=\frac{1}{n}=x$.
Si $x\notin S$, entonces $g(x)=x$. Por tanto, $g$ es sobreyectiva y en consecuencia una biyección. Esto muestra que $[0,1]$ y $(0,1)$ son equipotentes y, por tanto, $[0,1]$ y $\mathbb{R}$ son equipotentes. Más aún, contamos con una biyección explícita entre $[0,1]$ y $\mathbb{R}$.

Para exhibir la biyección entre $[0,1]$ y $(0,1)$ utilizamos el hecho de que $[0,1]$ contiene un conjunto numerable, específicamente el conjunto $S=\{\frac{1}{n}:n\in\mathbb{N}\setminus\{0\}\}\cup\{0\}$. Precisamente este hecho fue el que jugó un papel fundamental, pues como veremos en la siguiente proposición, si $X$ es un conjunto infinito que contiene un conjunto numerable, entonces, para cada $A\subseteq X$ conjunto finito, se cumple $|X\setminus A|=|X|$.

Proposición. Sea $X$ un conjunto infinito tal que existe una función inyectiva $f:\mathbb{N}\to X$. Entonces, para cada $A\subseteq X$ conjunto finito, $|X\setminus A|=|X|$.

Demostración.

Como lo mostrarás en los ejercicios de esta sección, basta mostrar que para cada $x\in X$, los conjuntos $X\setminus\{x\}$ y $X$ son equipotentes.

Sea pues $x\in X$. Sea $f:\mathbb{N}\to X$ una función inyectiva y denotemos por $N$ a la imagen de $f$, esto es $N:=im(f)=\{f(n):n\in\mathbb{N}\}$.

Si $x\notin N$, definamos $g:X\to X\setminus\{x\}$ por medio de $g(y)=\left\{\begin{array}{lcc}
y & \textnormal{si}\ y\notin N\cup\{x\}\\
f(0) & \textnormal{si}\ y=x\\
f(n+1) & \textnormal{si}\ y=f(n)
\end{array}
\right.$

Comprobar que esta función es biyectiva es análogo a como lo hicimos con la función biyectiva que exhibimos entre los intervalos $[0,1]$ y $(0,1)$, por lo que lo dejaremos como un ejercicio para esta entrada.

Supongamos ahora que $x\in N$ y sea $n\in\mathbb{N}$ tal que $x=f(n)$. Para este caso definamos $h:X\to X\setminus\{x\}$ por medio de $h(y)=\left\{\begin{array}{lcc}
y & \textnormal{si}\ y\notin N\setminus\{f(m):m<n\}\\
f(m+1) & \textnormal{si}\ y=f(m),\ m\geq n
\end{array}
\right.$

Nuevamente, comprobar que esta función es biyectiva es similar a lo que hemos hecho. Esto nos permite concluir que $|X\setminus\{x\}|=|X|$ para cada $x\in X$.

$\square$

La proposición precedente muestra además que todo conjunto que contenga un conjunto numerable es infinito segun Dedekind, pues si tomamos $x\in X$, entonces $X\setminus\{x\}\subsetneq X$ y $|X\setminus\{x\}|=|X|$.

Para culminar la entrada mostraremos que $(0,1)$ y $\mathcal{P}(\mathbb{N})$ son equipotentes y que por tanto $\mathbb{R}$ y $\mathcal{P}(\mathbb{N})$ lo son. Esto lo escribiremos como un teorema.

Teorema. $(0,1)$ y $\mathcal{P}(\mathbb{N})$ son equipotentes.

Demostración.

Primero vamos a mostrar la siguiente afirmación: para cada $r\in(0,1)$, existe una única función $\chi_r:\mathbb{N}\to\mathbb{N}$ que satisface $\chi_r(n)\in\{0,1,2,3,4,5,6,7,8,9\}$ para cada $n\in\mathbb{N}$ y tal que $0\leq x-\sum_{i=0}^{n}\frac{\chi_r(i)}{10^i}<\frac{1}{10^{n}}$.

Sea pues $r\in(0,1)$. Probaremos por inducción que para cada $n\in\mathbb{N}$ existe una única función $\chi^{(n)}_r:n+1\to\mathbb{N}$ tal que $\chi^{(n)}_{r}[n+1]\subseteq\{0,1,2,3,4,5,6,7,8,9\}$ y $0\leq x-\sum_{i=0}^{n}\frac{\chi^{(n)}_{r}(i)}{10^i}<\frac{1}{10^n}$.
Para $n=0$ definamos $\chi^{(0)}_r:1\to\mathbb{N}$ por medio de $\chi^{(0)}_r(0)=0$. Luego, $0\leq r=r-\frac{\chi^{(0)}_r(0)}{10^0}<1=\frac{1}{10^0}$. Si $y:1\to\mathbb{N}$ es otra función tal que $y(0)\in\{0,1,2,3,4,5,6,7,8,9\}$ y $0\leq r-\frac{y(0)}{10^0}<\frac{1}{10^0}$, entonces, $y(0)\leq r<1$ y por tanto $y(0)=0$, ya que el único natural menor a $1$ es $0$. Por tanto, $\chi^{(0)}_r=y$, lo que demuestra que para $n=0$ el enunciado es verdadero.
Supongamos que el resultado es válido para algún $n\geq0$. Sea $\chi^{(n)}_r:n+1\to\mathbb{N}$ la única función de la hipótesis. Primero vamos a demostrar la existencia de una función $\chi^{(n+1)}_r$ con las propiedades deseadas y luego probaremos su unicidad. Dado que $0\leq r-\sum_{i=0}^{n}\frac{\chi^{(n)}_r(i)}{10^i}<\frac{1}{10^{n}}$ se sigue que $0\leq10^n(r-\sum_{i=0}^{n}\frac{\chi^{(n)}_r(i)}{10^i})<1$. Si ocurriera que $ r-\sum_{i=0}^{n}\frac{\chi^{(n)}_r(i)}{10^i}=0$, definimos $\chi^{(n+1)}_r:n+2\to\mathbb{N}$ como $\chi^{(n+1)}_r(i)=\left\{\begin{array}{lcc}
\chi^{(n)}_r(i) & \textnormal{si}\ i\in n+1\\
0 & \textnormal{si}\ i=n+1
\end{array}
\right.$
Definida de esa manera la función $\chi^{(n+1)}_r$ se satisfacen las hipótesis deseadas. Supongamos ahora que $0<r-\sum_{i=0}^{n}\frac{\chi^{(n)}_r(i)}{10^i}$ y definamos $\hat{r}:=10^n(r-\sum_{i=0}^{n}\frac{\chi^{(n)}_r(i)}{10^i})$, número real que sabemos satisface $0<\hat{r}<1$. Consideremos el conjunto $A=\{m\in\mathbb{N}:m\leq 10\hat{r}\}$, el cual es no vacío ya que $0<\hat{r}$ y por tanto $0\leq 10\hat{r}$; además, $A$ es acotado superiormente ya que $\hat{r}<1$ y por tanto $10\hat{r}<10$, de modo que si $m\in A$, entonces $m<10$. Así, existe $a=\textnormal{max}(A)$, el cual es un natural dentro del conjunto $\{0,1,2,3,4,5,6,7,8,9\}$. Por la maximalidad de $a$ se tiene que $10\hat{r}<a+1$ y así $\frac{a}{10}\leq\hat{r}<\frac{a}{10}+\frac{1}{10}$, es decir, $0\leq\hat{r}-\frac{a}{10}<\frac{1}{10}$.
Luego, dado que $\hat{r}=10^n(r-\sum_{i=0}^{n}\frac{\chi^{(n)}_r(i)}{10^i})$ se sigue que $0\leq r-\sum_{i=0}^{n}\frac{\chi^{(n)}_r(i)}{10^i}-\frac{a}{10^{n+1}}<\frac{1}{10^{n+1}}$. Si definimos $\chi^{(n+1)}_r:n+2\to\mathbb{N}$ por medio de $\chi^{(n+1)}_r(i)=\left\{\begin{array}{lcc}
\chi^{(n)}_r(i) & \textnormal{si}\ i\in n+1\\
a & \textnormal{si}\ i=n+1
\end{array}
\right.$

