Archivo del Autor: Mariana Perez

49. Material en revisión: Longitud de arco en otras coordenadas (lunes 30 septiembre)

Por Mariana Perez

En coordenadas rectangulares la longitud de arco de una curva parametrizada la calculamos con la integral $$\int\limits_{t_0}^{t_1} \Big\|{\alpha}’ (t) \Big\| dt$$

Si $\alpha (t) = \big( x (t), y (t) \big)$, y ${\alpha}’ (t) = \big( x’ (t) , y’ (t) \big)$, entonces $$\int\limits_{t_0}^{t_1} \sqrt{ \big( x’ (t)\big)^2 + \big(y’ (t) \big)^2 \, } dt $$

¿Qué integral habría que calcular si la curva está en otras coordenadas?

Por ejemplo: en coordenadas polares, es decir, si conocemos $ r (t)$ y $\theta (t)$

Entonces

$ x (t) = r (t) \cos \big( \theta (t) \big)$

$ y (t) = r (t) \sin \big( \theta (t) \big)$

Derivando

$ x’ (t) = r’ (t) \cos \big( \theta (t) \big) \, – \, r (t) {\theta}’ (t) \sin \big( \theta (t) \big)$

$ y’ (t) = r’ (t) \sin \big( \theta (t) \big) \, + \, r (t) {\theta}’ (t) \cos \big( \theta (t) \big)$

Luego

$\begin{align*} \big( x’ (t)\big)^2 + \big(y’ (t) \big)^2 &= \Big( r’ (t) \cos \big( \theta (t) \big) \, – \, r (t) {\theta}’ (t) \sin \big( \theta (t) \big) \Big)^2 + \Big( r’ (t) \sin \big( \theta (t) \big) \, + \, r (t) {\theta}’ (t) \cos \big( \theta (t) \big) \Big)^2 \\ &= \textcolor{Green}{ {r’}^2 {\cos}^2 \theta (t)} \, – \, \cancel{ \textcolor{Red}{2 r’ (t) r (t) {\theta}’ (t) \cos \theta (t) \sin \theta (t)}} + \textcolor{DarkBlue}{r^2 (t) {{\theta}’}^2 (t) {\sin}^2 \theta (t) } \\ & + \textcolor{Green}{ {r’}^2 {\cos}^2 \theta (t)} + \cancel{ \textcolor{Red}{2 r’ (t) r (t) {\theta}’ (t) \cos \theta (t) \sin \theta (t)}} + \textcolor{DarkBlue}{r^2 (t) {{\theta}’}^2 (t) {\sin}^2 \theta (t)} \\ &= \Big( r’ (t) \Big)^2 + r^2 (t) \Big( {\theta}’ (t) \Big)^2 \end{align*} $

Entonces $$\int\limits_{t_0}^{t_1} \sqrt{ \Big( r’ (t) \Big)^2 + r^2 (t) \Big( {\theta}’ (t) \Big)^2 \, } dt$$

${}$

La «notación diferencial»

$$ ds^2 = dx^2 + dy^2 \; \; \longrightarrow \; \; \Big(\dfrac{ds}{dt}\Big)^2 = \Big(\dfrac{dx}{dt}\Big)^2 + \Big(\dfrac{dy}{dt}\Big)^2$$

Entonces $$\int ds = \int \dfrac{ds}{dt} dt$$

En coordenadas polares

$ds^2 = dr^2 + r^2 d{\theta}^2 \longleftrightarrow \Big(\dfrac{ds}{dt}\Big)^2 = \Big(\dfrac{dr}{dt}\Big)^2 + r^2 \Big(\dfrac{d \theta}{dt}\Big)^2$

Queremos que $ T \, o \, \beta = \alpha$

$T ( r, \theta) = (x, y)$

$x = r \cos \theta$

$y = r \sin \theta$

$x (t) = r (t) \cos \theta (t)$

$y (t) = r (t) \sin \theta (t)$

La «diferencial de T» ( o derivada de $T$)

$$DT = \begin{equation*} \left( \begin{matrix} \dfrac{\partial x}{\partial r} & \; \; & \dfrac{\partial x}{\partial \theta}\\ {} \\ \dfrac{\partial y}{\partial r} & \; \; & \dfrac{\partial y}{\partial \theta}\end{matrix} \right) \end{equation*}$$

Esta matriz es la transformación lineal que asocia vectores tangentes en el plano $r \theta$ con vectores tangentes en el plano $xy.$

Luego $DT \cdot {\beta}’ = {\alpha}’$

Entonces $ \begin{equation*} \left( \begin{matrix} \dfrac{\partial x}{\partial r} = \cos \theta & \; \; & \dfrac{\partial x}{\partial \theta} = – \, r \sin \theta \\ {} \\\dfrac{\partial y}{\partial r} = \sin \theta & \; \; & \dfrac{\partial y}{\partial \theta} = r \cos \theta \end{matrix} \right) \end{equation*}$

