62.1 Material en revisión: Un ejemplo ilustrativo

Por Mariana Perez

Dada la función

$\begin{equation*} f (x, y) = \begin{cases} \dfrac{xy ( x^2 \, – \, y^2) }{x^2 + y^2} & \text{ si } (x, y) \neq (0, 0) \\ {} \\ 0 & \text{ si } (x, y) = (0, 0) \end{cases} \end{equation*}$

https://www.geogebra.org/classic/cgm64kqa

¿Cuál será el polinomio de Taylor de 2° grado de $f$ alrededor del origen?

$f (0, 0) = 0$

$\dfrac{\partial f}{\partial x} (0, 0) = \lim\limits_{h \to 0} \dfrac{f (h, 0) \, – \, f (0, 0)}{h} = \lim\limits_{h \to 0} \dfrac{0}{h} = 0 $

Análogamente

$\dfrac{\partial f}{\partial y} (0, 0) = 0 $

$\dfrac{\partial^2 f}{\partial x^2} (0, 0) = \lim\limits_{h \to 0} \dfrac{\dfrac{\partial f}{\partial x} (h, 0) \, – \, \dfrac{\partial f}{\partial x} (0, 0)}{h} = \dfrac{0}{h} = 0 $

Análogamente

$\dfrac{\partial^2 f}{\partial y^2} (0, 0) = 0$

$\dfrac{\partial^2 f}{\partial x \partial y} (0, 0) = 1$

$\dfrac{\partial^2 f}{\partial y \; \partial x} (0, 0) = \,- \, 1$

Podemos examinar que pasa si tomamos un polinomio de la forma

$$p (x, y) = Ax^2 + Bxy + Cy^2 + Dx + Ey + F $$

$ F = 0$

$D = E = \nabla f (0, 0) = \vec{0} $ por lo tanto $ D = 0 = E $

Si $\lim\limits_{(h,k) \to (0,0)} \dfrac{\Big| f (h,k) \, – \, p (h,k) \Big|}{\Big\| (h,k) \Big\|^2} = 0$, entonces

Para $ k = 0$

$\lim\limits_{h \to 0} \dfrac{\Big| f (h,0) \, – \, p (h,0) \Big|}{h^2} = \lim\limits_{h \to 0} \dfrac{0 \, – \, Ah^2}{h} = A = 0$

Análogamente, para $h = 0$ tenemos que $C = 0$

luego

$\lim\limits_{(h,k) \to (0,0)} \dfrac{\Big| f (h,k) \, – \, 2Bhk \Big|}{\Big\| (h,k) \Big\|^2} = 0 $

En particular, para cuando $\lim\limits_{h \to 0} \dfrac{ f (h,h) \, – \, 2Bh^2}{2h^2} = 0$

$f (h, h) = 0$

$\lim\limits_{h \to 0} \dfrac{ \, – \, \cancel{2} B \cancel{h^2} }{\cancel{2} \cancel{h^2} } = \lim\limits_{h \to 0} \, – \, 2 B = 0$

Por lo tanto $ B = 0$

Por lo tanto el polinomio $p (x, y) = Ax^2 + Bxy + Cy^2 + Dx + Ey + F $ que estábamos buscando resulta ser el polinomio constante CERO.

${}$

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.