entonces $\chi^{(n+1)}_r$ es una función que satisface las condiciones deseadas. Así, hemos demostrado la existencia de una función con las características requeridas. Veamos que ésta es única. Supongamos que $\eta:n+2\to\mathbb{N}$ es otra función que satisface las mismas propiedades que $\chi_r^{(n+1)}$.
Luego, en particular, $0\leq r-\sum_{i=0}^{n+1}\frac{\eta(i)}{10^i}<\frac{1}{10^{n+1}}$ y por tanto $0\leq r-\sum_{i=0}^{n}\frac{\eta(i)}{10^i}<\frac{1}{10^{n+1}}+\frac{\eta(n+1)}{10^{n+1}}\leq \frac{1}{10^{n+1}}+\frac{9}{10^{n+1}}=\frac{10}{10^{n+1}}=\frac{1}{10^n}$. De este modo, la función $\eta\upharpoonright_{n+1}:n+1\to\mathbb{N}$ satisface las mismas condiciones que la función $\chi^{(n)}_r$, y por la unicidad de esta última función se sigue que $\eta(i)=\chi^{(n)}_r(i)$ para cada $i\in n+1$. Así, la función $\eta$ coincide con la función $\chi^{(n+1)}_r$ en $n+1$, por lo que resta probar que $\eta(n+1)=\chi^{(n+1)}_r(n+1)=a$.
Sabemos que $0\leq r-\sum_{i=0}^{n}\frac{\chi^{(n+1)}_r(i)}{10^i}-\frac{\eta(n+1)}{10^{n+1}}<\frac{1}{10^{n+1}}$ y por tanto, $0\leq 10^{n+1}(r-\sum_{i=0}^{n}\frac{\chi^{(n+1)}(i)}{10^i})-\eta(n+1)<1$, es decir, $\eta(n+1)\leq10\hat{r}<\eta(n+1)+1$, de modo que $\eta(n+1)\in A$ y por tanto $\eta(n+1)\leq a=\chi^{(n+1)}_r(n+1)$. Podemos elegir $k\in\{0,1,2,3,4,5,6,7,8,9\}$ tal que $\eta(n+1)+k=a$ y tenemos $a=\eta(n+1)+k\leq10\hat{r}$, razón por la cual \[k\leq10\hat{r}-\eta(n+1)<(\eta(n+1)+1)-\eta(n+1)=1\] y en consecuencia, $k=0$. Por tanto, $\eta(n+1)=a=\chi^{(n+1)}_r(n+1)$. Esto demuestra la unicidad de $\chi^{(n+1)}_r$.

Por lo tanto, para cada $n\in\mathbb{N}$ existe una única función $\chi^{(n)}_r:n+1\to\mathbb{N}$ tal que $\chi^{(n)}_r[\mathbb{N}]\subseteq\{0,1,2,3,4,5,6,7,8,9\}$ y $0\leq r-\sum_{i=0}^{n}\frac{\chi^{(n)}_r(i)}{10^i}<\frac{1}{10^n}$. En el proceso de la demostración de la existencia y unicidad de tales funciones, mostramos además que si $\chi^{(n+1)}_r:n+2\to\mathbb{N}$ es la única función con tales propiedades, entonces, $\chi^{(n)}_r=\chi^{(n+1)}_r\upharpoonright_{n+1}$, lo que muestra que el conjunto de funciones $\mathcal{F}:=\{\chi^{(n)}_r:n\in\mathbb{N}\}$ es un sistema de funciones compatibles y, por tanto, $\chi_r=\bigcup\mathcal{F}:\mathbb{N}\to\mathbb{N}$ es la única función con las propieades que enunciamos en la afirmación.

Estamos entonces en condiciones de definir una función $F:(0,1)\to\{f\in\mathbb{N}^{\mathbb{N}}:f[\mathbb{N}]\subseteq\{0,1,2,3,4,5,6,7,8,9\}\}$ por medio de $F(r)=\chi_r$. Dicha función es inyectiva, ya que si $\chi_r=\chi_{r’}$, entonces, para cada $n\in\mathbb{N}$, \[|r-r’|=|r-\sum_{i=0}^{n}\frac{\chi_r(i)}{10^i}+\sum_{i=0}^{n}\frac{\chi_{r’}(i)}{10^i}-r’|\] \[\leq|r-\sum_{i=0}^{n}\frac{\chi_r(i)}{10^i}|+|\sum_{i=0}^{n}\frac{\chi_{r’}(i)}{10^i}-r’|\] \[<\frac{1}{10^n}+\frac{1}{10^n}=\frac{2}{10^n}\] lo cual muestra que $|r-r’|=0$, es decir, $r=r’$. Por tanto, existe una función inyectiva de $(0,1)$ en $\mathbb{N}^{\mathbb{N}}$, de modo que $|(0,1)|\leq|\mathbb{N}^{\mathbb{N}}|=|\mathcal{P}(\mathbb{N})|$.