Entonces $$ \begin{equation*} \left( \begin{matrix} \cos \theta & \; \; & – \, r \sin \theta \\ {} \\ \sin \theta & \; \; & r \cos \theta \end{matrix} \right) \left( \begin{matrix} r’ \\ {} \\ {\theta}’ \end{matrix} \right) = \left( \begin{matrix} x’ \\ {} \\ y’ \end{matrix} \right) \end{equation*}$$

Luego

$ x’ = r’ \cos \theta \, – \, r {\theta}’ \sin \theta$

$ y’ = r’ \sin \theta \, + \, r {\theta}’ \cos \theta$

Para pedir la $\|{\alpha}’t\|$ usamos el producto punto

${\alpha}’ \cdot {\alpha}’=\|{\alpha}’\|^2$

$\sqrt{{\alpha}’ \cdot {\alpha}’}=\|{\alpha}’\|$

Si tenemos $T:V \longrightarrow W$ transf. lineal, y tenemos una función bilineal

$b:W \times W \longrightarrow \mathbb{R}$

podemos formar otra función bilineal B, tal que $B:V\times V \rightarrow \mathbb{R}$

$B( v_1 , v_2) := b(Tv_1, Tv_2)$

Vamos a medir el tamaño de los vectores en el plano $(r, \theta)$ no con la norma del producto punto sino con la norma de este producto escalar

$\begin{align*}B \Big( ({r’}_1, {\theta}’_1) , ({r’}_2, {\theta}’_2) \Big) &= b \Big( DT ({r’}_1, {\theta}’_1) , DT ({r’}_2, {\theta}’_2) \Big) \\ &= DT \begin{pmatrix} {r’}_1 \\ {\theta}’_1 \end{pmatrix} \cdot DT \begin{pmatrix} {r’}_2\\ {\theta}’_2 \end{pmatrix}\end{align*}$

$\begin{align*} \Big( {r’}_1 \cos \theta \, – \, r {\theta}’_1 \sin \theta , {r’}_1 \sin \theta \, + \, r {\theta}’_1 \cos \theta \Big) \cdot \Big( {r’}_2 \cos \theta \, – \, r {\theta}’_2 \sin \theta , {r}’_2 \sin \theta \, + \, r {\theta}’_2 \cos \theta \Big) \\ = \textcolor{Orange}{ {r}’_1 {r}’_2 {\cos}^2 \theta } \, – \, \cancel{ \textcolor{Red}{ {r’}_1 r {\theta}’_2 \cos \theta \sin \theta }} \, – \, \textcolor{DarkBlue}{{r}’_2 {\theta}’_1 \sin \theta \cos \theta } \\ + \textcolor{Green}{ {r}^2 {\theta}’_1 {\theta}’_2 {\sin}^2 \theta } + \textcolor{Orange}{ {r}’_1 {r}’_2 {\cos}^2 \theta } \, – \, \cancel{ \textcolor{Red}{ {r’}_1 r {\theta}’_2 \cos \theta \sin \theta }} \\ \, – \, \textcolor{DarkBlue}{{r}’_2 {\theta}’_1 \sin \theta \cos \theta } + \textcolor{Green}{ {r}^2 {\theta}’_1 {\theta}’_2 {\sin}^2 \theta } \\ = {r}’_1 {r}’_2 \, + \, {r’} {\theta}’_1 {\theta}’_2 \end{align*} $

Nueva norma para los vectores tangentes $\big( r’, {\theta}’ \big)$ en el plano $ ( r, \theta)$ $$\big\| \big( r’, {\theta}’ \big) \big\| : = \sqrt{{r’}^2 + r^2 {{\theta}’}^2 \, }$$

${}$

Jacobiano $= \begin{vmatrix} \cos \theta & \; \; \; & \; \; \sin \theta \\ \sin \theta & \; \; \; & \,- \ \cos \theta\end{vmatrix} = r \cos^2 \theta + r \sin^2 \theta = r $

En general, si tenemos un cambio de coordenadas

$ x = f (u, v)$

$ y = g (u, v)$

Sus derivadas son

$\dfrac{dx}{dt} = \dfrac{\partial x}{\partial u} \dfrac{du}{dt} + \dfrac{\partial x}{\partial v} \dfrac{dv}{dt}$

$\dfrac{dy}{dt} = \dfrac{\partial y}{\partial u} \dfrac{du}{dt} + \dfrac{\partial y}{\partial v} \dfrac{dv}{dt}$

