Archivo del Autor: Erick de la Rosa

Matemáticas Financieras: Amortización de créditos con abonos fijos al capital

Por Erick de la Rosa

Introducción

Se tiene hasta este momento, el procedimiento para construir tablas de amortización de muy diversas situaciones, cada una depende de las necesidades que se presenten en las condiciones que se pacte otorgar un crédito que van enfocadas a satisfacer las posibilidades de pago que posea el deudor. Aún con todo lo que se ha visto, falta por revisar el caso donde se otorgan créditos que están sujetos a una tasa de interés variables, esto quiere decir que puede estar cambiando a lo largo de la vigencia o duración del crédito.

Descripción

En éste tema se abordará el tipo de créditos que manejan una tasa de interés variable, lo afecta la cantidad de que se va a pagar en cada periodo, este fenómeno ocurre cuando la institución que otorga el crédito, decide hacer uso de una tasa de referencia como por ejemplo la TIIE. La forma de manejar éste tipo de créditos, es determinar una cierta cantidad la cual va a ser la que será pagada en cada periodo con el fin de saldar o ir liquidando la deuda. Otra alternativa para manejar éstos créditos, es establecer que la forma de pagar la deuda, se haga a través de pagos fijos a la deuda, cada cierto periodo, y que los intereses que genera la deuda se calculen en la fecha que se haga dicho pago.

En cualquier caso que escojan, las partes involucradas lo que regularmente hacen, es pactar un cierto número de pagos, de acuerdo a la capacidad de pago con la que cuente el deudor, para que sea cubierta la deuda, mientras que la cantidad de intereses que se vaya a pagar, serán calculados sobre la cantidad que falte por pagar del crédito en cada pago. Si por ejemplo la cantidad otorgada en el crédito es de \$86 462, y se quiere pagar en 18 mensualidades y lo que se acaba de mencionar se resume en la siguiente expresión:

$$\frac{86,46}{18}=4803.5$$

Donde cada pago será por la cantidad de \$4803.5, a la cual le falta sumarle la cantidad de intereses que estará determinada según la tasa de referencia que se haya decidido utilizar. También puede darse el caso que la cantidad que se vaya a pagar por concepto de intereses, se haya pactado desde el principio.

Amortización con tasa de interés fija durante toda la vigencia del crédito

Es tal cual, como lo enuncia su nombre, en este tipo de amortización se da en los créditos que se pacta una tasa fija de interés, esto se puede ver de forma más clara en el siguiente ejemplo: Una empresa solicitó un crédito por una cantidad de \$250,000. La forma en que se planea pagar dicho crédito es mediante pagos mensuales por un año, con una tasa de interés del 1.8% mensual, con pagos fijos directos al capital.

$$\frac{240,000}{12}=20,000.$$

Para construir la tabla de amortización es necesario considerar que los pagos que se van a realizar cada mes, son pagos iguales, pero los intereses se van a ir modificando en cada periodo, esto es a causa de que la cantidad que falte por pagar es sobre la cual se calculan los intereses y éstos irán disminuyendo conforme se vaya liquidando la deuda, esto independientemente de que la tasa de interés permanezca constante.

Para determinar la cantidad que se va a pagar por concepto de intereses, se obtiene multiplicando el saldo insoluto al principio del periodo por la tasa de interés (1.8%).

Y la tabla de amortización queda de la siguiente forma:

Elaboración propia, basado en Matemáticas Financieras, fundamentos y aplicaciones, Cánovas T. Ed. Trillas, pag. 202.

Ejercicio. Don Juan desea poner una pastelería en su colonia, para poder hacerlo solicitó un préstamo en el banco ABC, con el que logró que le autorizarán un monto de \$360 mil pesos, el cual quiere pagar con 18 pagos mensuales con una tasa de fija del 1.3% mensual. Construir la tabla de amortización.

Solución

Aplicando los conceptos que se acaban de revisar se tiene que el pago queda determinado por la siguiente ecuación:

$$\frac{360,000}{18}=20,000$$

Y la tabla de amortización queda:

Elaboración propia, basado en Matemáticas Financieras, fundamentos y aplicaciones, Cánovas T. Ed. Trillas, pag. 202

Otro ejemplo, La compañía farmacéutica quiere ampliar su producción, para ellos, le consiguió un crédito por la cantidad de \$120 mil pesos, con pagos semestrales durante 3 años, a una tasa del 1.8% semestral.