Ahora vamos a definir una función inyectiva de $2^{\mathbb{N}}$ en $(0,1)$. Sea $f\in2^{\mathbb{N}}$ y veamos que la sucesión de números racionales $(\sum_{i=0}^{n}\frac{f(i)}{10^{i+1}})_{n\in\mathbb{N}}$ converge. Dado que $f(i)\in\{0,1\}$ para cada $i\in\mathbb{N}$, la sucesión $(\sum_{i=0}^{n}\frac{f(i)}{10^{i+1}})_{n\in\mathbb{N}}$ es no decreciente. Luego, para cada $n\in\mathbb{N}$, $0\leq\sum_{i=0}^{n}\frac{f(i)}{10^{i+1}}\leq\sum_{i=0}^{n}\frac{1}{10^{i+1}}=\sum_{i=1}^{n+1}\frac{1}{10^i}=\frac{1-\frac{1}{10^{n+2}}}{1-\frac{1}{10}}-1=\frac{1-\frac{1}{10^{n+2}}}{(\frac{9}{10})}-1<\frac{1}{(\frac{9}{10})}-1=\frac{10}{9}-1=\frac{1}{9}<1$, por lo que dicha sucesión está acotada inferiormente por $0$ y superiormente por $\frac{1}{9}$ y, por tanto, converge a algún número real en el intervalo $[0,\frac{1}{9}]$. Sea $r_f\in[0,\frac{1}{9}]$ el límite de dicha sucesión.
Si la función $f$ no es la constante cero, entonces, $r_f\in(0,\frac{1}{9}]$, ya que existe $N\in\mathbb{N}$ tal que $f(N)=1$ y por tanto, para cada $n\geq N$, $\frac{1}{10^{N+1}}\leq\sum_{i=0}^{n}\frac{f(i)}{10^{i+1}}\leq r_f$.
Dado que el número real $r_f$ es único para cada $f\in2^{\mathbb{N}}$, estamos en condiciones de definir la siguiente función: sea $G:2^{\mathbb{N}}\to[0,1)$ tal que $G(f)=\left\{\begin{array}{lcc}
r_f & \textnormal{si}\ f\not=0\\
0 & \textnormal{si}\ f=0
\end{array}
\right.$

Veamos que $G$ es inyectiva. Por la definición de $G$ sabemos que si $f\not=0$, entonces $G(f)\not=G(0)$. Ahora, sean $f,h\in2^{\mathbb{N}}$ funciones no cero tales que $r_f=G(f)=G(h)=r_h$. Veamos que $f(n)=h(n)$ para cada $n\in\mathbb{N}$.
Algo que será de utilidad para probar esto último es la desigualdad $\sum_{i=n+1}^{m}\frac{1}{10^i}<\frac{1}{2\cdot10^n}$, la cual es cierta para cualesquiera $n,m\in\mathbb{N}$ tales que $n<m$. En efecto, si $n,m\in\mathbb{N}$ con $n<m$, tenemos \[\sum_{i=n+1}^{m}\frac{1}{10^i}=\sum_{i=0}^{m}\frac{1}{10^i}-\sum_{i=0}^{n}\frac{1}{10^i}=\frac{1-\frac{1}{10^{m+1}}}{1-\frac{1}{10}}-\frac{1-\frac{1}{10^{n+1}}}{1-\frac{1}{10}}=\frac{\frac{1}{10^{n+1}}-\frac{1}{10^{m+1}}}{(\frac{9}{10})}=\frac{\frac{1}{10^n}-\frac{1}{10^m}}{9}\] y este número racional es menor que $\frac{1}{2\cdot10^n}$, pues $\frac{1}{10^n}-\frac{1}{10^m}<\frac{1}{10^n}<\frac{9}{2}\cdot\frac{1}{10^n}$, pues $1<\frac{9}{2}$. Por tanto, para cualesquiera $n,m\in\mathbb{N}$ con $n<m$, $\sum_{i=n+1}^{m}\frac{1}{10^i}<\frac{1}{2\cdot10^n}$.

Ahora sí, veamos que $f(n)=h(n)$ para cada $n\in\mathbb{N}$.
Dado que las sucesiones de números racionales $(\sum_{i=0}^{n}\frac{f(i)}{10^{i+1}})_{n\in\mathbb{N}}$ y $(\sum_{i=0}^{n}\frac{h(i)}{10^{i+1}})_{n\in\mathbb{N}}$ convergen al número real $r_f$, existe $m\in\mathbb{N}$ tal que para cada $n>m$, $0\leq r_f-\sum_{i=0}^{n}\frac{f(i)}{10^{i+1}}<\frac{1}{4\cdot10}$ y $0\leq r_f-\sum_{i=0}^{n}\frac{h(i)}{10^{i+1}}<\frac{1}{4\cdot10}$. Luego, $$|\sum_{i=0}^{m+1}\frac{f(i)}{10^{i+1}}-\sum_{i=0}^{m+1}\frac{h(i)}{10^{i+1}}|=|\sum_{i=0}^{m+1}\frac{f(i)}{10^{i+1}}-r_f+r_f-\sum_{i=0}^{m+1}\frac{h(i)}{10^{i+1}}|$$ $$\leq|\sum_{i=0}^{m+1}\frac{f(i)}{10^{i+1}}-r_f|+|r_f-\sum_{i=0}^{m+1}\frac{h(i)}{10^{i+1}}|<\frac{1}{4\cdot10}+\frac{1}{4\cdot10}=\frac{1}{2\cdot10}.$$ Por otro lado, $|\frac{f(0)-h(0)}{10}|-|\sum_{i=1}^{m+1}\frac{f(i)-h(i)}{10^{i+1}}|\leq|\sum_{i=0}^{m+1}\frac{f(i)-h(i)}{10^{i+1}}|<\frac{1}{2\cdot10}$ y así \[|\frac{f(0)-h(0)}{10}|<\frac{1}{2\cdot10}+|\sum_{i=1}^{m+1}\frac{f(i)-h(i)}{10^{i+1}}|\leq\frac{1}{2\cdot10}+\sum_{i=1}^{m+1}\frac{|f(i)-h(i)|}{10^{i+1}}.\] Dado que $|f(i)-h(i)|=\left\{\begin{array}{lcc}
1 & \textnormal{si}\ \{f(i),h(i)\}=\{0,1\}\\
0 & \textnormal{si}\ f(i)=h(i)=0\ \textnormal{o}\ f(i)=h(i)=1
\end{array}
\right.$ entonces, $|f(i)-h(i)|\leq1$ para cada $i\in\mathbb{N}$ y, como $\sum_{i=1}^{m+1}\frac{1}{10^{i+1}}=\sum_{i=2}^{m+2}\frac{1}{10^i}<\frac{1}{2\cdot10}$, se sigue que \[\frac{|f(0)-h(0)|}{10}\leq\frac{1}{2\cdot10}+\sum_{i=1}^{m+1}\frac{1}{10^{i+1}}<\frac{1}{10}\] lo cual implica que $|f(0)-h(0)|=0$, es decir, $f(0)=h(0)$. Supongamos que para algún $n\in\mathbb{N}$ hemos probado que $f(m)=h(m)$ para cada $m\leq n$ y veamos que $f(n+1)=h(n+1)$.
Sea $m\in\mathbb{N}$, $m\geq n+1$, tal que para cada $k>m$, $|r_f-\sum_{i=0}^{k}\frac{f(i)}{10^{i+1}}|<\frac{1}{4\cdot10^{n+2}}$ y $|r_f-\sum_{i=0}^{k}\frac{h(i)}{10^{i+1}}|<\frac{1}{4\cdot10^{n+2}}$.
Luego, $|\sum_{i=n+1}^{m+1}\frac{f(i)-h(i)}{10^{i+1}}|=|\sum_{i=0}^{m+1}\frac{f(i)-h(i)}{10^{i+1}}|\leq|r_f-\sum_{i=0}^{m+1}\frac{f(i)}{10^{i+1}}|+|r_f-\sum_{i=0}^{m+1}\frac{h(i)}{10^{i+1}}|<\frac{1}{2\cdot10^{n+2}}$. Por otro lado, \[\frac{|f(n+1)-h(n+1)|}{10^{n+2}}-|\sum_{i=n+2}^{m+1}\frac{f(i)-h(i)}{10^{i+1}}|\leq|\sum_{i=n+1}^{m+1}\frac{f(i)-h(i)}{10^{i+1}}|<\frac{1}{2\cdot10^{n+2}}\] por lo que $$\frac{|f(n+1)-h(n+1)|}{10^{n+2}}<\frac{1}{2\cdot10^{n+2}}+|\sum_{i=n+2}^{m+1}\frac{f(i)-h(i)}{10^{i+1}}|\leq\frac{1}{2\cdot10^{n+2}}+\sum_{i=n+2}^{m+1}\frac{|f(i)-h(i)|}{10^{i+1}}$$ \[\leq\frac{1}{2\cdot10^{n+2}}+\sum_{i=n+2}^{m+1}\frac{1}{10^{i+1}}=\frac{1}{2\cdot10^{n+2}}+\sum_{i=n+3}^{m+2}\frac{1}{10^i}<\frac{1}{2\cdot10^{n+2}}+\frac{1}{2\cdot10^{n+2}}=\frac{1}{10^{n+2}}\]
y en consecuencia, $|f(n+1)-h(n+1)|=0$, es decir, $f(n+1)=h(n+1)$. Por tanto, para cada $n\in\mathbb{N}$, $f(n)=h(n)$, lo que demuestra que $f=h$.
Así, la función $G$ es inyectiva y, por consiguiente, $|2^{\mathbb{N}}|\leq|[0,1)|$. Dado que $|[0,1)|=|(0,1)|$, se sigue que $|\mathcal{P}(\mathbb{N})|=|2^{\mathbb{N}}|\leq|(0,1)|$. Por el teorema de Cantor-Schröder-Bernstein concluimos que $|(0,1)|=|\mathcal{P}(\mathbb{N})|$.