Entonces

$\begin{pmatrix} \dfrac{dx}{dt} \\ {} \\ \dfrac{dy}{dt} \end{pmatrix} = \begin{pmatrix} \dfrac{\partial x}{\partial u} & \; \; & \dfrac{\partial x}{\partial v} \\{}\\ \dfrac{\partial y}{\partial u} & \; \; & \dfrac{\partial y}{\partial v} \end{pmatrix} \begin{pmatrix} \dfrac{du}{dt} \\ {} \\ \dfrac{dv}{dt} \end{pmatrix}$

Luego

$\begin{align*} \int\limits_{t_0}^{t_1} \big\|{\alpha}’ (t) \big\| dt &= \int\limits_{t_0}^{t_1} \sqrt{ \Big( \dfrac{dx}{dt}\Big)^2 \, + \, \Big( \dfrac{dy}{dt}\Big)^2 \, } dt \\ &= \int\limits_{t_0}^{t_1} H \Big( \dfrac{du}{dt} \, , \, \dfrac{dv}{dt} \Big) dt \end{align*} $

${}$

Longitud de arco de una curva en $\mathbb{R}^3$,

(*) en coordenadas cartesianas $$\textcolor{Red}{ds^2 = dx^2 \, + \, dy^2 \, + \, dz^2} $$

(*) en coordenadas cilíndricas $$\textcolor{Green}{ds^2 = dr^2 \, + \, r d{\theta}^2 \, + \, dz^2} $$

(*) en coordenadas esféricas $$\textcolor{DarkBlue}{ds^2 = dr^2 \, + \, r^2 \Big( d{\theta}^2 \, + \, {\sin}^2 \theta \; d{\varphi}^2 \Big) }$$

37. Material en revisión: Parametrización de elipses e hipérbolas

Por Mariana Perez

Elipse

La elipse : $$\dfrac{x^2}{a^2} + \dfrac{y^2}{b^2} = 1$$

se puede parametrizar como

$$\left\{ x = a \cos \theta \atop y = b \sin \theta \right.$$

ya que si elevamos al cuadrado ambas ecuaciones obtenemos que $$\left\{ x^2 = a^2 \cos^2 \theta \atop y^2 = b^2 \sin^2 \theta \right.$$ luego, despejando y sumando miembro a miembro observamos que $$\dfrac{x^2}{a^2} + \dfrac{y^2}{b^2} = \cos^2 \theta + \sin^2 \theta = 1$$ que es la ecuación de la elipse.

En el siguiente enlace puedes observar una animación de la elipse.

https://www.geogebra.org/classic/vntpwfrh

Hipérbola

La hipérbola: $$x^2 – y^2 = 1$$

se puede parametrizar como

$$\left\{ x = \sec \theta \atop y = \tan \theta \right.$$

ya que si elevamos al cuadrado cada ecuación tenemos que $$\left\{ x^2 = \sec^2 \theta \atop y^2 = \tan^2 \theta \right.$$ luego, restándolas vemos que $$ x^2 – y^2 = \sec^2 \theta – \tan^2 \theta = \dfrac{1}{\cos^2 \theta} – \dfrac{\sin^2 \theta}{\cos^2 \theta} = \dfrac{1 – \sin^2 \theta}{\cos^2 \theta} = \dfrac{\cos^2 \theta}{\cos^2 \theta} = 1 $$ obtenemos la ecuación de la hipérbola.

Otra manera de parametrizar la hipérbola es considerando

$$\left\{ x = \cosh \theta = \dfrac{e^t + e^{-t}}{2} \atop y = \sinh \theta = \dfrac{e^t – e^{-t}}{2}\right.$$

$$ x^2 – y^2 = \cosh^2 \theta – \sinh^2 \theta = 1$$

En el siguiente enlace puedes observar una animación de la hipérbola.

https://www.geogebra.org/classic/b3wbbndx

Longitud de arco

Consideramos una curva parametrizada $$\alpha : [a, b] \subset \mathbb{R} \rightarrow \mathbb{R}^2$$ $$\alpha (t) =(x(t), y(t))$$

Sean $P = \alpha (a)$

y $Q = \alpha (b)$

¿Cuál es la longitud de arco desde $P$ hasta $Q$?

  • Aproximemos la longitud de la curva como suma de segmentos de recta.