Solución

De forma semejante al ejercicio anterior, la tabla de amortización queda de la siguiente forma:

Más adelante…

En los siguientes temas se continuará analizando más variantes de las tasas de interés en éste concepto de amortización con la finalidad que se tenga un mejor conocimiento de su comportamiento sobre todo, para mostrar el tipo de situaciones en que se presentan.

  • Ir a Matemáticas Financieras
  • Ir a Entrada Anterior
  • Ir a Entrada Siguiente

Matemáticas Financieras: Tablas de amortización para créditos con pagos decrecientes

Por Erick de la Rosa

Introducción

Aplicamos los mismo conceptos usados en el tema de anualidades decrecientes, para este tema, esto equivalente a decir, que funcionan de forma análoga, los pagos van disminuyendo en cada periodo.

Concepto y descripción

La forma en que se va a construir la tabla de amortización obedece de forma semejante a la que ya se ha estado trabajando en los temas anteriores, de esta forma es como se dará solución al siguiente ejemplo para mostrar su comportamiento.

Para ésta sección se va a retomar el ejemplo visto en la sección de anualidades decrecientes el cual solo para recordar se enuncia a continuación:

Una empresa de aeronaves, necesitan refacciones para sus aviones, sus socios desean adquirir un crédito para ello, y planean pagarlo con aportaciones decrecientes, las cuales están basadas en su experiencia de ingresos. Al hacer sus cálculo, llegan a la conclusión de que cada uno de sus socios pueden realizar aportaciones mensuales de forma vencida, comenzando con un adelanto de \$6 mil pesos, disminuyendo los siguientes pagos en \$250, hasta llegar a mensualidades de \$2 mil. Pretenden además, negociar, para que el banco les otorgue un plazo para pagar su crédito de 2 años, a una tasa de interés del 10.5% pagadero mensual el banco les otorga una plazo de año y medio. ¿Se necesita saber qué cantidad es la que el banco puede prestar a cada uno de sus socios?

Ahora se pasará a la parte de construcción de la tabla de amortización correspondiente.

Ejercicios resueltos

Ejercicio. Una empresa panadera, quiere renovar su maquinaria, para hacerlo solicitó un préstamo y planea pagarlo con pagos mensuales que van a ir disminuyendo, para tal efecto comenzarán con un pago de \$12 mil pesos, cantidad que irá disminuyendo \$500 hasta llegar a la cantidad de \$5 mil pesos durante los primeros 15 pagos, una vez pasado estos periodos, se mantendrá constante del pago en \$5 mil pesos hasta liquidar el préstamo, que sería hasta completar un lapso de 3 años. Durante la vigencia del préstamo, se pactó una tasa del 21% convertible mensual. La empresa panadera, requiere saber cuánto le pueden prestar bajo ésas condiciones así como saber la tabla de amortización para pagar dicho crédito.

Solución

La ecuación de valor que se utilizará para resolver el presente ejercicio es la siguiente:

$$V=12,000\prescript{}{15}{\mathbf{A}}_{0.0175}-500\left(\frac{\prescript{}{15}{\mathbf{A}}_{0.0175}-15v_{0.0175^{15}}}{0.0175}\right)+5000\prescript{}{15}{\mathbf{A}}_{0.0175}v_{0.0175}^{15}$$

$$V=12,000(13.09292)-500\left(\frac{13.09292-15(0.7708739)}{0.0175}\right)$$

$$+5000(17.447582)(0.7708739)$$

$$V=157115.04-500(87.417828)+67249.427=180655.55$$

Ejercicio. Una persona desea abrir un negocio de venta de electrodomésticos, para hacerlo, solicitó un préstamo por 2 millones y medio, cantidad que pacto pagar en 18 meses y una tasa de interés mensual del 3.2%, con pagos de \$215,625.5, los cuales irán disminuyendo cada mes el 2.5% con respecto al anterior. Obtener la tabla de amortización.

Solución

Más adelante…

Se continuará analizando los tipos de tablas de amortización hasta terminar de ver todos ellos, con la finalidad de contar con el conocimiento necesario para estar en condiciones de comenzar a ver cómo es su comportamiento y su construcción cuando se combinan entre ellas.

