Definición y ejemplos con demostración de ESPACIOS VECTORIALES

INTRODUCCIÓN

A partir del interés de establecer métodos para resolver ecuaciones de tercer grado por medio de radicales, los matemáticos se encuentran con las raíces negativas e imaginarias. El concepto de número imaginario logra superponerse al paradigma y encuentra su lugar a través de su representación geométrica.

El físico William Rowan Hamilton se interesó por establecer propiedades de las operaciones entre números complejos y sostuvo que el álgebra tenía una relación muy estrecha con la física. Motivado con esta idea, establece conjuntos de números dotados de una estructura algebraica con una representación espacial muy útil para los trabajos en física. Sus propiedades resultan similares a las que actualmente se tienen para el producto escalar y vectorial.

Los cuaterniones de Hamilton son números de la forma: P=a+bi+cj+dk, donde a,b,c y d son números reales y k=ij=-ji es una unidad imaginaria.

En el álgebra lineal el concepto de «vector» adquiere su significado más general.

ESPACIO VECTORIAL

Definición: Sean $V$ un conjunto y sea $K$ un campo (con las operaciones $+_K$ y $\cdot_K$). Sean $+_V: V \times V \longrightarrow V$ y $\cdot_V: K \times V \longrightarrow V$ operaciones. Decimos que $V,+_V,\cdot_V$ es un espacio vectorial sobre el campo $K$, o bien un $K$ – espacio vectorial (y a los elementos de $K$ les llamamos vectores), si $+_V$ y $\cdot_V$ cumplen lo siguiente:

  1. $+_V$ es asociativa
    $\forall u,v,w \in V:$
    $(\,u+_V(v+_V w)=(u+_V v)+_V w\,)$
  2. $+_V$ es conmutativa
    $\forall u,v \in V:$
    $(\,u+_V v=v+_V u\,)$
  3. Existe neutro aditivo
    $\exists \theta_V \in V:$
    $\forall u \in V (\,\theta_V +_V u = u +_V \theta_V = u\,)$
  4. Todo elemento $u \in V$ tiene inverso aditivo
    $\forall u \in V:$
    $\exists \tilde {u} \in V (\,u+_V \tilde {u} = \tilde {u} +_V u = \theta_V\,)$
  1. $\forall u \in V:$
    $1_K \cdot_V u = u$
  2. $\forall \lambda,\mu \in K \forall u \in V:$
    $\lambda\cdot_K(\mu\cdot_K u)=(\lambda\cdot_K\mu)\cdot_V u$
  3. $\cdot_V$ es distributiva
    7.1 $\forall \lambda,\mu \in K \forall u \in V:$
    $(\lambda+_K\mu)\cdot_V u = (\lambda\cdot_V u)+(\mu\cdot_V u)$
    7.2 $\forall \lambda \in K \forall u,v \in K:$
    $\lambda\cdot_V(u+v)=\lambda\cdot_V u+\lambda\cdot_V v$

Nota: Es común encontrar la expresión «$V$ es un $K$ – espacio vectorial con las operaciones $+, \cdot$» en lugar de «$V,+,\cdot$ es un $K$ – espacio vectorial», al igual que «$V$ es un $K$ – espacio vectorial» sin la referencia a las operaciones cuando se trata de las usuales (se suponen por obviedad).

Nota: Para evitar confusiones, en caso de ser necesario, denotaremos por $u+_V v$ a la suma de los vectores $u$ y $v$, y por $\lambda\cdot_V v$ al producto del escalar $\lambda$ por el vector $v$, pero una vez que nos habituemos a ellas las denotaremos simplemente por $u+v$ y $\lambda v$.