Dibujo A

$\sum\limits_{i = 1}^n \|\alpha (t_i) – \alpha (t_{i-1}) \|$ con la partición $ a = t_0 < t_1 < \dots < t_n = b$

Nos preguntamos si hay un teorema del valor medio. Es decir, existe $\rho \in (a, b)$ tal que $$f(\rho) = \dfrac{f(b) – f(a)}{b – a}$$

Entonces existe $\rho \in (a, b)$ tal que $$\overrightarrow{\alpha}(\rho) = \dfrac{\overrightarrow{\alpha}(b) – \overrightarrow{\alpha}(a)}{b – a} $$

Si así fuera, entonces $$\| {\alpha}'(\rho) \| = \dfrac{\| \overrightarrow{\alpha}(b) – \overrightarrow{\alpha}(a) \|}{b – a} $$

$\sum\limits_{i = 1}^n \|\alpha (t_i) – \alpha (t_{i-1}) \|=\sum\limits_1^n \|\alpha (t_i) – \alpha (t_{i-1}) \|\dfrac{t_i – t_{i-1}}{t_i – t_{i-1}} $

$=\sum\limits_{i = 1}^n \|{\alpha}’ (\xi_i) \| (t_i – t_{i-1})$

Por lo anterior definimos la longitud de arco desde $P$ hasta $Q$ como

$$ \int\limits_a^b \| {\alpha}'(t) \| dt $$

CASO CIRCUNFERENCIA

Para $\omega = 1.$

$x (t) = A \cos (t) + h$

$y (t) = A \sin (t) + k$

Derivando

$x’ (t) = – A \sin (t) \Longrightarrow (x’)^2 (t) = A^2 \sin^2 (t)$

$y’ (t) = A \cos (t) \Longrightarrow (y’)^2 (t) = A^2 \cos^2 (t) $

Sumando ambas igualdades

$(x’)^2 + (y’)^2 = A^2$ por lo que $\| {\alpha}'(t) \| = A.$

Si $P = \alpha (\theta_0)$ y $Q = \alpha (\theta_1)$, entonces

$$ \int\limits_{\theta_0}^{\theta_1} A \, dt = A (\theta_1 – \, \theta_0) = \text{radio } \Delta \theta $$

Una parametrización de una curva en coordenadas polares

Sea $r = f (\theta) $

Donde $\theta = \omega t$ y $ r = f( \omega t)$, que en coordenadas polares es:

$x (t) = f (\omega t) \cos (\omega t)$

$y (t) = f (\omega t) \sin (\omega t)$

Si $\omega = 1$ entonces $\overrightarrow{\alpha} (t) = (x(t), y(t)) = x (t) \vec{e_1} + y (t) \vec{e_2} = r (t) \overrightarrow{\beta} (t)$, donde $\beta (t) = (\cos \theta (t), \sin \theta (t))$

En este caso, ¿cómo calculamos la velocidad?

$x’ (t) = \dfrac{d}{dt} (f(\omega t) \cos (\omega t)) = \omega f'(\omega t) \cos (\omega t) – \sin (\omega t) f(\omega t) \omega$

$y’ (t) = \dfrac{d}{dt} (f(\omega t) \sin (\omega t)) = \omega f'(\omega t) \sin (\omega t) + \cos (\omega t) f (\omega t) \omega$

Luego,

$(x’, y’) = ( \omega f'(\omega t) \cos (\omega t) – \sin (\omega t) f(\omega t) \omega , \omega f'(\omega t) \sin (\omega t) + \cos (\omega t) f(\omega t) \omega )$

$(x’, y’) = \omega f'(\omega t) (\cos (\omega t) , \sin (\omega t) + \omega f(\omega t) ( -\sin (\omega t) , \cos (\omega t)$

$\overrightarrow{\alpha}’ (t) = r’ (t) \overrightarrow{\beta} (t) + r (t) \overrightarrow{\beta}’ (t)$

$\beta$, $\beta’$ son una base de $\mathbb{R}^2$ en la que podemos extresar ${\alpha}’$.

$\vec{e_1}$, $\vec{e_2}$ son otra base de $\mathbb{R}^2$ en la que también podemos extresar ${\alpha}’$.

Luego, $\alpha’ (t) = x’ (t) \vec{e_1} + y’ (t) \vec{e_2} = r’ (t) \overrightarrow{\beta} (t) + r (t) \overrightarrow{\beta}’ (t)$

36. Material en revisión: Curvas parametrizadas y movimiento circular uniforme

Por Mariana Perez

Dada una circunferencia de radio $r > 0$ con centro en $(h, k)$, posición inicial $(x_0, y_0)$ y velocidad inicial $(x’_0, y’_0)$, analizamos diferentes casos para poder calcular su frecuencia, velocidad angular, periodo, amplitud y fase.

Caso sencillo

Radio $r = 1$

Centro $(h, k) = (0, 0)$

Posición inicial $(x_0, y_0) = (1, 0)$

Velocidad inicial $(x’_0, y’_0) = (0, 1)$

Entonces $\left\{ x(t) = \cos (t) \atop y(t) = \sin (t) \right.$

Tenemos que la rapidez unitaria es $\| {\alpha}’ (t)\| = 1.$

Si el periodo es $2\pi$ entonces, para toda $t$:

$\left\{ x(t + 2\pi) = x (t) \atop y(t + 2\pi) = y (t) \right.$

Por lo que $\vec{\alpha} (t) = \vec{\alpha} (t + 2\pi).$

¿Cómo serian las ecuaciones si el movimiento fuera de $\textcolor{Blue}{periodo \; 1}$?