  • Ir a Matemáticas Financieras
  • Entrada anterior
  • Entrada siguiente

Matemáticas Financieras: Tabla de amortización para créditos con pagos crecientes

Por Erick de la Rosa

Introducción

Este tema será abordado, haciendo uso de los conocimientos adquiridos en el tema de anualidades crecientes, tomando en cuenta sus reglas del modelo de interés compuesto, así como la equivalencia entre las tasas de interés.

Concepto y descripción

El proceso de construcción de la tabla de amortización para créditos con pagos crecientes, es análogo a como se han venido construyendo en los temas anteriores, con la única diferencia que ahora se estarán aplicando el concepto de anualidades crecientes.

Para dejarlo más en claro se procederá a realizar el siguiente ejemplo:

La señora Juanita quiere irse de vacaciones, y ha estado haciendo cuentas para saber a cuánto ascienden sus ingresos, los resultados que obtuvo son que puede disponer de una cantidad de \$5000 de forma mensual, y pretende tener un incremento a ésa cantidad de \$500 pesos cada mes. Desea saber ¿cuánto le podrían prestar si pide un crédito a una caja de ahorro popular, bajo ésta situación. si su deseo es pagar dicho crédito en año y medio, con una tasa de interés del 3% efectivo mensual.

Para poder encontrar la respuesta a éste problema se realizará primeramente el cálculo de la cantidad que se le puede otorgar por parte de la institución financiera.

Para ello se aplicará la siguiente ecuación de valor:

$$M=5000\prescript{}{18}{\mathbf{A}}_{.03}+500\left(\frac{\prescript{}{18}{\mathbf{A}}_{.03}-18v_{0.03}^{18}}{0.03}\right)$$

$$\prescript{}{18}{\mathbf{A}}_{.03}=\left(\frac{1-v_{0.03}^{18}}{0.03}\right)=\left(\frac{1-\left(\frac{1}{1+0.03}\right)^{18}}{0.03}\right)=13.7535131.$$

Sustituyendo el valor que se acaba de obtener:

$$M=5,000(13.7535131)+500\left(\frac{13.7535131-10.5731029}{0.03}\right)$$

$$M=68,767.56550+500\left(\frac{3.1804102}{0.03}\right)$$

$$M=68,767.56550+53,006.83632=121,774.4018.$$

La cantidad que se le puede otorgar a la señora Juanita es de \$121,774.40

y la tabla de amortización queda como sigue:

Elaboración propia, basado en Matemáticas Financieras, fundamentos y aplicaciones, Cánovas T. Ed. Trillas, pag. 195.

Ejercicios resueltos

Ejercicio. Una empresa desea constituir una reserva para hacer frente a contingencias que pudiera tener, con la finalidad de no verse afectada por gastos inesperados. Por este motivo se propone ahorrar durante un año, para ver cuánto puede generar, ya que las aportaciones las hace de forma mensual y en base a sus ingresos, los cuales ascienden a \$2 mil pesos mensuales y planea incrementar en \$300 pesos cada mes, con una tasa de interés del 4% mensual.

Se necesita calcular el monto que se va a obtener durante la vigencia del tiempo que va a ahorrar, y elaborar la tabla de amortización, de éste problema.

Solución

La ecuación de valor es la que se trabajo en ésta sección, la cual es:

$$M=2000\prescript{}{12}{\mathbf{A}}_{.04}+300\left(\frac{\prescript{}{12}{\mathbf{A}}_{.04}-18v_{0.03}^{12}}{0.04}\right)$$

$$M=2,000(9.3850738)+300\left(\frac{9.3850738-7.4951640}{0.04}\right)$$

$$M=28155.22128+300\left(\frac{1.8899098}{0.04}\right)$$

$$M=28155.22128+300(47.2477450)$$

$$M=28155.22128+14174.32350=42329.54478$$

Y la tabla de amortización queda:

El señor Ramón, desea conocer la forma en que va a pagar el crédito que le otorgo el banco a su empresa textil, para ampliación de sus instalaciones. La cantidad que le otorgó fue de \$250 mil pesos, con una tasa de interés del 25% semestral, si cada pago será realizado de forma semestral, por la cantidad de \$40,076.24 el cual irá incrementándose en \$10 mil pesos, durante 3 años.

