59. Material en revisión: Sobre las derivadas de $g (t) = f (x_0 + th, y_0 + tk)$

Por Mariana Perez

Proposición:

$$ g^{(n)} (t) = \sum\limits_{i=0}^{n} \begin{pmatrix} n \\ i \end{pmatrix} \dfrac{\partial^n f}{\partial x^i \; \partial y^{n-i}} (x_0 + th, y_0 + tk) h^i \; k^{n-i}$$

Demostración (por inducción)

Base inductiva:

Para $n = 1, 2 $ lo trabajamos en la entrada anterior. https://blog.nekomath.com/?p=101046&preview=true

Paso inductivo:

Supongamos la proposición válida para $n.$

$\Big[$ por demostrar: que es válida para $ n + 1 \Big]$

Entonces

$\begin{align*} g^{(n+1)} (t) &= \dfrac{d}{dt} \sum\limits_{i=0}^{n} \begin{pmatrix} n \\ i \end{pmatrix} \dfrac{\partial^n f}{\partial x^{i} \; \partial y^{n-i}} (x_0 + th, y_0 + tk) h^{i} \; k^{n-i} \\ &= \sum\limits_{i=0}^{n} \begin{pmatrix} n \\ i \end{pmatrix} h^{i} \; k^{n-i} \dfrac{d}{dt} \dfrac{\partial^n f}{\partial x^{i} \; \partial y^{n-i}} (x_0 + th, y_0 + tk) \end{align*}$

Podemos ver a la $\dfrac{\partial^n f}{\partial x^{i} \; \partial y^{n-i}} (x, y) = G (x, y)$

Entonces, derivando $G (x_0 + th, y_0 + tk) = G ( \alpha ( t)) $ respecto a $ t $ se tiene que

$\begin{align*}\dfrac{d}{dt} \dfrac{\partial^n f}{\partial x^{i} \; \partial y^{n-i}}& (x_0 + th, y_0 + tk) = \\&= \dfrac{\partial^{n+1} f}{\partial x^{i+1} \; \partial y^{n-i}} (x_0 + th, y_0 + tk) h \, + \, \dfrac{\partial^{n+1} f}{\partial x^{i} \; \partial y^{n-i+1}} (x_0 + th, y_0 + tk) k\end{align*}$

Entonces

$\begin{align*} g^{(n+1)} (t) &= \sum\limits_{i=0}^{n} \begin{pmatrix} n \\ i \end{pmatrix} h^{i} \; k^{n-i} \Bigg( \dfrac{\partial^{n+1} f}{\partial x^{i+1} \; \partial y^{n-i}} (x_0 + th, y_0 + tk) h \, + \, \dfrac{\partial^{n+1} f}{\partial x^{i} \; \partial y^{n-i+1}} (x_0 + th, y_0 + tk) k \Bigg) \end{align*}$ llamemos a esta expresión (1)

$\Big[$ por demostrar: $g^{(n + 1)} (t) = \sum\limits_{i=0}^{n+1} \begin{pmatrix} n+1 \\ i \end{pmatrix} h^{i} \; k^{n+1-i} \dfrac{\partial^{n+1} f}{\partial x^{i} \; \partial y^{n+1-i}} (x_0 + th, y_0 + tk) \Big]$

De $(1)$ tenemos que

$g^{(n+1)} (t) = \sum\limits_{i=0}^{n} \begin{pmatrix} n \\ i \end{pmatrix} h^{i} \; k^{n-i} \dfrac{\partial^{n+1} f}{\partial x^{i+1} \; \partial y^{n-i}} \, + \, \sum\limits_{i=0}^{n} \begin{pmatrix} n \\ i \end{pmatrix} h^{i} \; k^{n+1-i} \dfrac{\partial^{n+1} f}{\partial x^{i} \; \partial y^{n+1-i}} $

haciendo $ j = i + 1$

$g^{(n+1)} (t) = \sum\limits_{j=1}^{n+1} \begin{pmatrix} n \\ j-1 \end{pmatrix} h^{i} \; k^{n+1-i} \dfrac{\partial^{n+1} f}{\partial x^{j} \; \partial y^{n+1-j}} \, + \, \sum\limits_{i=0}^{n} \begin{pmatrix} n \\ i \end{pmatrix} h^{i} \; k^{n+1-i} \dfrac{\partial^{n+1} f}{\partial x^{i} \; \partial y^{n+1-i}} $