$\left\{ x(t) = \cos (2\pi t) \atop y(t) = \sin (2\pi t) \right.$

Entonces para $t = 0$ la posición es $ (1, 0)$; y para $ t = 1$ la posición también es $(1, 0).$

Luego, la rapidez de $\left\{ x(t) = \cos (2\pi t) \atop y(t) = \sin (2\pi t) \right.$ es

$\left\{ x’ (t) = -2 \sin (2\pi t) \atop y’ (t) = 2 \cos (2\pi t) \right.$

Por lo que $\|(x’ (t), y'(t)) \| = \sqrt{(2 \pi)^2 (\cos^2 (2\pi t) + \sin^2 (2 \pi t))}$,

es decir que la rapidez es: $$\|(x’ (t), y'(t)) \| = 2 \pi $$

Para periodos $T > 0$

$\left\{ x(t) = \cos \left( \frac{2\pi t}{T} \right) \atop y(t) = \sin \left( \frac{2\pi t}{T} \right) \right.$

Entonces para $t = 0$ la posición es $ (1, 0)$; y para $ t = T$ la posición también es $(1, 0).$

¿Cómo serían las ecuaciones si recorremos la circunferencia en el sentido horario, con periodo $T = 2\pi$?

Entonces $\left\{ x(t) = \cos (t) \atop y(t) = – \sin (t) \right.$

Por lo que $(x'(0), y'(0)) = (0, -1).$

Si ahora cambiamos la posición inicial, digamos que $ \vec{p_0} = (x_0, y_0).$

Dado el punto $(x_0, y_0)$, existe un ángulo $\theta$ tal que:

$\left\{ x_0 = \cos (\theta_0) \atop y_0 = \sin (\theta_0) \right.$

Si $(x_0, y_0) = (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}) \Rightarrow \theta_0 = 45° = \frac{\pi}{4}$

Si $(x_0, y_0) = (\frac{1}{2}, \frac{\sqrt{3}}{2}) \Rightarrow \theta_0 = 60° = \frac{\pi}{3}$

Luego, para toda $t$ se tiene que:

$\left\{ x(t) = \cos (t + \theta_0) \atop y(t) = \sin (t + \theta_0) \right.$

Cumple que $(x(0), y(0)) = (\cos \theta_0, \sin \theta_0) = (x_0, y_0)$, es decir, en el instante $t_0 = 0$ la posición inicial es $(x_0, y_0).$

Si hubiéramos escrito

$\left\{ x(t) = \cos (t – \theta_0) \atop y(t) = \sin (t – \theta_0) \right.$

Entonces $\left\{ x(\theta_0) = 1 \atop y(\theta_0) = 0 \right.$ es decir, en el instante $t_0 = \theta_0$ la posición es $(1, 0).$

Observación:

Si escribimos $\left\{ x(t) = \cos ( – t) = cos (t) \atop y(t) = \sin ( – t) = – \sin (t) \right.$

entonces estamos recorriendo la circunferencia en sentido horario.

Ahora estudiemos el siguiente caso:

$\left\{ x(t) = \cos (w t ) \atop y(t) = \sin (w t ) \right.$

El periodo es $\frac{2 \pi}{T} = \omega \Rightarrow T = \frac{2 \pi}{\omega}.$

Otro caso:

Si tenemos las ecuaciones $\left\{ x(t) = A \cos (w t ) \atop y(t) = A \sin (w t ) \right.$

y $A = 2$ entonces las ecuaciones

$\left\{ x(t) = 2 \cos (w t ) \atop y(t) = 2 \sin (w t ) \right.$

representan una circunferencia de radio 2. $A$ se denomina amplitud.

Caso centro $(h, k)$

Si el centro está en el punto $(h, k)$, entonces:

$$\left\{ x(t) = A \cos (w t ) + h \atop y(t) = A \sin (w t ) + k \right.$$

En el siguiente enlace puedes observar una animación de la parametrización.

https://www.geogebra.org/classic/gpuexq9c

39. Dos definiciones equivalentes de longitud de arco.

Por Mariana Perez

Teorema

Si $\alpha : [a, b] \subset \mathbb{R} \rightarrow \mathbb{R} $ es de clase $\mathcal{C}^1$, entonces la función que a cada $t \rightarrow \|{\alpha}’ (t)\|$ es continua, es de $ [a, b] \subset \mathbb{R} \rightarrow \mathbb{R}$ y podemos integrar, es decir, existe $$\int_{a}^{b} \|{\alpha}’ (t)\| dt$$

y $\mathcal{L} (\alpha) = \int_{a}^{b} \|{\alpha}’ (t)\| dt.$

Demostración:

