Teoría de los Conjuntos I: Propiedades del producto cartesiano

Por Gabriela Hernández Aguilar

Introducción

En esta nueva entrada demostraremos algunas de las propiedades del producto cartesiano. Discutiremos sobre si esta operación en conjuntos es conmutativa o asociativa. Para algunos de nuestros ejemplos usaremos los conjuntos $0,1,2,3,4$ que recuerda que definimos en la entrada de axioma de la unión y axioma del par.

Producto cartesiano

Recordemos la definición de producto cartesiano.

Definición. Sean $A$ y $B$ conjuntos cualesquiera, definimos el producto cartesiano de $A$ y $B$, como:

$A\times B=\set{(a,b): a\in A\ y\ b\in B}$.

Ejemplo.

Consideremos los conjuntos $A=\set{0,1}$ y $B=\set{0,1,2,3}$. Tenemos que $A\times B=\set{(0,0),(0,1), (0,2), (0,3), (1,0), (1,1), (1,2), (1,3)}$. De hecho, podemos representar geométricamente a este conjunto como se muestra en la siguiente imagen:

Imagen representación geométrica del producto cartesiano.

Por supuesto, esta representación es un poco informal pues estamos usando la recta numérica con números reales (que no hemos dicho qué son) y estamos asumiendo cierto orden (del cuál no hemos hablado). Por el momento, piensa que esta representación es sólo para conectar la idea de producto cartesiano con conceptos que has visto en otros cursos.

$\square$

Conmutatividad del producto cartesiano

En general el producto cartesiano no es conmutativo, es decir, si $A$ y $B$ son conjuntos, no necesariamente es cierto que $A\times B=B\times A$.

Ejemplo.

Sean $A=\set{\emptyset}$ y $B=\set{\set{\emptyset}}$, tenemos que:

$A\times B=\set{(\emptyset, \set{\emptyset})}$.

Por otro lado,

$B\times A=\set{(\set{\emptyset},\emptyset)}$.

Dado que tanto $A\times B$ y $B\times A$ sólo tienen un elemento, para que pase que $A\times B=B\times A$, tendría que ocurrir que $(\emptyset,\set{\emptyset})=(\set{\emptyset}, \emptyset)$. Usando el teorema que vimos en la entrada pasada tendríamos que $\emptyset=\set{\emptyset}$ y $\set{\emptyset}=\emptyset$, lo cual no ocurre. Por lo tanto, $A\times B\not=B\times A$.

$\square$

Veamos ahora bajo qué condición el producto cartesiano sí conmuta.

Proposición. Sean $A$ y $B$ conjuntos. Entonces $A\times B=B\times A$ si y sólo si $A=B$ o $A=\emptyset$ o $B=\emptyset$.

Demostración.

$\rightarrow$] Supongamos que $A$ y $B$ son conjuntos tales que $A\times B=B\times A$.

Caso 1: Si $A=\emptyset$ se cumple la proposición.

Caso 2: Si $B=\emptyset$ se cumple la proposición.

Caso 3: Si $A$ y $B$ son conjuntos no vacíos. Sea $x\in A$. Como $B\not=\emptyset$, existe $y\in B$ y así la pareja $(x,y)\in A\times B$. Por hipótesis $A\times B=B\times A$, por lo que $(x,y)\in B\times A$, esto es $x\in B$ y $y\in A$. En particular, $x\in B$ y por lo tanto, $A\subseteq B$.

Para ver que $B\subseteq A$ seguimos un argumento análogo al anterior. Por lo tanto, $A=B$.

$\leftarrow$] Si $A=B$, tenemos que $A\times B=B\times A$. Si $A=\emptyset$, entonces por definición de producto cartesiano $A\times B=\emptyset\times B=\emptyset$ y $B\times A=B\times \emptyset= \emptyset$, por lo que $A\times B=B\times A$. Análogamente si $B=\emptyset$.

