Curvas Rectificables

Por Ruben Hurtado

$\textcolor{blue}{Definición}$
Una arco de curva esta dado por una función vectorial $f:[a,b]\rightarrow\mathbb{R}^{n}$. Donde el dominio esta restringido al intervalo cerrado $[a,b]\in\mathbb{R}$.
$\textcolor{blue}{Definición}$
Sea C un arco de curva en $\mathbb{R}^{n}$ dada por la función
$$f(t)=(f_{1}(t),f_{2}(t),…,f_{n}(t))$$
Consideremos el conjunto
$$P=\{P~\Big{|}~P~es~partici\acute{o}n~de~[a,b]\}$$
Para cada partición $P:~a=t_{0},t_{1},…,t_{n-1},t_{n}=b$ de $[a,b]$ consideramos la poligonal
$$f(t_{0}),f(t_{2}),…,f(t_{n-1}),f(t_{n})$$
y su correspondiente longitud
$$s(P)=|f(t_{1})-f(t_{0})|+|f(t_{2})-f(t_{1})|+\cdots+|f(t_{n-1})-f(t_{n})|=\sum_{i=1}^{n}||f(t_{i})-f(t_{i-1})||$$
Se dice C es rectificable si el conjunto ${s(P)}$ esta acotado.

$\textcolor{orange}{Ejemplo}$
Muestre que el arco de parábola C dado por $f(t)=(t,t^{2})$ con $t\in(0,1)$ es rectificable.
En este caso sea $P\in[0,1]$ dada por $0=t_{0}<t_{1}<\cdots<t_{n}=1$. Tenemos entonces
\begin{align*} s(P) & =\sum_{i=1}^{n}|f(t_{i})-f(t_{i-1})| \\ & =\sum_{i=1}^{n}|(t_{i},t_{i}^{2})-(t_{i-1},t_{i-1}^{2})| \\ &=\sum_{i=1}^{n}|(t_{i}-t_{i-1},t_{i}^{2}-t_{i-1}^{2})| \\ & \leq \sum_{i=1}^{n}|t_{i}-t_{i-1}|+|t_{i}^{2}-t_{i-1}^{2}| \\ &=\sum_{i=1}^{n}|t_{i}-t_{i-1}|+|(t_{i}-t_{i-1}|~|(t_{i}+t_{i-1}|\\ &=\sum_{i=1}^{n}(t_{i}-t_{i-1})(1+(t_{i}-t_{i-1})~~\textcolor{red}{Si~0\leq t_{i-1}\leq t_{1}\leq 1~entonces~1+t_{i-1}+t_{i}\leq 3}\\ &\leq 3\sum_{i=1}^{n}(t_{i}-t_{i-1})\\ &\leq 3 \end{align*}
esto quiere decir que la suma $s(P)$ es acotada y por lo tanto, el arco es rectificable.$~~\textcolor{orange}{\blacksquare}$
$\textcolor{orange}{Ejemplo}$
Mostrar que la siguiente función vectorial (curva) $f:[0,1]\rightarrow\mathbb{R}^{2}$ dada por $\displaystyle{f(t)=\left[t,t\cos\left(\frac{1}{t}\right)\right]}$ donde $f(0)=(0,0)$ no es rectificable.
En este caso consideramos particiones de $[0,1]$ de la forma
$$P:t_{0}=0,t_{1}=\frac{1}{(n-1)\pi},t_{2}=\frac{1}{(n-2)\pi},…,t_{n-2}=\frac{1}{2\pi},t_{n-1}\frac{1}{\pi},t_{n}=1$$
Los puntos de la poligonal que corresponden a la partición P son
$$f(t_{0})=(0,0),f(t_{1})=\left(\frac{1}{(n-1)\pi},\frac{1}{(n-1)\pi}\cos((n-1)\pi)\right),f(t_{2})=\left(\frac{1}{(n-2)\pi},\frac{1}{(n-2)\pi}\cos((n-2)\pi)\right),…$$
$$,f(t_{n-2})=\left(\frac{1}{2\pi},\frac{1}{2\pi}\cos(2\pi)\right),f(t_{n-1})=\left(\frac{1}{\pi},\frac{1}{\pi}\cos(\pi)\right),f(t_{n})=(1,\cos(1))$$
La suma de las distancias de los segmentos de la poligonal es