$\mathcal{L} (\alpha) := \{ \mathcal{L} (C) \mid \mathcal{L} (C) = \sum\limits_{i = 1}^{n} \| \alpha (t_i) \, – \, \alpha(t_{i-1})\| \}$

En $\mathbb{R}^2$, $$\alpha (t) = ( x (t), y (t))$$

$$\alpha (t_i) = ( x (t_i), y (t_i))$$

$$\alpha (t_{i-1}) = ( x (t_{i-1}), y (t_{i-1}))$$

Luego $$\alpha (t_i) \, – \, \alpha (t_{i-1}) = ( x (t_i)\, – \, x (t_{i-1}), y (t_i) \, – \, y (t_{i-1}))$$

Entonces $$\Big\|\alpha (t_i) \, – \, \alpha (t_{i-1}) \Big\|= \sqrt {( x (t_i)\, – \, x (t_{i-1}))^2 + (y (t_i) \, – \, y (t_{i-1}))^2}$$

Entonces $$\sum\limits_{i = 1}^n \Big\|\alpha (t_i) \, – \, \alpha (t_{i-1}) \Big\|= \sum\limits_{i = 1}^n \sqrt {( x (t_i)\, – \, x (t_{i-1}))^2 + (y (t_i) \, – \, y (t_{i-1}))^2}$$

Existen $\xi_i \in (t_{i-1}, t_i)$ tales que $$\dfrac{x(t_i) \, – \, x(t_{i-1})}{t_i \, – \, t_{i-1}} = x’ (\xi) $$

Entonces $$x(t_i) \, – \, x(t_{i-1}) = x’ (\xi) (t_i \, – \, t_{i-1}) $$

De manera análoga, existen $\eta_i \in (t_{i-1}, t_i)$ tales que: $$y(t_i) \, – \, y(t_{i-1}) = y’ (\eta) (t_i \, – \, t_{i-1}) $$

Entonces $$\sum\limits_{i = 1}^n \Big\|\alpha (t_i) \, – \, \alpha (t_{i-1}) \Big\|= \sum\limits_{i = 1}^n \sqrt {( x’ (\xi_i))^2 (\Delta t_i)^2 + (y’ (\eta_i))^2 (\Delta t_i)^2}$$

con $\Delta t_i = t_i \, – \, t_{i-1}$ tenemos que el segundo miembro de la igualdad es:

$$\sum\limits_{i = 1}^n \sqrt {( x’ (\xi_i))^2 (\Delta t_i)^2 + (y’ (\eta_i))^2 (\Delta t_i)^2} = \sum\limits_{i = 1}^n \sqrt {( x’ (\xi_i))^2 + (y’ (\eta_i))^2 } (\Delta t_i)^2 $$

mientras que en el primer miembro obtenemos:

$$ \sum\limits_{i = 1}^n \Big\|\alpha (t_i) \, – \, \alpha (t_{i-1}) \Big\|= \int_a^b \Big\|{\alpha}’ (t) \Big\| dt $$

es el límite cuando la norma de la partición tiende a cero, de sumas de Riemann de la forma $$\sum\limits_{i = 1}^n \Big\|{\alpha}’ (\xi_i) \Big\| \Delta t_i$$

donde $\Big\|{\alpha}’ (\xi_i) \Big\| = \sqrt {( x’ (\xi_i))^2 + (y’ (\xi_i))^2 }$

Tenemos $\sum\limits_{i = 1}^n \sqrt {( x’ (\xi_i))^2 + (y’ (\eta_i))^2 } (\Delta t_i)$

Consideremos una función $F : [a, b] \times [a, b] \subset \mathbb{R}^2 \rightarrow \mathbb{R}$, donde $$F (s, t) = \sqrt {( x’ (s))^2 + (y’ (s))^2 }$$

Como $x’$ y $y’$ son continuas, tenemos que $F$ es continua en un conjunto compacto $ [a, b] \times [a, b] = K$ por lo que podemos concluir que $F$ es uniformemente continua.

Entonces, para todo $\epsilon > 0$ existe $\delta > 0$ tal que para toda pareja de puntos $p, q \in [a, b] \times [a, b] $

si $ \Big\| p – q \Big\| < \delta \Rightarrow \Big| F(p) – F(q) \Big| < \epsilon.$

Tomemos la norma de la partición $\mathcal{P}$ menor que $\delta$, es decir $t_i \, – \, t_{i-1} < \delta$

Como $\vec{p} = (\xi_i, \eta_i)$ y $\vec{q} = (\xi_i, \xi_i)$

Si $ \Big\| \vec{p} \, – \, \vec{q} \Big\| = \Big| \eta_i \, – \, \xi_i \Big| < \delta \Longrightarrow \Big| F(\vec{p}) \, – \, F(\vec{q}) \Big| < \epsilon$