$\square$

Concluimos la entrada con el siguiente corolario, cuya prueba es consecuencia del teorema anterior y el hecho que $|\mathbb{R}|=|(0,1)|$.

Corolario. $\mathbb{R}$ y $\mathcal{P}(\mathbb{N})$ son equipotentes.

$\square$

Tarea moral

  1. Demuestra que el conjunto $\mathbb{N}^{\nearrow\mathbb{N}}:=\{f\in\mathbb{N}^{\mathbb{N}}:f(n)<f(n+1)\ \textnormal{para cada}\ n\in\mathbb{N}\}$ es equipotente a $[\mathbb{N}]^{\mathbb{N}}$.
  2. Demuestra que para cualquier conjunto infinito $X$ que contenga un conjunto numerable se cumple que $|X\setminus A|=|X|$, para cada $A\subseteq X$ conjunto finito.
  3. Sean $a,b\in\mathbb{R}$ con $a<b$. Demuestra que $|(a,b)|=|(0,1)|$.
  4. Exhibe una biyección entre $\mathbb{R}$ y $[0,\infty):=\{r\in\mathbb{R}:r\geq0\}$.

Más adelante…

En la siguiente entrada introduciremos uno de los axiomas más relevantes de la teoría de conjuntos, el axioma de elección. Dicho axioma nos permitirá responder algunas de las interrogantes que quedaron abiertas en secciones anteriores y, además, veremos algunas de sus sorpredentes consuecuencias.

Entradas relacionadas

  1. Hernández, F., Teoría de Conjuntos, México: Aportaciones Matemáticas No.13,
    SMM, 1998 ↩︎
  2. Spivak, M., Cálculo Infinitesimal (2a ed). México: Reverté, 1998. ↩︎

Conjuntos relativamente compactos y totalmente acotados

Por Lizbeth Fernández Villegas

Introducción

En la sección La métrica de Hausdorff definimos que un conjunto acotado es aquel que está contenido en una bola del espacio métrico. Hay una propiedad más específica de los, así llamados, conjuntos totalmente acotados. Consiste en encerrar al conjunto en una unión de bolas abiertas tan pequeñas como se desee. La particularidad radica en que, por muy pequeño que sea el radio de estas bolas, bastará con una cantidad finita de ellas para cubrir todo el conjunto. Formalmente esta idea se expresa como:

Definición. Conjunto totalmente acotado: Sea $(X,d)$ un espacio métrico y $A \subset X$. Si para todo $\varepsilon >0$ existe una cantidad finita de puntos $a_1,…,a_n \in A$ tales que
$$A \subset \underset{i =1,…,n}{\bigcup}\, B(a_i,\varepsilon)$$
diremos que $A$ es totalmente acotado.

Conjunto totalmente acotado

Por supuesto que esta propiedad asegura que el conjunto sea acotado.

Proposición. Si $A \subset X$ es totalmente acotado, entonces $A$ es acotado.

Demostración:
Como $A$ es totalmente acotado, existen $a_1,a_2,…,a_n \in A$ tales que $A \subset \underset{1\leq i \leq n}{\bigcup}B(a_i,1).$ Ahora busquemos una bola abierta en $X$ que contenga al conjunto $A.$

Cubrimos al conjunto con bolas de radio $1$

Considera la máxima distancia entre $a_1$ y el resto de los centros. Llamémosla $M$ es decir, $M = máx\{d(a_1,a_k): k=2,…,n\}.$ A continuación identificaremos una bola abierta con centro en $a_1$ que cumplirá lo deseado.

Si $x \in A$ se tiene que $x \in B(a_k,1)$ para algún $k \in \{1,…,n\},$ así:
\begin{align*}
d(a_1,x)&\leq d(a_1,a_k) + d(a_k,x) \\
&\leq M + 1
\end{align*}

Por lo tanto $A \subset B(a_1,M+1),$ concluyendo así que $A$ es acotado.

Contrario a lo anterior, en general no es cierto que todo conjunto acotado sea totalmente acotado:

Contraejemplo: Considera el espacio de las sucesiones en $\mathbb{R}$ dado por $l_1 =\{(x_n): \sum_{n=1}^{\infty} x_n < \infty \}$ con la norma definida como $\norm{(x_n)}_1 = \sum_{n=1}^{\infty}|x_n|.$

Sea $A=\{e_i: i \in \mathbb{N}\}$ donde $e_i$ es la sucesión que toma a $1$ como valor en la entrada $i$ y $0$ en el resto.

Este conjunto es acotado en $l_1$ pues para cada $i \in \mathbb{N}, \, \norm{e_i}_1= \sum_{n=1}^{\infty}|x_n|= |1|=1$ de modo que $A \subset B(\mathcal{0},2)$ donde $\mathcal{0}$ es la sucesión constante cero.