Ejemplos:

  • $\mathbb{R}^n$ es un $\mathbb{R}$ – espacio vectorial con la suma y el producto por escalar usuales.
  • $<(1,1,1)> = \{\lambda(1,1,1):\lambda \in \mathbb{R} \}$ es un $\mathbb{R}^n$ – espacio vectorial.
  • Sea $K$ campo. $\mathcal{M}_{m\times n}(K)$ (las matrices con $m$ renglones y $n$ columnas, con entradas en $K$) es un $K$ – espacio vectorial con las operaciones usuales de suma y producto por escalar.
  • Sea $K$ campo. $K[x]$ (los polinomios en $x$ con coeficientes en $K$) es un $K$ – espacio vectorial con la suma y el producto por escalar usuales.
  • Sea $K$ campo. $K^{n} = \{(x_{1}, x_{2},…,x_{n}) : x_{1},x_{2},…,x_{n} \in K \}$ es un $K$ – espacio vectorial con la suma entrada a entrada y el producto definido como sigue:
    Sean $(x_{1},x_{2},…,x_{n}) \in K^{n}$, $\lambda \in K$. $\lambda \cdot (x_{1},x_{2},…,x_{n})=(\lambda x_{1}, \lambda x_{2},…,\lambda x_{n})$
  • Sea $K$ campo. $K^{\infty} = \{(x_{1}, x_{2},…) : x_{1},x_{2},… \in K \}$ es un $K$ – espacio vectorial con la suma entrada a entrada y el producto definido como sigue:
    Sean $(x_{1},x_{2},…) \in K^{n}$, $\lambda \in K$. $\lambda \cdot (x_{1},x_{2},…)=(\lambda x_{1}, \lambda x_{2},…)$

EJEMPLO FUNCIONES

Sea $K$ campo. $V=\{f|f:K \longrightarrow K\}$ es un $K$ – espacio vectorial con las operaciones $+_V$ y $\cdot_V$ definidas como sigue:

Sean $f,g \in V$, $\lambda \in K$.
$f +_V g : K \longrightarrow K$
$(f +_V g )(x) = f(x) +_K g(x)$ para todo $x\in K$ donde $+_K$ es la suma en $K$.

Sean $f \in V$, $\lambda \in K$.
$\lambda \cdot_V f : K \longrightarrow K$
$(\lambda \cdot_V f )(x) =\lambda \cdot_K f(x)$ para todo $x\in K$
donde $\cdot_K$ es el producto en $K$.

DEMOSTRACIÓN

Vamos a ver que las operaciones $+_V$, $\cdot_V$ cumplen las ocho condiciones suficientes y necesarias (por definición) para que $V$ sea espacio vectorial:

Sean $f,g,h \in V$, $\lambda, \mu \in K$.
Sea $x \in K$ arbitrario.

  1. P.D. $+_V$ es asociativa
    $i. e.$ $(f +_V g) +_V h = f +_V (g +_V h)$

Obs. 1 Tenemos que $f +_V g, g +_V h \in V$. Así, $(f +_V g) +_V h, f +_V (g +_V h) \in V$. Así que sólo falta ver que $(f +_V g) +_V h$ y $f +_V (g +_V h)$ tienen la misma regla de correspondencia.

\begin{align*}
((f +_V g) +_V h)(x) &= (f +_V g)(x) +_K h(x)\tag{def. $+_V$}\\
&= (f(x) +_K g(x)) +_K h(x)\tag{def. $+_V$}\\
&= f(x) +_K (g(x) +_K h(x))\tag{asociat. $+_K$}\\
&= f(x) +_K (g +_V h)(x)\tag{def. $+_V$}\\
&= (f +_V (g +_V h))(x)\tag{def. $+_V$}\\
\therefore (f +_V g) +_V h &= f +_V (g +_V h)
\end{align*}

  1. P.D. $+_V$ es conmutativa
    $i.e.$ $f +_V g = g +_V f$

Obs. 2 Tenemos que $f +_V g, g +_V f \in V$. Así que sólo falta ver que $f +_V g$ y $g +_V f$ tienen la misma regla de correspondencia.

\begin{align*}
(f +_V g)(x) &= f(x) +_K g(x)\tag{def. $+_V$}\\
&= g(x) +_K f(x)\tag{conmutat. $+_K$}\\
&= (g +_V f)(x)\tag{def. $+_V$}\\
\therefore f +_V g &= g +_V f
\end{align*}

  1. P.D. Existe neutro aditivo
    $i.e.$ $\exists \theta_V \in V:$
    $\theta_V +_V f = f +_V \theta_V = f$

Proponemos:
$\theta_V : K \longrightarrow K$ con
$\theta_V(x) = 0_K$ para todo $x\in K$
donde $0_K$ es neutro aditivo de $K$.