Solución

Lo único que hay que realizar es, poner en práctica la forma en que se construye la tabla de amortización, la cual, siguiendo los pasos de forma análoga a como se ha venido haciendo, queda de la siguiente forma:

Más adelante…

Se abordaran la construcción de tablas de amortización que combinan su construcción con otros tipos de anualidades, y que van a estar presentes en una misma tabla.

  • Ir a Matemáticas Financieras
  • Ir a Entrada Anterior
  • Ir a Entrada Siguiente

Matemáticas Financieras: Tablas de amortización para créditos diferidos

Por Erick de la Rosa

Introducción

Los diversos tipos de anualidades que se han estado analizando, nos dotan de herramienta muy importante, y que como se ha estado observando, se pueden utilizar de diferentes maneras, dependiendo del contexto y las necesidades de las partes involucradas en una operación financiera. Para cada una de ellas, se ha visto que se puede hacer una construcción de una tabla de amortización que describa el comportamiento de los pagos, así como la forma en que va disminuyendo.

Concepto y descripción

Para cualesquiera de las anualidades, ya se ha dado la forma en que se construye su respectiva tabla de amortización, ya que es análogo a como se ha venido trabajando, solo hay que continuar obedeciendo las reglas que fueron utilizadas anteriormente para su construcción, tomando en cuenta las condiciones bajo las cuales se esté trabajando, tales como, las tasas de interés, la periodicidad que dure la operación, el cálculo de las tasas de equivalencia (cuando así lo requieran), etc.

A continuación se procederá a construir algunos tipos de tablas de amortización, que por su naturaleza, es necesario hacer cierto hincapié.

Tabla de amortización para créditos diferidos.

Este tipo de amortización, corresponde al comportamiento en el que el tipo de crédito genera intereses durante el periodo de diferimiento, los cuales se acumulan al capital insoluto.

Para su construcción, en la primer celda se establecerá el periodo de diferimiento y se hará el registro de los intereses devengados durante dicho periodo. MIentras que la celda que corresponde a la columna de saldo insoluto al final del periodo de gracia, será igual a la suma del crédito original más la suma de los intereses que se acaban de calcular.

Para realizar la construcción del segundo renglón, el cual mostrará el primer periodo de pago, se obtendrá de forma análoga a como se obtiene el de una anualidad vencida. Los demás renglones seguirán el mismo proceso de construcción.

Para evidenciar dicha construcción, se desarrollará el siguiente ejemplo:

La compañía necesita dar mantenimiento a su parque vehicular, para hacerlo solicita un crédito que asciende a la cantidad de \$50 mil pesos y quiere pagarlo, de forma bimestral, con una tasa de interés del 14% bimestral. Comenzará a realizar los pagos, después de medio año, a través de 6 pagos bimestrales de forma vencida. Se desea saber el monto de cada pago y su tabla de amortización.

Para resolverlo, se utiliza la siguiente ecuación de valor:

$$S=X\prescript{}{n}{\mathbf{A}}_{i}=X\left(\frac{1-v_i^n}{i}\right)$$

$$X=\frac{S}{\prescript{}{n}{\mathbf{A}}_{i}v_{i}^n}.$$

Sustituyendo los valores:

$$50,000=\prescript{}{6/6}{\mathbf{A}}_{0.025}$$

$$X=\frac{50,000}{\prescript{}{6}{\mathbf{A}}_{0.025}v_{0.025}^6}$$

$$X=\frac{50,000}{(5.5081254)(0.9059506)}=10,019.85985.$$

Los intereses devengados durante los 6 meses que corresponden al periodo de gracia o periodo de diferimiento, se obtienen:

$$I=50,000(1+.025)^6-50,000=7984.670911.$$

De esta forma la tabla de amortización queda de la siguiente manera:

Ejercicios resueltos

Ejercicio. Una empresa necesita \$95 mil pesos, para abrir una nueva sucursal de venta de ropa, por tal capital le cobran una tasa de interés del 18% pagadera semestralmente, dicho préstamo acuerda comenzar a pagarlo después de 6 meses, y planea pagarlo en 6 pagos semestrales. Calcular el valor de cada pago.