No obstante, $A$ no es totalmente acotado. Si calculamos la distancia entre dos sucesiones en $A$ tenemos que para cualesquiera $i \neq j, \, d(e_i,e_j)= |1|+|1|= 2.$ Por lo tanto si se elige $\varepsilon >0,$ tal que $\varepsilon \leq 2$ cada bola de radio $\varepsilon$ con centro en alguna sucesión de $A$ excluye al resto de los elementos de $A$, de modo que no será posible cubrir $A$ con una cantidad finita de bolas de radio $\varepsilon$ cuyo centro esté en $A.$

Bolas de radio $\varepsilon \leq 2$

Esto nos permite concluir que $A$ no es totalmente acotado.

El ejemplo nos incentiva algunas preguntas: ¿Es el conjunto $A$ cerrado en $l_1?$ ¿Es compacto? ¿Bastará con que un conjunto sea totalmente acotado para que sea compacto? Al final de esta sección podrás responderlas.

Por lo pronto veamos que la propiedad de ser totalmente acotado, se hereda en subconjuntos:

Proposición: Sea $A \subset X$ un conjunto totalmente acotado. Si $B \subset A$ entonces $B$ es totalmente acotado.

Demostración:
Sea $\varepsilon >0.$ Como $A$ es totalmente acotado, existen puntos $a_1,…,a_n \in A$ tales que:

$$B \subset A \subset \underset{i =1,…,n}{\bigcup}\, B(a_i,\frac{\varepsilon}{2})$$

Consideremos únicamente a las bolas abiertas que tienen elementos de $B.$ Sea $\mathcal{J}:= \{j \in \{1,…,n\}: B(a_j, \frac{\varepsilon}{2}) \cap B \neq \emptyset\}$En efecto, $B \subset \underset{j \in \mathcal{J}}{\bigcup}\, B(a_j,\frac{\varepsilon}{2})$

Para cada $j \in \mathcal{J},$ sea $b_j \in B(a_j,\frac{\varepsilon}{2}) \cap B.$ Nota que dicha bola está contenida en $B(b_j,\varepsilon)$ por lo siguiente:

Si $x \in B(a_j,\frac{\varepsilon}{2})$ entonces $d(x,b_j) \leq d(x,a_j) + d(a_j,b_j) < \frac{\varepsilon}{2}+\frac{\varepsilon}{2} = \varepsilon.$

Por lo tanto para cada $j \in \mathcal{J}, \, B(a_j,\frac{\varepsilon}{2}) \subset B(b_j,\varepsilon),$ de modo que $B \subset \underset{j \in \mathcal{J}}{\bigcup}\, B(a_j,\frac{\varepsilon}{2}) \subset \underset{j \in \mathcal{J}}{\bigcup}\, B(b_j,\varepsilon)$ lo que nos permite concluir que $B$ es totalmente acotado.

Proposición: Si $A \subset X$ es totalmente acotado entonces $\overline{A}$ también es totalmente acotado. La demostración se deja como ejercicio.

Proposición: Si $A \subset X$ es compacto entonces $A$ es totalmente acotado.

Demostración:
Sea $\varepsilon >0$ y $A$ un conjunto compacto. Para cada punto $a \in A$ considera $B(a,\varepsilon).$ Entonces el conjunto $\{B(a,\varepsilon):a \in A\}$ es una cubierta abierta de $A.$

Cubierta abierta de bolas de radio $\varepsilon.$

Como $A$ es compacto entonces existe una subcubierta finita $\{B(a_1,\varepsilon),B(a_2,\varepsilon),…,B(a_n,\varepsilon)\}.$ Por lo tanto, $A$ es totalmente acotado.

Cubierta abierta finita

En general no es cierto que un conjunto totalmente acotado sea compacto. El regreso requiere de una propiedad más:

Proposición: $A \subset X$ es compacto si y solo si es completo y totalmente acotado.

Demostración:
Supón que $A$ es un conjunto compacto. Ya vimos que esto lo hace totalmente acotado, ahora comprobemos que también es completo. Sea $(x_n)_{n \in \mathbb{N}}$ una sucesión de Cauchy en $A.$ Por lo visto en la entrada de Compacidad en espacios métricos sabemos que $(x_n)$ tiene una subsucesión que converge en $A.$ Luego, por la entrada Sucesiones de Cauchy sabemos que esto permite concluir que $(x_n)$ es convergente, por lo tanto $A$ es completo.

En el regreso partimos de que $A$ es completo y totalmente acotado. Supongamos por el contrario que $A$ no es compacto. Entonces existe una cubierta abierta $\mathcal{C} = \{ A_i: i \in \mathcal{I} \}$ de $A$ tal que no tiene subcubierta finita.

Como $A$ es totalmente acotado, entonces está contenido en una unión finita de bolas de radio $1$

Al menos una de esas bolas no puede ser cubierta por una unión finita de elementos de $\mathcal{C}$ pues si todas las bolas pudieran ser cubiertas de esa forma, entonces sí tendríamos una subcubierta finita de $\mathcal{C}$ para $A.$

Sea $B(x_0,1)$ esa bola. Como está contenida en la bola cerrada $\overline{B}(x_0,1)$, que es compacta y, en consecuencia, totalmente acotada, se sigue que $B(x_0,1)$ también es totalmente acotada. Por lo tanto, está cubierta por un número finito de bolas abiertas de radio $\frac{1}{2}.$

Por el argumento arriba mencionado, existe una bola $B(x_1,\frac{1}{2})$ que no puede ser cubierto por una cantidad finita de elementos de $\mathcal{C}.$

Continuando con este procedimiento, podemos construir una sucesión $(x_n)_{n \in \mathbb{N}} \,$ donde para cada $n \in \mathbb{N}, \, x_n$ es el centro de una bola de radio $\frac{1}{n+1}$ que no puede ser cubierta por una cantidad finita de elementos de $\mathcal{C}$ y $x_n$ está en la bola abierta $B(x_{n-1},\frac{1}{n}).$

Queda como ejercicio al lector demostrar que la sucesión $(x_n)$ es de Cauchy. Como $A$ es completo, se sigue que $x_n \to x^*$ para algún $x^* \in A.$

Sea $\mathcal{U} \in \mathcal{C}$ tal que $x^* \in \mathcal{U}.$ Como $\mathcal{U}$ es abierto, existe $\varepsilon >0$ tal que $B(x^*,\varepsilon) \subset \mathcal{U}.$ Como $x_n \to x^*$ existe $N \in \mathbb{N}$ tal que $\forall \, k \geq N, d(x_k, x^*)< \frac{\varepsilon}{2}.$

Sea $K \in \mathbb{N}$ tal que $K > N$ y además, $\frac{1}{K} < \frac{\varepsilon}{2}.$ Demostraremos que $B(x_{K-1}, \frac{1}{K}) \subset \mathcal{U}.$

Si $x \in B(x_{K-1}, \frac{1}{K})$ se sigue que:
\begin{align*}
d(x,x^*) &\leq d(x,x_{K-1}) + d(x_{K-1},x^*) \\
&< \frac{1}{K} + \frac{\varepsilon}{2} \\
&< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \\
&= \varepsilon
\end{align*}

En consecuencia $B(x_{K-1}, \frac{1}{K}) \subset \mathcal{U}$ lo cual es una contradicción, pues habíamos dicho que no puede ser cubierto por una cantidad finita de elementos de $\mathcal{C}.$ Por lo tanto $A$ es un conjunto compacto.

