Extremos Locales

Por Angélica Amellali Mercado Aguilar

Entre las caracteristicas geometricas básicas de la gráficas de una función estan sus puntos extremos, en los cuales la función alcanza sus valores mayor y menor.

$\textbf{Definición 1.}$ Si $f:u\subset \mathbb{R}^n \rightarrow \mathbb{R}$ es una función escalar, dado un punto $x_0 \in u$ se llama mínimo local de $f$ si existe una vecindad $v$ de $x_0$ tal que $\forall x \in v$, $f(x)> f(x_0)$. De manera análoga, $x_0 \in u$ es un máximo local si existe una vecindad $v$ de $x_0$ tal que $f(x)< f(x_0)$ $\forall \quad x \in v$. El punto $x_0 \in u$ es un extremo local o relativo, si es un mínimo local o máximo local.

Un punto $x_0$ es un punto crítico de $f$ si $Df(x_0)=0$.

Un punto crítico que no es un extremo local se llama punto silla.

$\textbf{Teorema 1.}$ $\textcolor{Red}{\textbf{Criterio de la primera derivada}}$ Si $u \in \mathbb{R}$ es abierto, la función $f:u\subset \mathbb{R}^n \rightarrow \mathbb{R}$ es diferenciable y $x_0 \in u$ es un extremo local entonces $\nabla f(x_0)=0$, esto es $x_0$ es un punto crítico de $f$.

$Demostración.$ Supongamos que $t$ alcanza su máximo local en $x_0$. Entonces para cualquier $h \in \mathbb{R}^n$ la función $g(t)=f(x_0+th)$ tiene un máximo local en $t=0$. Asi, del cálculo de una variable $g'(0)=0$ ya que como $g(0)$ es máximo local, $g(t)\leq g(0)$ para $t > 0$ pequeño
$$\therefore \quad g'(0)=\displaystyle\lim_{t \rightarrow t_0^+}\frac{g(t)-g(0)}{t}=0$$
Análogamente para $t< 0$ pequeño tomamos
$$g'(0)=\displaystyle\lim_{t \rightarrow t_0^-}\frac{g(t)-g(0)}{t}=0$$
Ahora por regla de la cadena $$g'(0)=\frac{\partial f}{\partial x_{1}}(x_{0})h_{1}+\frac{\partial f}{\partial x_{2}}(x_{0})h_{2}+\cdots+\frac{\partial f}{\partial x_{n}}(x_{0})h_{0}=\nabla f(x_{0})\cdot h$$
Así $\nabla f(x_{0})\cdot h=0 \quad \forall \: h$ de modo que $\nabla f(x_{0})=0$. En resumen si $x_0$ es un extremo local, entonces $\displaystyle\frac{\partial f}{\partial x_i}(x_0)=0 \quad \forall~i=1,\ldots,n$. En otras palabras $\nabla f(x_0)=0$. $\square$

$\textbf{Ejemplo.}$ Hallar los máximos y mínimos de la función $f:\mathbb{R}^2 \rightarrow \mathbb{R}$, definida por $$f(x,y)=x^2+y^2-2x-6y+14$$

$Solución.$ Debemos identificar los puntos críticos de $f$ resolviendo $\displaystyle{\frac{\partial f}{\partial x}=0}$, $\displaystyle{\frac{\partial f}{\partial y}=0}$ para $x,y$, $$2x-2=0~~~2y-6=0$$ De modo que el punto crítico es $(1,3)$. Como $$f(x,y)=\left(x^{2}-2x+1\right)+\left(y^{2}-6y+9\right)+4=\left(x-1\right)^{2}+\left(y-3\right)^{2}+4$$ tenemos que $f(x,y)\geq 4$ por lo tanto en $(1,3)$ $f$ alcanza un mínimo relativo.

$\textbf{Ejemplo.}$ Considerar la función $f:\mathbb{R}^2 \rightarrow \mathbb{R}$,
$f(x,y)=4-x^2-y^2$ entonces $\displaystyle{\frac{\partial f}{\partial x}=-2x}$, $\displaystyle{\frac{\partial f}{\partial y}=-2y}$. $f$ solo tiene un punto crítico en el origen, donde el valor de $f$ es 4. Como $$f(x,y)=4-(x^{2}+y^{2})$$
tenemos que $f(x,y)\leq 4$ por lo tanto en $(0,0)$ $f$ alcanza un máximo relativo.

$\textbf{Ejemplo.}$ En el siguiente ejemplo mostramos que no todo punto critico es un valor extremo\Sea $f(x,y)=x^{2}y+y^{2}x$ tenemos que sus puntos criticos son
$$\frac{\partial f}{\partial x}=2xy+y^{2}~\frac{\partial f}{\partial y}=2xy+x^{2}=0$$ por lo tanto $$\left(\begin{matrix}2xy+y^{2}=0\\2xy+x^{2}=0\end{matrix}\right)\Leftrightarrow\left(\begin{matrix}x=y\\x=-y\end{matrix}\right)$$ tomando $x=-y$ tenemos que $$2xy+y^{2}=0~\Rightarrow~-2y^{2}+y^{2}=0~\Rightarrow~y^{2}=0\Rightarrow~y=0~\Rightarrow~x=0$$ tomando $x=y$ tenemos que $$2xy+y^{2}=0~\Rightarrow~2y^{2}+y^{2}=0~\Rightarrow~-3y^{2}=0\Rightarrow~y=0~\Rightarrow~x=0$$ por lo tanto $(0,0)$ es el único punto critico.\Ahora bien para $f(x,y)$ tomamos $x=y$ $$f(x,x)=2x^{3}$$ la cual es ($<0$ si $x<0$) y ($>0$ si $x>0$) por lo tanto el punto critico $(0,0)$ no es ni máximo ni mínimo local de f \Ahora bien para $f(x,y)$ tomamos $x=-y$ $$f(x,-x)=0~\forall x$$
por lo tanto el punto critico $(0,0)$ no es ni máximo ni mínimo local de $f$