Luego

$$ \Bigg| \sqrt {( x’ (\xi_i))^2 + (y’ (\eta_i))^2 } \, – \, \sqrt {( x’ (\xi_i))^2 + (y’ (\xi_i))^2 }\Bigg| < \epsilon$$

Multiplicando por $(t_i \, – \, t_{i-1})$

$$ \Bigg| \left(\sqrt {( x’ (\xi_i))^2 + (y’ (\eta_i))^2 } \, – \, \sqrt {( x’ (\xi_i))^2 + (y’ (\xi_i))^2 }\right) \Bigg|(t_i \, – \, t_{i-1}) < \epsilon (t_i \, – \, t_{i-1})$$

Sumamos

$$ \sum\limits_{i = 1}^n \Bigg| \left(\sqrt {( x’ (\xi_i))^2 + (y’ (\eta_i))^2 } \, – \, \sqrt {( x’ (\xi_i))^2 + (y’ (\xi_i))^2 }\right) \Bigg|(t_i \, – \, t_{i-1}) < \epsilon \sum\limits_{i = 1}^n (t_i \, – \, t_{i-1})$$

Entonces

$$\epsilon \sum\limits_{i = 1}^n (t_i \, – \, t_{i-1}) = \epsilon (b – a) $$

Por otro lado:

$$\Big| \mathcal{L}(C) \, – \, \mathcal{S}(f, \mathcal{P}) \Big| = \sum\limits_{i = 1}^n \Bigg| \left(\sqrt {( x’ (\xi_i))^2 + (y’ (\eta_i))^2 } \, – \, \sqrt {( x’ (\xi_i))^2 + (y’ (\xi_i))^2 }\right) \Bigg|(t_i \, – \, t_{i-1}) < \epsilon (b – a)$$

donde $f(t) = \sqrt {( x’ (t))^2 + (y’ (t))^2 }$

Luego $ \Big| \mathcal{L}(C) \, – \, \mathcal{S}(f, \mathcal{P}) \Big| < \epsilon (b – a)$

$\mathcal{L}(\alpha) = sup\{ \mathcal{L}(C)\}$ , donde $C$ es la trayectoria poligonal.

Entonces $\int_a^b \Big\|{\alpha}’ (t) \Big\| dt = \lim\limits_{\|\mathcal{P}\| \to 0} \mathcal{S} (f, \mathcal{P})$

Para todo $\epsilon > 0$ existe $c$ tal que $|\mathcal{L}(\alpha) \, – \, \mathcal{L}(C)| < \dfrac{\epsilon}{2}$

Para todo $\epsilon > 0$ existe $\mathcal{P}$ tal que

$ \Big| \mathcal{S}(f, \mathcal{P}) \, – \, \int_a^b \Big\|{\alpha}’ (t) \Big\| dt \Big| < \dfrac{\epsilon}{2}$

Existe una sucesión de curvas poligonales $\{ C_k\}_{k \in \mathbb{N}}$ tal que $\lim\limits_{k \to \infty} \mathcal{L}(C_k) = \mathcal{L}(\alpha)$

$ \lim\limits_{k \to \infty} \mathcal{S}(f , \mathcal{P}_k) = \int\limits_a^b \Big\|{\alpha}’ (t) \Big\| dt $ donde $\mathcal{P}_k$ son particiones de $[a, b].$

Afirmación:

$\Big| \mathcal{L}(C) \, – \, \mathcal{S}(f, \mathcal{P}_k) \Big| \rightarrow 0$ cuando $k \rightarrow \infty$

$$\therefore \mathcal{L}(\alpha) = \int\limits_a^b \Big\| {\alpha}'(t) \Big\| dt \; _{\blacksquare}$$

24. Material en revisión: De las coordenadas polares a las coordenadas rectangulares.

Por Mariana Perez

Dado un punto en coordenadas rectangulares $(x, y)$. ¿Cuáles son las coordenadas polares $( r, \theta)$? ¿Podemos despejar $(r, \theta)$ en función de $(x, y)$?

De $x^2 + y^2 = r ^2$, despejando $r$ se obtiene que $$r=\sqrt{x^2+y^2}$$

Para obtener el valor de $\theta$ tenemos dos maneras.

Una es usando la tangente $$\frac{y}{x} =\frac{r \sin \theta}{r \cos \theta} = \tan \theta$$ $$ \theta = \arctan \frac{y}{x}$$

Un detalle a tener en cuenta es que $x \neq 0$.

Además, podemos observar en la siguiente imagen que la función tangente $f(\theta) = \tan \theta$ tal que $f : \big(\frac{-\pi}{2}, \frac{\pi}{2}\big) \cup \big( \frac{\pi}{2}, \frac{3 \pi}{2}\big) \rightarrow \mathbb{R}$ no es inyectiva, y no tiene imagen inversa global, por lo que se debe elegir una rama, es decir un intervalo para el ángulo $\theta$.