Hemos visto que si un conjunto no es cerrado tampoco es compacto. No obstante puede ocurrir que la cerradura del conjunto sí lo sea. Tenemos la siguiente:

Definición. Conjunto relativamente compacto: Sea $(X,d)$ espacio métrico y sea $A \subset X$. Diremos que $A$ es relativamente compacto si $\overline{A}$ es compacto.

Proposición: Sea $(X,d)$ un espacio métrico completo. Entonces $A \subset X$ es relativamente compacto en $X$ si y solo si es totalmente acotado.

Demostración:
Si $A$ es relativamente compacto entonces $\overline{A}$ es compacta en $X$ y por tanto, totalmente acotado. Como $A \subset \overline{A}$ concluimos por una proposición vista arriba que $A$ también es totalmente acotado.

Por otro lado, partiendo de que $A$ es totalmente acotado tenemos por la proposición que dejamos como ejercicio, que $\overline{A}$ también es totalmente acotado. Además, $\overline{A}$ es completo, pues es un subconjunto cerrado en $X$ completo, (ver Espacios métricos completos) así podemos concluir por la proposición de arriba, que $\overline{A}$ es compacto.

Más adelante…

Usaremos los términos vistos en esta entrada y sus equivalencias para enunciar y demostrar el teorema de Arzelá-Ascoli.

Tarea moral

  1. Considera el espacio de las sucesiones en $\mathbb{R}$ dado por $l_1 =\{(x_n): \sum_{n=1}^{\infty} x_n < \infty \}$ donde la norma se define como $\norm{(x_n)}_1 = \sum_{n=1}^{\infty}|x_n|.$ Sea $A=\{e_i: i \in \mathbb{N}\}$ donde $e_i$ es la sucesión que toma a $1$ como valor en la entrada $i$ y $0$ en el resto. ¿Es el conjunto $A$ cerrado en $l_1?$ ¿Es compacto?
  2. Da un ejemplo de un conjunto totalmente acotado que no sea compacto.
  3. Demuestra que si $A$ es totalmente acotado entonces $\overline{A}$ también es totalmente acotado.
  4. Demuestra que la sucesión $(x_n)_{n \in \mathbb{N}}$ de la demostración de $»A \subset X$ es compacto si y solo si es completo y totalmente acotado«, es de Cauchy.
  5. Sea $X$ un espacio métrico. Demuestra que si toda sucesión en $X$ tiene una subsucesión que converge en $X$ entonces es completo y totalmente acotado. Nota que es lo que falta para concluir que son equivalentes:
    a) $X$ es compacto.
    b) Toda sucesión en $X$ tiene una subsucesión que converge en $X.$
    c) $X$ es completo y totalmente acotado.

Enlaces

Convergencia uniforme de series en espacios de Banach

Por Lizbeth Fernández Villegas

Introducción

Probablemente recuerdes de otros cursos términos que son de la forma $\sum_{k=1}^{\infty}\, a_k.$ Hacen alusión a una suma de infinitos términos. Deseamos que sea posible obtener un resultado de esta operación, pero no siempre existe. Para el caso en que los términos $a_k$ son números reales, puedes consultar las entradas Cálculo Diferencial e Integral II: Definición de series y series infinitas
Cálculo Diferencial e Integral II: Criterio de la divergencia y de acotación
Cálculo Diferencial e Integral II: Criterio de comparación y comparación del limite.

En esta sección trabajaremos con series en un espacio vectorial normado. Ya que estas se construyen a partir de sucesiones, podemos esperar que varios resultados de convergencia, vistos hasta el momento, encontrarán su versión en las sumas infinitas.

Definición. Suma parcial. Sea $V=(V, \norm{\cdot})$ un espacio vectorial normado y sea $(v_n)_{n \in \mathbb{N}} \,$ una sucesión en $V.$ Consideremos la suma de los primeros $n$ términos con $n \in \mathbb{N}.$ Se llama suma parcial y está dada por:

$$w_n:= \sum_{k=1}^{n} \, v_k.$$

Podemos pensar que conforme incrementa el valor de $n$ más términos de la sucesión son considerados en la suma. Se forma entonces una sucesión con los resultados $w_n. $ Así, $\, (w_n)_{n \in \mathbb{N}} \,$ es la sucesión de sumas parciales. ¿Será convergente?

Definición. Serie convergente. Sea $(v_n)_{n \in \mathbb{N}}$ una sucesión en $V=(V, \norm{\cdot}).$ Si la sucesión de sumas parciales $(w_n)_{n \in \mathbb{N}} \,$ converge en $V,$ decimos que la serie denotada como

$$\sum_{k=1}^{\infty} \, v_k$$

converge en $V$ y equivale al límite de las sumas parciales, es decir.

$$ \underset{n \to \infty}{lim} \, w_n \, = \, \sum_{k =1}^{\infty} \, v_k.$$

Dejaremos como ejercicio demostrar que si una serie converge, entonces su límite es único.

Representación sumas parciales de $(v_n)$

Se satisface la siguiente:

Proposición. Si la serie $\sum_{k=1}^{\infty} \, v_k$ converge en $V,$ entonces $(v_n)_{n \in \mathbb{N}} \,$ converge a $0$ en $V.$ Se sigue también que esta sucesión es acotada.

Primeros términos de la sucesión en $\mathbb{R}$ $((\frac{1}{2})^n)$ donde $\sum_{k=1}^{\infty} (\frac{1}{2})^n=1$

Demostración:
Sea $\varepsilon >0.$ Ya que $\sum_{k=1}^{\infty} \, v_k$ converge en $V,$ por definición, $(w_n)_{n \in \mathbb{N}}$ converge en $V$ y por tanto es de Cauchy, así existe $N \in \mathbb{N}$ tal que para cualesquiera $n,m \geq N,$

$$\norm{w_n-w_m} < \varepsilon$$

en particular, para cada $n \geq N$ se cumple

\begin{align*}
&&\norm{w_{n+1}-w_n} &< \varepsilon\\
&\iff& \norm{\sum_{k=1}^{n+1} v_k \, – \sum_{k=1}^{n} v_k} &< \varepsilon\\
&\iff& \norm{v_{n+1}} &< \varepsilon
\end{align*}

Por lo tanto $v_n \to 0$ en $V,$ y por lo visto en Convergencia, concluimos que $(v_n)_{n \in \mathbb{N}} \,$ es acotada.

