Archivo de la etiqueta: afín

Geometría Analítica I: Clasificación afín y por semejanzas de curvas cuadráticas

Por Paola Lizeth Rojas Salazar

Introducción

En entradas anteriores, mencionamos la clasificación afín de curvas cuadráticas, en las siguientes líneas, continuaremos con este análisis, convirtiendo los parámetros $\alpha, \beta$ y $\gamma$ o $a$ y $b$ que ya vimos anteriormente, en $1$ o $-1$, lo que nos va a permitir concluir con esta clasificación.

Clasificación

Para poder convertir los parámetros $a$ y $b$ de las cónicas y transformarlos en $1$ o $-1$, se debe alargar o encoger en los ejes.

Por ejemplo, para la parábola que está dada por el polinomio $P(x,y)=x^2+ay$ con $a\neq 0$, podemos lograr esto si hacemos:

\begin{equation}P\left(x, -\frac{y}{a}\right)=x^2-y\end{equation}

Lo que nos da el polinomio de la parábola canónica.

Observa que, en $(1)$, ya no tenemos los términos $a$ o $b$ con los que escribimos la ecuación de las cónicas en la Unidad 2.

Con lo anterior, puedes darte cuenta de que, para cualquier polinomio en el que los valores estén en la parte lineal, podemos dividir o multiplicar por $a$ o $b$ para hacerlo $1$ o $-1$.

Pero, ¿cómo podemos eliminar estos términos cuando los valores están en la parte cuadrática?

Considerando la matriz de la parte cuadrática que está dada por una matriz de la forma:

\begin{equation} B^TAB=\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix} \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}=\begin{pmatrix} a^2 \alpha & 0 \\ 0 & b^2 \beta \end{pmatrix}\end{equation}

De la matriz anterior, como queremos tener una matriz de la forma:

\begin{equation}\begin{pmatrix} \pm 1& 0 \\ 0 & \pm 1 \end{pmatrix}\end{equation}

Entonces, debemos tomar los valores $a=\left(\sqrt{|\alpha|} \right)^{-1}$ y $b=\left(\sqrt{|\beta|} \right)^{-1}$

Tarea moral

  1. ¿Cuál es la matriz de una homotecia que lleve a la parábola dada por $x^2+ay$ con $a\neq 0$, en la canónica dada por $x^2-y$?
  2. Del ejercicio anterior, concluye que hay solo una clase de parábolas módulo semejanzas.

Más adelante…

Eso es todo por el momento para la materia de Geometría analítica I, en las siguientes entradas, empezaremos con nuevos temas, correspondientes al curso de Geometría analítica II.