Solución

Para resolverlo, se requieren las siguientes ecuaciones:

$$S=\prescript{}{n}{\mathbf{A}}_{i}$$

$$X=\frac{S}{\prescript{}{n}{\mathbf{A}}_{i}v_{i}^n}$$

$$X=\frac{95000(0.09)}{1-(1.09)^{-6}}=\frac{8550}{0.403733}$$

$$X=21177.36$$

Los pagos quedan con la cantidad de \$21177.35

Ejercicio. Calcular la tabla de amortización del ejercicio anterior.

Solución

Más adelante…

Se continuará estudiando este tipo de material, aún falta por analizar las tablas de amortización para créditos con pagos crecientes, así como los decrecientes, tienen ambos similitudes al operarlas de forma semejante a como fueron trabajadas sus respectivas anualidades. También se abordarán algunos ejemplos de situaciones en las cuales se pueden aplicar.

  • Ir a Matemáticas Financieras
  • Entrada anterior
  • Entrada siguiente

Matemáticas Financieras: Amortización de créditos con pagos predeterminados

Por Erick de la Rosa

Introducción

En este material, se ha estado abordando los modelos de interés compuesto, su evolución con las anualidades, las tasas de interés, sus tipos, y combinación de cada una de ellas dependiendo de la forma en que se realicen los pagos, y dependiendo también del tipo de tasa de interés con la que se decida trabajar.

Concepto y descripción

En este apartado, se desarrollará el tipo de amortización con pajos fijos, así como tasas de interés fijas. Las manejaremos con el nombre de amortización de créditos con pagos fijos al capital, y en este rubro encajan las tablas de amortización con anualidades ordinarias vencidas.

Su desarrollo justo, tiene que ver con las herramientas vistas en el tema que lleva el mismo nombre, la cual, suele representar la forma más utilizada para hacer el pago de una deuda, por lo que resulta necesario hacer algunos recordatorios:

La forma general de la ecuación de valor que se va a estar utilizando será:

$$S=X\prescript{}{n}{\mathbf{A}}_i$$

donde para estos fines, $S$ representa el monto de la deuda y que equivale al saldo insoluto al inicio de la operación, mientras que la variable $X$, representa la cantidad que será pagada en cada periodo.

Las filas y columnas serán calculadas de forma análoga al tema anterior.

Para el primer periodo, el saldo insoluto será calculado con la siguiente expresión:

$$\prescript{}{n}{\mathbf{A}}_i=\frac{1-v^n}{i}$$

luego los intereses contenidos en el pagos se van a multiplicar por la tasa de interés, esto es:

$$\frac{1-v^n}{i}(i)=1-v^n$$

ahora el capital contenido en el pago se calcula al restar la celda con el nombre de intereses contenidos en el pago, y esto se traduce en:

$$1-(1-v^n)=1-1+v^n=v^n.$$

Por último, la celda con el nombre de saldo insoluto al final del periodo se obtiene al efectuar la resta del saldo al principio del periodo, el capital contenido en el pago, lo cual es:

$$\left(\frac{1-v^n}{i}\right)-v^n.$$

De la expresión que se acaba de obtener, nos fijamos en el factor común, para tener la siguiente ecuación:

$$\frac{1-v^n-iv^n}{i}$$

luego factorizamos a $v^{n-1}$, y la ecuación se transforma en:

$$\frac{1-v^{n-1}(v+iv)}{i}.$$

Recordando que $v=\frac{1}{1+i}$, la expresión que se obtiene es:

$$\frac{1-v^{n-1}\left(\frac{1}{1+i}+\frac{i}{1+i}\right)}{i}$$

como $(1+i)$ es el común denominador, entonces:

$$\frac{1-v^{n-1}\left(\frac{1+i}{1+i}\right)}{i}$$

la cantidad que se tiene expresada entre paréntesis es igual a uno, entonces la ecuación queda:

$$\frac{1-v^{n-1}}{i}.$$

Recordando que, $\prescript{}{n}{\mathbf{A}}_i=\frac{1-v^n}{i}$ y haciendo mención que todos los cálculos que hasta el momento se han estado realizando, son con un capital de un peso, además se esta manejando una anualidad vencida de $n-1$ pagos, entonces se tiene:

$$\prescript{}{n-1}{\mathbf{A}}_i=\frac{1-v^{n-1}}{i}.$$

Este resultado tiene sentido, toda vez que al final del primer periodo se hizo el primero de los $n$ pagos de la anualidad, lo cual implica que en ése momento aun faltan por realizar $n-1$ pagos, los cuales en valor presente en ése periodo son: $\prescript{}{n}{\mathbf{A}}_i$, expresión que representa la cantidad que se obtiene como saldo insoluto al final del periodo.