Cuando el espacio normado $V$ es completo se tiene un resultado que muestra condiciones necesarias y suficientes para que una serie sea convergente:

Proposición. Criterio de Cauchy para series. Sea $V$ un espacio de Banach y sea $(v_n)_{n \in \mathbb{N}} \,$ una sucesión en $V.$ La serie $\sum_{k=1}^{\infty} \, v_k$ converge en $V$ si y solo si para cada $\varepsilon >0$ existe $N_0 \in \mathbb{N}$ tal que
$$\norm{v_{N+1}+…+v_{N+j}}< \varepsilon$$
para cualquier $N \geq N_0$ y cualquier $j \geq 1.$

Demostración:
Sea $\varepsilon > 0.$ La serie $\sum_{k=1}^{\infty} \, v_k$ converge en $V$ si y solo si $(w_n)_{n \in \mathbb{N}}$ converge en $V$. Como $V$ es de Banach esto ocurre si y solo si $(w_n)_{n \in \mathbb{N}}$ es de Cauchy, es decir, si y solo si existe $N_0 \in \mathbb{N}$ tal que para cualesquiera $n,m \geq N_0,$
$$\norm{w_n -w_m} < \varepsilon$$
si y solo si para cualquier $N \geq N_0$ y cualquier $j \geq 1$, como $N+j > N \geq N_0$ se sigue que
\begin{align*}
&&\norm{w_{N+j} -w_{N}} < \varepsilon\\
&\Rightarrow &\norm{\sum_{k=1}^{N+j} v_k \, – \sum_{k=1}^{N} v_k} < \varepsilon\\
&\Rightarrow &\norm{v_{N+1}+…+v_{N+j}} < \varepsilon
\end{align*}

que es lo que queríamos demostrar.

Hay otra forma de asegurar la convergencia de una serie a partir de la convergencia de la serie formada por la norma de sus términos. Es decir:

Teorema. Criterio de Weierstrass. Sea $V$ un espacio de Banach y sea $(v_n)_{n \in \mathbb{N}} \,$ una sucesión en $V.$ Si la serie de números reales $\sum_{k=1}^{\infty} \, \norm{v_k}$ converge decimos que es absolutamente convergente. En este caso se cumple que la serie $\sum_{k=1}^{\infty} \, v_k$ converge en $V$ y además:
$$\norm{\sum_{k=1}^{\infty} \, v_k} \leq \sum_{k=1}^{\infty} \, \norm{v_k}.$$

Demostración:
Dado que $\sum_{k=1}^{\infty} \, \norm{v_k}$ converge en $\mathbb{R}$ que es de Banach, se sigue por la proposición anterior, que existe $N_0 \in \mathbb{N}$ tal que para cualquier $N \geq N_0$ y cualquier $j \geq 1$ se cumple
\begin{align*}
&&&|\, \norm{v_{N+1}}+…+\norm{v_{N+j}} \,|&< \varepsilon\\
&\Rightarrow &&\norm{v_{N+1}}+…+\norm{v_{N+j}}&< \varepsilon\\
&\Rightarrow &\norm{v_{N+1}+…+v_{N+j}}\leq &\norm{v_{N+1}}+…+\norm{v_{N+j}} &< \varepsilon.
\end{align*}

Nuevamente por la proposición anterior concluimos que la serie $\sum_{k=1}^{\infty} \, v_k$ converge en $V.$

Dado que para cada $n \in \mathbb{N}$ se cumple

\begin{align*}
&&\norm{\sum_{k=1}^{n}v_k} &\leq \sum_{k=1}^{n} \norm{v_k}\\
&\Rightarrow& \underset{n \to \infty}{lim} \, \norm{\sum_{k=1}^{n}v_k} &\leq \underset{n \to \infty}{lim} \, \sum_{k=1}^{n} \norm{v_k}\\
&\Rightarrow& \norm{\sum_{k=1}^{\infty} \, v_k} &\leq \sum_{k=1}^{\infty} \, \norm{v_k}.
\end{align*}

Con lo cual concluimos la demostración. Este teorema tiene su regreso en la siguiente:

Proposición. Sea $(V, \norm{\cdot})$ un espacio vectorial normado. Entonces $V$ es completo si y solo si toda serie en $V$ absolutamente convergente es convergente. La demostración del regreso se dejará como ejercicio.

Más adelante…

Ya que nos familiarizamos con la idea de las sumas infinitas, procederemos con unas que tendrán como términos funciones. Debido a que la suma de funciones es una función, de esta naturaleza será el límite.

Tarea moral

  1. Demuestra que si una serie de un espacio vectorial normado es convergente, entonces su límite es único.
  2. Sea $(V, \norm{\cdot})$ un espacio vectorial normado. Prueba que si toda serie en $V$ absolutamente convergente es convergente entonces $V$ es completo. A continuación una guía para la demostración:
    a) Sea $(v_n)_{n \in \mathbb{N}}$ una sucesión de Cauchy en $V.$ Construye una subsucesión $(v_{nk})$ de $(v_n)$ tal que $\norm{x_{n_{k+1}}-x_{nk}}< \frac{1}{2^k}.$
    b) Prueba que $sum_{k=1}^{\infty}(x_{n_{k+1}}-x_{nk})$ es convergente.
    c) Prueba que $(v_{nk})$ converge y concluye que $(v_n)$ es convergente.

Enlaces:

Álgebra Moderna I: Guía de Notación

Por Cecilia del Carmen Villatoro Ramos

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

En los libros de matemáticas es muy común dedicar algunas páginas a un glosario de notación, que resulta muy útil para recordar la notación del libro o, si sólo estás consultando un capítulo, entenderlo sin que la notación sea un impedimento.

Inspirados por estos libros, se recopiló todos los signos que usamos a lo largo del curso y lo dividimos en distintas secciones que pueden ayudarte a encontrarlos.

Si en algún momento se te olvida lo que significa la notación puedes regresar aquí para refrescar tu memoria y hasta para encontrar la entrada en donde se define el concepto.

Álgebra general: Aquí están los símbolos de conceptos algebraicos que son explicados en algún otro curso. Cabe aclarar que a lo mejor no se usa el mismo símbolo o notación que en otros textos, pero los conceptos son los mismos.

Conjuntos generales: Aquí se enlistan todos los conjuntos que probablemente ya conoces, podemos decir que son los conjuntos básicos como el de los reales, enteros, racionales, etc. Con seguridad, estos conjuntos se definen en algún curso introductorio al Álgebra, como Álgebra Superior I.

Conjuntos especiales y grupos nuevos: Aquí están los conjuntos algebraicos que usamos en este curso y que a lo mejor se mencionan en otros cursos más avanzados. Son conjuntos que definimos o describimos para usarlos y que probablemente no conocías hasta ahora.

Teoría de grupos: Aquí están todos los símbolos y notaciones propias del curso, es decir, las que vamos definiendo formalmente y forman parte del contenido de Álgebra Moderna I. Se encuentran en orden de aparición. Observarás que hay algunos grupos y conjuntos. A diferencia de los conjuntos especiales, estos conjuntos nacen de la teoría de grupos. Es decir, suelen ser subconjuntos o subgrupos que dependen de un grupo $G$. Aquí encontrarás los enlaces a las entradas en donde dicho concepto se define.