con $ i = 0$, $ j = n + 1$

$ g^{(n+1)} (t) = \begin{pmatrix} n \\ 0 \end{pmatrix} h^{0} \; k^{n+1} \dfrac{\partial^{n+1} f}{ \partial y^{n+1}} \, + \, \begin{pmatrix} n \\ n \end{pmatrix} h^{n+1} \; k^{0} \dfrac{\partial^{n+1} f}{\partial x^{n+1} } \, + \, \sum\limits_{i=1}^{n} \Bigg[ \begin{pmatrix} n \\ i-1 \end{pmatrix} , + \, \begin{pmatrix} n \\ i \end{pmatrix} \Bigg] h^{i} \; k^{n+1-i} \dfrac{\partial^{n+1} f}{\partial x^{i} \; \partial y^{n+1-i}} $

entonces

$ g^{(n+1)} (t) = \begin{pmatrix} n \\ 0 \end{pmatrix} h^{0} \; k^{n+1} \dfrac{\partial^{n+1} f}{ \partial y^{n+1}} \, + \, \begin{pmatrix} n \\ n \end{pmatrix} h^{n+1} \; k^{0} \dfrac{\partial^{n+1} f}{\partial x^{n+1} } \, + \, \sum\limits_{i=1}^{n} \begin{pmatrix} n + 1 \\ i \end{pmatrix} h^{i} \; k^{n+1-i} \dfrac{\partial^{n+1} f}{\partial x^{i} \; \partial y^{n+1-i}} $

${}$

(*) Aplicamos el teorema de Taylor a la función $ g (t) = f (x_0 + th, y_0 + tk) $ en $[ 0, 1]$

Teorema de Taylor en una variable

$f (x) = f (a) + f’ (a) (x\, – \, a) + \dfrac{ {f’}’ (a)}{2} (x\, – \, a)^2 \, + \, R_2 (x)$

Fórmulas para $R_2 (x)$

(1) Lagrange: $R_2 (x) = \dfrac{ f^{(3)} (t) }{3!} (x\, – \, a)^3$ para algún $ t \in ( a, x)$.

(2) Integral: $ \begin{equation*}R_2 (x) =\int\limits_{a}^{x} \dfrac{ f^{(3)} (t) }{2!} (x\, – \, a)^2 dt\end{equation*}$

Si $[a, x] = [0, 1]$ entonces $ x \, – \, a = 1$, por lo que

$ g (1) = g (0) \, + \, g’ (0) \, + \, \dfrac{ {g’}’ (0) }{2!} \, + \, R_2 (1)$

Si $(x_0, y_0)$ es un punto crítico, entonces

$f (x_0 + h, y_0 + k) = f (x_0 , y_0) \, + \, \cancel{\dfrac{\partial f}{\partial x} (x_0, y_0) h } \, + \, \cancel{ \dfrac{\partial f}{\partial y} (x_0, y_0) k} \, + \, \dfrac{1}{2} \Bigg[ \textcolor{Magenta}{\dfrac{\partial^2 f}{\partial x^2} (x_0, y_0) h^2 \, + \, 2 \dfrac{\partial^2 f}{\partial x \; \partial y} (x_0, y_0) h\, k \, + \, \dfrac{\partial^2 f}{\partial y^2} (x_0, y_0) k^2} \Bigg] \, + \, R_2 (1) $

La expresión resaltada de color se conoce como $\textcolor{Magenta}{Forma \; \; cuadr\acute{a}tica}.$

Calculamos el error con cualquiera de las dos fórmulas vistas, de modo que:

(1) $\dfrac{g^{(3)} (t)}{3!} = \dfrac{1}{3!} \Bigg( \dfrac{ \partial f^{(3)}}{\partial x^3} h^3 \, + \, 3 \dfrac{\partial^3 f}{\partial x^2 \; \partial y} h^2 \; k \, + \, 3 \dfrac{\partial^3 f}{\partial x \; \partial y^2} h \; k^2 \, + \, \dfrac{ \partial f^{(3)}}{\partial y^3} k^3 \Bigg)$ en $ t \in (0, 1) $

(2) $\begin{equation*}\int\limits_{0}^{1} \dfrac{g^{(3)} (t)}{2} (1 \, – \, t)^2 dt \end{equation*}_{\blacksquare}$

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.