A continuación, se procederá a construir la table de amortización de una anualidad vencida ordinaria de $n$ pagos, con un capital de un peso.

Elaboración propia, basado en Matemáticas Financieras, fundamentos y aplicaciones, Cánovas T. Ed. Trillas, pag. 191.

Es importante hacer mención que, en la tabla que se acaba de presentar, la tasa de interés permanece constante, por dicha razón es que no aparece el subíndice $i$ en las expresiones de las $v^t$. Además, el renglón expresado con la letra, $t$ permite hacer el cálculo de cualquiera de las filas, sin tener que calcular toda la tabla, esto nos sirve cuando se da el caso de que el deudor, quiera conocer cuál es el saldo insoluto de su préstamo en cualquier momento, siempre y cuando esté comprendido en el periodo de la vigencia de la operación. Ésto también sirve si se desea liquidar en ese momento la totalidad de la deuda o quiera hacer alguna reestructuración de la misma.

Ahora generalizando la tabla anterior, y sustituyendo el valor de un peso de capital, por la cantidad $X$, se tiene lo siguiente:

Para conocer el valor de $X$, que es la cantidad que determina el pago en la ecuación de valor, se utiliza la expresión:

$$S=X\prescript{}{n}{\mathbf{A}}_i$$

despejando a $X$ se tiene:

$$X=\frac{S}{\prescript{}{n}{\mathbf{A}}_i}$$

y la tabla queda modificada de la siguiente manera:

Elaboración propia, basado en Matemáticas Financieras, fundamentos y aplicaciones, Cánovas T. Ed. Trillas, pag. 192.

Ejercicios resueltos

Ejercicio. El señor Juan desea adquirir una pantalla, para ello solicitó un préstamo por \$30 mil pesos, el cual desea pagar a 24 mensualidades, a una tasa de interés del 15% efectivo mensual, durante toda la duración del crédito. Si al cabo de un año desea liquidar la deuda, ¿Cuál es la cantidad que deberá pagar?

Solución

En primer lugar se procederá a obtener cuánto se deberá pagar cada mes, para ello se hará uso de la siguiente ecuación:

$$X=\frac{S}{\prescript{}{n}{\mathbf{A}}_i}$$

Sustituyendo los valores:

$$X=\frac{30,000}{\frac{1-v_i^n}{i}}$$

$$X=\frac{30,000}{6.4337}=4662.8948$$

El pago sería de $\$4,662.8948$.

Ahora como el señor Juan quiere liquidar su deuda, y se esta trabajando con una forma de pago de manera vencida, entonces el periodo en el que desea liquidar es el número 13.

El saldo insoluto al final del periodo 13 esta dado por la expresión:

$$X=\frac{S}{\prescript{}{n}{\mathbf{A}}_i}$$

sustituyendo los valores n=24, t=12:

La diferencia (n-t) queda: $24-12=12$, entonces el saldo insoluto al final del periodo es \$25,275.77

$$X=\frac{\$25,272.77}{\prescript{}{12}{\mathbf{A}}_{0.15}}=24,404.25$$

Ejercicio. Calcula la tabla de amortización del ejercicio anterior y corrobora el resultado.

Solución

Efectivamente, se cumple el saldo insoluto al final del periodo corresponde a la cantidad obtenida en el ejercicio anterior.

Más adelante…

Hay ocasiones en los que el mercado financiero, por alguna razón puede sugerir hacer cambios en ésta, dependiendo de muchos otros factores en los que se encuentre la economía, un ejemplo de ésto es cuando se decide trabajar con una tasa de interés variable que dependa de alguna tasa de referencia, lo cual afecta directamente la forma en que se vaya a pagar.

  • Ir a Matemáticas Financieras
  • Ir a Entrada Anterior
  • Ir a Entrada Siguiente