Álgebra general

SímboloSignificado
$(n;m)$Máximo común divisor
$(n;m)=1$$n$ y $m$ son primos relativos
$a \thicksim b$$a$ está relacionado con $b$
$\varphi(d)$Phi de Euler
$\therefore$Por lo tanto
$A\;\dot\cup\; B$Unión disjunta de $A$ y $B$
$A \setminus B$Diferencia de conjutos. Los elementos de $A$ que no pertenecen a $B$
$m!$Factorial de $m$
$\ln$Logaritmo natural

Conjuntos generales

SímboloSignificado
$\emptyset$Conjunto vacío
$\r$Números Reales
$\z$Números Enteros
$\mathbb{Q}$Números Racionales
$\n$Números Naturales
$\mathbb{C}$Números Complejos
$\mathbb{C}^*$Números Complejos sin el cero
$\r^+$Números Reales positivos
$\z^+$Números Enteros positivos
$\z^+ \cup \{0\}$Enteros positivos con el 0
$\z_m$Enteros módulo $m$
$\z_p$Enteros módulo $p$, con $p$ primo
$\mathcal{M}_{2\times2}(\z)$Matrices $2\times 2$ con coeficientes enteros
$\mathcal{M}_{n\times n}(\r)$Matrices $n\times n$ con coeficientes reales
$\mathcal{P}(X)$Conjunto potencia del conjunto $X$

Conjuntos especiales y grupos nuevos

SímboloSignificadoDefinición en…
$S_3$Funciones biyectivas de ${1,2,3}$ en sí mismoOperación binaria
$S_n$Grupo simétrico de $n$ símbolosPermutaciones y Grupo Simétrico
$GL(n,\r)$Grupo lineal generalDefinición de Grupos
$SL(n,\r)$Grupo lineal especialDefinición de Grupos
$SO(n,\r)$Grupo ortogonal especialDefinición de Grupos
$O(n,\r)$Grupo ortogonalDefinición de Grupos
$D_{2(n)}$Grupo diédrico, $2n$ simetrías de un polígono de $n$ ladosDihedral Group de Socratica
$V$Grupo de KleinOrden de un elemento y Grupo cíclico
$U(\z_m)$Conjunto de unidades de $\z_m$Orden de un elemento y Grupo cíclico
$Q$, $Q_8$Grupo de los cuaterniosPalabras
$A_n$Grupo alternanteParidad de una permutación

Teoría de grupos

SímboloSignificadoAparece en…
$*$Operación binariaOperación binaria
$(G, *)$Grupo $G$Definición de Grupos
$\bar{a},\, a^{-1}$Elemento inverso de $a$, bajo $*$Definición de Grupos
$e$Elemento neutro del grupo $G$Definición de Grupos
$\circ$Composición de funciones, $f\circ g(x)= f(g(x))$Definición de Grupos
$\text{id}_\r$Función identidad de $\r$ en $\r$Definición de Grupos
$H\leq G$$H$ es subgrupo de $G$Subgrupos
$o(a)$Orden de un elemento $a$ de un grupo finitoOrden de un elemento y Grupo cíclico
$\left< a \right>$Subgrupo cíclico de $G$ generado por $a$Orden de un elemento y Grupo cíclico
$|G|$Orden de $G$, con $G$ grupoOrden de un grupo
$\#A$Orden o cardinalidad de un conjunto $A$Paridad de una permutación
$\left< X \right>$Subgrupo de $G$ generado por $X$Teoremas sobre subgrupos y
Subgrupo generado por $X$
$W_X$Conjunto de todas las palabras de $X$Palabras
$\text{sop}\;\alpha$Soporte de $\alpha$Permutaciones y Grupo Simétrico
$\text{long} \; \alpha$Longitud de un ciclo $\alpha$Permutaciones y Grupo simétrico
$\sigma_{\alpha,i}$Ciclo definido por $\alpha$ y por $i$Permutaciones disjuntas
$V(x_1,\dots, x_n)$Polonomio de VandermondeMisma Estructura Cíclica, Permutación
Conjugada y Polinomio de Vandermonde
$sgn \: \alpha$Función signo de $\alpha$Paridad de una permutación
$aH$, $Ha$Clase lateral izquierda/derecha de $H$ en $G$ con representante $a$.Producto de subconjuntos y Clases Laterales
$[G:H]$Índice de $H$ en $G$Relación de equivalencia dada por un subgrupo e índice de $H$ en $G$
$\text{gen }C$Conjunto de generadores del grupo cíclico $C$Caracterización de grupos cíclicos
$aHa^{-1}$Conjugado de $H$ por el elemento $a$Subgrupo Conjugado, Subgrupo Normal y Conmutatividad Parcial
$N\unlhd G$, $G\unrhd N$$N$ es subconjunto normal de $G$Subgrupo Conjugado, Subgrupo Normal y Conmutatividad Parcial
$G/N$Grupo cociente de $G$ módulo $N$Grupo Cociente
$[a,b]$El conmutador de $a$ y $b$Subgrupo Conmutador
$G’$Subgrupo conmutador de $G$Subgrupo Conmutador
$G \cong \bar{G}$$G$ es isomorfo a $\bar{G}$Homomorfismo, Monomorfismo, Epimorfismo, Isomorfismo y Automorfismo
$\text{Núc}\; \varphi$, $\text{Ker}\; \varphi$Núcleo de $\varphi$, Kernel de $\varphi$Núcleo e Imagen de un Homomorfismo
$\text{Im} \; \varphi$Imagen de $\varphi$Núcleo e Imagen de un Homomorfismo
$\text{Sub}_N^G$Conjunto de subgrupos de $G$ que contienen a $N$ como subgrupoCuarto Teorema de Isomorfía
$\text{Sub}_{ G/N}$Conjunto de subgrupos de $G/N$Cuarto Teorema de Isomorfía
$\mathcal{O}(x)$Órbita de $x$Órbita de $x$ y tipos de acciones
$G_x$Estabilizador de $x$Órbita de $x$ y tipos de acciones
$x^G$Clase de conjugación de $x$Clase de Conjugación, Centro de $G$, Ecuación de Clase y $p-$Grupo
$C_G(x)$Centralizador de $x$ en $G$Clase de Conjugación, Centro de $G$, Ecuación de Clase y $p-$Grupo
$Z(G)$Centro de $G$Clase de Conjugación, Centro de $G$, Ecuación de Clase y $p-$Grupo
$X_G$El conjunto de elementos de $X$ que quedan fijos sin importar qué elemento de $G$ actúe sobre ellosClase de Conjugación, Centro de $G$, Ecuación de Clase y $p-$Grupo
$N_G(H)$Normalizador de $H$ en $G$$p-$Subgrupo de Sylow y el Normalizador de $H$ en $G$ 
$r_p$, $r_p(G)$Número de $p-$subgrupos de Sylow de $G$Teoremas de Sylow
$\text{inc}_i$Inclusión natural del elemento en la $i-$ésima posiciónProducto directo externo
$\pi_i$Proyección natural del $i-$ésimo elementoProducto directo externo

Entradas relacionadas