$\square$

Asociatividad del producto cartesiano

Además de preguntarnos acerca de la conmutatividad podemos preguntarnos si el producto cartesiano es asociativo. Para tratar la asociatividad de una operación son necesarios tres conjuntos, sin embargo, no hemos visto la definición de producto cartesiano para más de dos conjuntos.

Definición. Sean $A,B$ y $C$ conjuntos. Definimos el producto cartesiano de $A$, $B$ y $C$ como:

$A\times B\times C=(A\times B)\times C$.

Ejemplo.

Sean $A=B=C=\set{\emptyset}$. Tenemos que:

\begin{align*}
A\times B\times C&=(A\times B)\times C\\
&=(\set{\emptyset}\times\set{\emptyset})\times\set{\emptyset}\\
&= \set{(\emptyset,\emptyset)}\times\set{\emptyset}\\
&=\set{((\emptyset, \emptyset), \emptyset)}.
\end{align*}

$\square$

Una manera alternativa de hacer lo anterior es la siguiente.

Definición. Sean $A,B$ y $C$ conjuntos. Definimos

$(A\times B\times C)_2=A\times (B\times C)$.

Ejemplo.

Sean $A=B=C=\set{\emptyset}$ conjuntos,

\begin{align*}
A\times (B\times C)&=\set{\emptyset}\times (\set{\emptyset}\times\set{\emptyset})\\
&=\set{\emptyset}\times \set{(\emptyset, \emptyset)}\\
&= \set{(\emptyset,(\emptyset,\emptyset))}.
\end{align*}

$\square$

Revisando los dos ejemplos anteriores tenemos que $A\times(B\times C)\not=(A\times B)\times C)$ pues $(\emptyset,(\emptyset,\emptyset))\in A\times (B\times C)$ y $((\emptyset, \emptyset), \emptyset)\in (A\times B)\times C$ son tales que $(\emptyset, (\emptyset, \emptyset))\not=((\emptyset, \emptyset), \emptyset)$. Concluimos que las definiciones de $A\times B\times C$ y $(A\times B\times C)_2$ son distintas, y en cierto sentido, concluimos que el producto cartesiano no es asociativo.

Tarea moral

  • Demuestra que para $a,b,c$ conjuntos se tiene que $(a,b,c)$ es conjunto, y que para $A,B,C$ conjuntos se tiene que $A\times B \times C$ también es conjunto.
  • Prueba que $(a,b,c)=(d,e,f)$ si y sólo si $a=d$, $b=e$ y $c=f$.
  • Prueba que si $A\not=\emptyset$, entonces $(A\times A)\times A\not=A\times (A\times A)$.
  • Demuestra que $A\times B=\emptyset$ si y sólo si $A=\emptyset$ o $B=\emptyset$.
  • Muestra que si $C\times D\not=\emptyset$ entonces $C\times D\subseteq A\times B$ si y sólo si $C\subseteq A$ y $D\subseteq B$.

Más adelante…

En la siguiente entrada veremos cómo se comporta el producto cartesiano con las operaciones que tratamos en entradas anteriores como: la unión, la intersección y la diferencia. Esto lo podremos hacer pues, como vimos, el producto cartesiano es un conjunto cuyos elementos son parejas ordenadas.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

2 comentarios en “Teoría de los Conjuntos I: Propiedades del producto cartesiano

    1. Leonardo Ignacio Martínez SandovalLeonardo Ignacio Martínez Sandoval

      Hola Manuel. Usualmente cuando hablamos de «la propiedad asociativa» no permitimos usar sólo unos elementos arbitrarios bien elegidos, sino que debe ser una propiedad que se cumpla en general para ternas las que sean. Así, no podemos sólo fijarnos en (AxA)xA=Ax(AxA) y decir que ya tenemos asociatividad. Por otro lado, uno de los ejemplos de la tarea moral muestra que de hecho esa igualdad con todos como A casi nunca sucede, sólo cuando A es el conjunto vacío.

      Responder

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.