\begin{align*} s(P)&=|f(t_{1})-f(t_{0})|+|f(t_{2})-f(t_{1})|+\cdots|f(t_{n})-f(t_{n-1})| \\ &=\left|\left(\frac{1}{(n-1)\pi},\frac{1}{(n-1)\pi}\cos((n-1)\pi)\right)\right| \\ &+\left|\left(\frac{1}{(n-2)\pi}-\frac{1}{(n-1)\pi},\frac{1}{(n-2)\pi}\cos((n-2)\pi)-\frac{1}{(n-1)\pi}\cos((n-1)\pi)\right)\right| \\ &+\cdots+\left|\left(1-\frac{1}{\pi},\cos(1)-\frac{1}{\pi}\cos(\pi)\right)\right| \\ &\geq \sum_{k=1}^{n-2}\left|\left(\frac{1}{k\pi}-\frac{1}{(k+1)\pi},\frac{1}{k\pi}\cos(k\pi)-\frac{1}{(k+1)\pi}\cos((k+1)\pi)\right)\right| \\ &\geq \sum_{k=1}^{n-2}\left|\frac{1}{k\pi}\cos(k\pi)-\frac{1}{(k+1)\pi}\cos((k+1)\pi)\right|\\ &\geq \sum_{k=1}^{n-2}\left|\frac{(-1)^{k}}{k\pi}-\frac{(-1)^{k+1}}{(k+1)\pi}\right|\\ &=\sum_{k=1}^{n-2}\left|\frac{1}{k\pi}+\frac{1}{(k+1)\pi}\right|\\ &\geq \frac{2}{\pi}\sum_{k=1}^{n-2}\frac{1}{k+1} \end{align*}
Entonces,
$$\lim_{n\rightarrow\infty}s(P)\geq \lim_{n\rightarrow\infty}\frac{2}{\pi}\sum_{k=1}^{n-2}\frac{1}{k+1}=+\infty$$
lo cual implica que la suma $s(P)$ no es acotada y por lo tanto el arco de curva no es rectificable.$~~\textcolor{orange}{\blacksquare}$
$\fbox{Teorema}$ [Criterio para determinar si una curva es rectificable]
Todo arco de curva de clase $C^{1}$ (con derivada continua) es rectificable.
$\fbox{Demostración}$
Sea $f(t)=(f_{1}(t),f_{2}(t),…,f_{n}(t))$ un arco de curva de clase $C^{1}$. Entonces, las funciones $f'{i}$ son continuas en $[a,b]$ y por tanto estan acotadas es decir, existen constantes positivas $M{1},…,M_{n}$ tales que
$$|f'{1}(t)|\leq M{1},…,|f'{n}(t)|\leq M{n}~~~\forall~t\in[a,b]$$
Sea P una partición del intervalo $[a,b]$ determinada por los puntos $a=t_{0}<t_{1}<\cdots<t_{n}=b$. Para cada $i\in{1,2,…,n}$ tenemos
\begin{align*} \|f(t_{i})-f(t_{i-1})\|&=\sqrt{\sum_{j=1}^{n}\left(f_{j}(t_{i})-f_{j}(t_{i-1})\right)^{2}} \\ &\leq \sum_{j=1}^{n}\left|f_{j}(t_{i})-f_{j}(t_{i-1})\right| \end{align*}
Por el teorema del valor medio de Lagrange, existen $\xi_{1},\xi_{2},…,\xi_{n}$ en el intervalo $(t_{i-1},t_{i})$ tales que
\begin{align*} \left|f_{1}(t_{i})-f_{1}(t_{i-1})\right| &= |f'{1}(\xi{1})|(t_{i}-t_{i-1}) \\
\vdots & =\vdots \\
\left|f_{n}(t_{i})-f_{n}(t_{i-1})\right| &= |f'{n}(\xi{1})|(t_{i}-t_{i-1})
\end{align*}
En consecuencia,
\begin{align*} \|f(t_{i})-f(t_{i-1})\|&\leq \left|f_{1}(t_{i})-f_{1}(t_{i-1})\right|+\cdots +\left|f_{n}(t_{i})-f_{n}(t_{i-1})\right| \\ & \leq \left(|f'{1}(\xi{1})|+\cdots+|f'{n}(\xi{1})|\right)(t_{i}-t_{i-1})\\
&\leq (M_{1}+\cdots+ M_{n})(t_{i}-t_{i-1}).
\end{align*}
Si $s(P)$ es la longitud de la poligonal determinada por P tenemos
\begin{align*} s(P)&=\sum_{i=1}^{n}\|f(t_{i})-f(t_{i-1})\| \\ &\leq (M_{1}+\cdots+ M_{n})\sum_{i=1}^{n}(t_{i}-t_{i-1}) \\ &=(M_{1}+\cdots+ M_{n})(b-a). \end{align*}
Es decir, el conjunto ${s(P)}$ con P partición de $[a,b]$ está acotado y por tanto el arco de curva es rectificable.$~~\textcolor{orange}{\blacksquare}$
$\textcolor{orange}{Ejemplo}$
Muestre que el arco de curva C dado por $f(t)=(t,t^{3})$ con $t\in(0,1)$ es rectificable.
En este caso $f'(t)=(1,3t^{2})$, cada función componente es continua y por tanto $f(t)$ es de clase $C^{1}$ por lo que según el resultado anterior, se tiene que f es rectificable en el intervalo indicado.$~~\textcolor{orange}{\blacksquare}$

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.