Requerimos un criterio que dependa de la segunda derivada para que un punto sea extremo relativo. En el caso particular $n=1$ el criterio es $f»(x)>0$ y $f»(x)<0$ para máximo o mínimo respectivamente para el contexto de varias variables usaremos el hessiano el cual esta definido por

$$Hf(x_0)h=\frac{1}{2}\sum_{i,j=1}^{n}\frac{\partial^2t}{\partial x_i\partial
x_j}(x_0|_{x_ix_j}).$$

Recordando un poco de la expresión de taylor$$f(x,y)=f(x_{0},y_{0})+\left(\frac{\partial f}{\partial x}\right){p}(x-x{0})+\left(\frac{\partial f}{\partial y}\right){p}(y-y{0})+\textcolor{Red}{\frac{1}{2!}\left(\frac{\partial^{2}f}{\partial x^{2}}{p}(x-x{0})^{2}+2\frac{\partial^{2}f}{\partial y \partial x}{p}(x-x{0})(y-y_{0})+\frac{\partial^{2}f}{\partial y^{2}}{p}(y-y{0})^{2}\right)}$$

$\textbf{Teorema 2.}$ Sea $B=\left[
\begin{array}{cc}
a & b \\
b & c \
\end{array}
\right]
$ y $H(h)=\frac{1}{2}[h_1,h_2]\left[
\begin{array}{cc}
a & b \\
b & c \
\end{array}
\right]\left(
\begin{array}{c}
h_1 \\
h_2 \
\end{array}
\right)
$ entonces $H(h)$ es definida positiva si y solo si $a>0$ y $ac-b^2>0$.

$Demostración.$ Tenemos $$H(h)=\frac{1}{2}[h_1,h_2]\left[
\begin{array}{cc}
a h_1& bh_2 \\
b h_1& ch_2 \
\end{array}
\right]=\frac{1}{2}(ah_1^2+2bh_1h_2+ch_1^2)$$
si completamos el cuadrado
$$H(h)=\frac{1}{2}a\left(h_1+\frac{b}{a}h_2\right)^2+\frac{1}{2}\left(c-\frac{b^2}{a}\right)h_2^2$$
supongamos que $h$ es definida positiva. Haciendo $h_2=0$ vemos que $a>0$. Haciendo $h_1=-\frac{b}{a}h_2$ $c-\frac{b^2}{a}>0$ ó $ac-b^2>0$ De manera analoga $H(h)$ es definida negativa si y solo si $a<0$ y $ac-b^2>0$. $\square$

Criterio del máximo y del mínimo para funciones de dos variables Sea $f(x,y)$ de clase
$C^3$ en un conjunto abierto $u$ de $\mathbb{R}^2$. Un punto $x_0,y_0$ es un mínimo local (Estricto) de $f$ si se cumple las siguientes tres condiciones:


I) $\frac{\partial f}{\partial x}(x_0,y_0)=\frac{\partial f}{\partial y}(x_0,y_0)$


II) $\frac{\partial^2 f}{\partial x^2}(x_0,y_0)> 0$


III ) $\left(\frac{\partial^2 f}{\partial x^2}\right)\left(\frac{\partial^2 f}{\partial y^2}\right)-\left(\frac{\partial^2 f}{\partial x \partial y}\right)^2> 0$ en $(x_0,y_0)$ (Discriminante)


Si en II) tenemos $<0$ en lugar de $>0$ sin cambiar III) hay un máximo local

$\textbf{Ejemplo.}$ Sea
$f:\mathbb{R}^2\rightarrow\mathbb{R}$ la función dada por
$$f(x,y)=2(x-1)^2+3(y-2)^2$$ tenemos entonces que

$\frac{\partial f}{\partial x}=4(x-1)$ $\frac{\partial f}{\partial y}=6(y-2)$
por lo tanto $\frac{\partial f}{\partial x}=0$ $\Rightarrow \quad x=1$

$\frac{\partial f}{\partial y}=0$ $\Rightarrow$ $y=2$

por lo tanto $x_0=(1,2)$ es un punto critico


$\displaystyle{\frac{\partial^{2} f}{\partial x^{2}}}=4$, $\displaystyle{\frac{\partial^{2} f}{\partial y^{2}}}=6$, $\displaystyle{\frac{\partial^{2} f}{\partial x\partial y}}=0$, $\displaystyle{\frac{\partial^{2} f}{\partial y\partial x}}=0$

$H(1,2)=\left|\begin{array}{cc}
4 & 0 \\
0 & 6 \
\end{array}
\right|=24> 0 \forall \:(x,y) \in
B_{\epsilon}(1,2)$
podemos decir que $f$ tiene un mínimo relativo en $(1,2)$

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.