Geometría Analítica I: Las cónicas que existen

Por Paola Lizeth Rojas Salazar

Introducción

Anteriormente, ya vimos la definición de «clasificación», ahora, usaremos esta definición para clasificar a las cónicas.

Para realizar esta clasificación, lo primero que debemos observar es que podemos hablar de las curvas asociadas a los polinomios de la siguiente manera:

Considera a un polinomio cuadrático como una función $P: \mathbb R^2 \to \mathbb R$ que a cada punto $x \in \mathbb R^2$, le asigna el número $P(x)$. Entonces, la curva asociada al polinomio P, o los ceros del polinomio P, son el siguiente subconjunto de $\mathbb R^2$:

\begin{equation} C(P)=\{x \in \mathbb R^2| P(x)=0\} \end{equation}

Además, vamos a decir que un subconjunto $C\subset \mathbb R^2$ es una curva cuadrática si, para algún polinomio cuadrático $P$, se tiene que $C=C(P)$

En conclusión, cualquier curva cuadrática, será equivalente a alguna de las cónicas que se muestran a continuación.

Las cónicas canónicas

  • El círculo unitario

El polinomio $x^2+y^2-1$, tiene como ceros el círculo unitario.

  • La hipérbola unitaria

El polinomio $x^2-y^2-1$, tiene como ceros a la hipérbola unitaria.

  • La parábola canónica

El polinomio $x^2-y$, tiene como ceros a una parábola.

Estas transformaciones afines, pueden mandar a muchas otras, por ejemplo, las elipses se pueden obtener del círculo unitario.

Conjuntos formados por polinomios cuadráticos

  • El círculo imaginario

El polinomio $x^2+y^2+1$, no tiene ningún cero en los reales, pero sí tiene solución en los números complejos, por lo que, a su curva cuadrática, la llamaremos «círculo imaginario».

  • Par de rectas

El polinomio $x^2-y^2$ tiene como conjunto de ceros a la unión de las dos rectas $x+y=0$ y $x-y=0$

  • El círculo de radio cero

El polinomio $x^2+y^2$ es el caso límite de círculos cuyos radios se hacen $0$. También las podemos llamar par rectas imaginarias, porque al factorizar el polinomio, resulta en valores complejos.

  • Rectas paralelas

El polinomio $x^2-1$ da dos rectas paralelas en $x=1$ y $x=-1$

  • Rectas paralelas imaginarias

El polinomio $x^2+1$ define dos rectas paralelas imaginarias en $x=i$ y $x=-i$

  • Recta doble

El polinomio dado por $x^2$, aunque solo consiste de una recta en $x=0$, se le llama doble por el polinomio que la define.

Tarea moral

  1. Realiza un dibujo en el plano euclidiano (si es posible), para cada una de las cónicas canónicas y curvas que se obtienen con los polinomios cuadráticos que mencionamos en esta entrada.
  2. Muestra que, efectivamente, los ceros de cada uno de los polinomios mostrados en la entrada, son los que mencionamos.

Más adelante…

En las siguientes entradas, estudiaremos la equivalencia y reducción de polinomios para después continuar con el análisis de las cónicas.

Deja una respuesta

Tu dirección de correo electrónico no será publicada.

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.