Si consideramos la rama $\frac{- \pi}{2}< \theta < \frac{\pi}{2}$, $f : \big(\frac{- \pi}{2}, \frac{ \pi}{2}\big) \rightarrow \mathbb{R}$ entonces la función $f(\theta) = \tan \theta$ si tiene función inversa $f^{-1} : \mathbb{R} \rightarrow \big(\frac{- \pi}{2}, \frac{ \pi}{2}\big)$ y por tanto la función $\arctan \big( \frac{y}{x} \big)$ toma valores en $\big(\frac{- \pi}{2}, \frac{ \pi}{2}\big)$.

Es decir cuando $x > 0$.

De manera análoga, si consideramos la rama $\frac{\pi}{2}< \theta < \frac{3 \pi}{2}$, $f : \big(\frac{3 \pi}{2}, \frac{ \pi}{2}\big) \rightarrow \mathbb{R}$ entonces la función $f(\theta) = \tan \theta$ si tiene función inversa $f^{-1} : \mathbb{R} \rightarrow \big(\frac{3 \pi}{2}, \frac{ \pi}{2}\big)$ y por tanto la función $\arctan \big( \frac{y}{x} \big)$ toma valores en $\big(\frac{3 \pi}{2}, \frac{ \pi}{2}\big)$.

Es decir para cuando $x < 0$.

Otra manera es la siguiente.

Despejando $(r, \theta)$ en términos de $(x, y)$ de la ecuación $$x^2 + y^2 = r ^2$$

Obtenemos que $$r= \sqrt{x^2+y^2}$$

Sustituyendo el valor de $r$ obtenido, en la ecuación $\cos{\theta} = \frac{y}{x}$ obtenemos que $\cos{\theta} = \frac{x}{\sqrt{x^2+y^2}}$ por lo que el valor de $\theta$ está dado por $$\theta = \arccos\left( \frac{x}{\sqrt{x^2+y^2}}\right)$$

La función coseno tampoco es inyectiva sobre $\mathbb{R}$. Para poder hablar de la inversa hay que restringir el intervalo donde varia $\theta$.

Una opción es $0 < \theta < \pi$.

Es decir, se debe escoger el intervalo de $\theta$ que mejor nos permita calcular el ángulo dependiendo de donde se encuentre el punto $(x, y)$.

$$T : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$ $$(r, \theta) \longrightarrow (x, y)$$

Mediante tabulación.

Si fijamos $r_0 = 1$ y variamos $\theta$, tenemos que $x = r_0 \cos \theta$ entonces $x = \cos \theta$ y para $y = r_0 \sin \theta$ se obtiene $y = \sin \theta$. Luego $(x, y) = ( \cos \theta, \sin \theta)$.

Analíticamente para $r_0 = 1$ $$x^2+y^2=\cos^2 \theta + \sin^2 \theta$$ $$x^2+y^2=1$$

Por lo que la recta $r = 1$ en coordenadas polares es la circunferencia unitaria en coordenadas cartesianas.

Si fijamos $r_0 = 2$ y variamos $\theta$ se obtiene $$x^2+y^2=(2 \cos \theta)^2 + (2 \sin \theta)^2 = 4 \cos^2 \theta + 4 \sin^2 \theta = 4 (\cos^2 \theta + \sin^2 \theta) = 4$$

$$x^2+y^2=4$$

Por lo que la recta $r = 2$ en coordenadas polares es la circunferencia de radio 2 en coordenadas cartesianas.

Además, la recta $r = 0$ en coordenadas polares, es el punto $(0, 0)$ en coordenadas cartesianas.

https://www.geogebra.org/classic/rhv8nvwx

Ahora consideremos una recta horizontal $\theta = \theta_0$

$x = r \cos \theta_0$

$y = r \sin \theta_0$

$(x, y) = (r \cos \theta_0, r \sin \theta_0)$

$(x, y ) = r ( \cos \theta_0, \sin \theta_0)$

El factor $ (\cos \theta_0, \sin \theta_0)$ es constante, si variamos $r$ tenemos que:

* Si $r > 0$ la recta horizontal en coordenadas polares es un rayo que parte del origen en coordenadas cartesianas; pero si $r \in \mathbb{R} $ se transforma en la recta generada por el vector unitario $\vec{u} = (\cos \theta_0, \sin \theta_0)$.

En la siguiente animación dejamos fijo el ángulo y variamos el valor de $r$.

https://www.geogebra.org/c

En la siguiente animación puedes variar al mismo tiempo $r, \Delta r, \theta$ y $\Delta \theta$ y observar las transformación en la segunda ventana.

https://www.geogebra.org/classic/kwbmfxfn