Obs. 3 Por construcción $\theta_V \in V$. Así, $f +_V \theta_V, \theta_V +_V f \in V$. Además, por $2$, se cumple que $\forall f \in V (\theta_V +_V f = f +_V \theta_V)$. Entonces sólo falta ver que $f +_V \theta_V$ y $f$ tienen la misma regla de correspondencia.

\begin{align*}
(f +_V \theta_V)(x) &= f(x) +_K \theta_V(x)\tag{def. $+_V$}\\
&= f(x) +_K 0_K\tag{def. $\theta_V$}\\
&= f(x)\tag{neutro ad.}\\
\therefore \theta_V +_V f = f +_V \theta_V
\end{align*}

  1. P.D. Todo elemento $f \in V$ tiene inverso aditivo
    $i.e.$ $\exists \tilde{f} \in V:$
    $f+ \tilde{f} = \tilde{f} + f = \theta_V$

Proponemos:
$\tilde{f} : K \longrightarrow K$ con
$\tilde{f}(x)=(-f(x))$ para todo $x\in K$
donde $(-f(x))$ es el inverso aditivo de $f(x) \in K$.

Obs. 4 Por construcción $\tilde{f} \in V$. Así, $f +_V \tilde{f}, \tilde{f} +_V f \in V$. Además, por $2$, se cumple que $\forall f \in V (f +_V \tilde{f} = \tilde{f} +_V f \in V)$. Entonces sólo falta ver que $f +_V \tilde{f}$ y $\theta_V$ tienen la misma regla de correspondencia.

\begin{align*}
(f +_V \tilde{f})(x) &= f(x) +_K \tilde{f}(x)\tag{def. $+_V$}\\
&= f(x) +_K (-f(x)) \tag{def. $\tilde{f}$}\\
&= 0_K\tag{inv. ad.}\\
&= \theta_V (x)\tag{def. $\theta_V$}\\
\therefore f +_V \tilde{f} = \tilde{f} +_V f = \theta_V
\end{align*}

  1. P.D. $1_K \cdot_V f = f$

Sea $1_K$ el neutro multiplicativo en $K$.

Obs. 5 Por construcción $1_K \in K$. Así, $1_K \cdot_V f \in V$. Así que sólo falta ver que $1_K \cdot_V f$ y $f$ tienen la misma regla de correspondencia.

\begin{align*}
(1_K \cdot_V f)(x) &= 1_K \cdot_K f(x)\tag{def. $\cdot_V$}\\
&= f(x)\tag{neut. mult.}\\
\therefore 1_V \cdot_V f = f
\end{align*}

  1. P.D. $\lambda\cdot_V(\mu\cdot_V f)=(\lambda\cdot_K\mu)\cdot_V f$

Obs. 6 Por construcción $\mu\cdot_V f \in V$. Así, $\lambda\cdot_V(\mu\cdot_V f) \in V$. También tenemos que $\lambda\cdot_K\mu\in K,$ por lo cual $(\lambda\cdot_K\mu)\cdot_V f\in V$ Entonces sólo falta ver que $\lambda\cdot_V(\mu\cdot_V f)$ y $(\lambda\cdot_K\mu)\cdot_V f$ tienen la misma regla de correspondencia.

\begin{align*}
(\lambda\cdot_V(\mu\cdot_V f))(x) &= \lambda \cdot_K (\mu\cdot_V f)(x)\tag{def. $\cdot_V$}\\
&= \lambda\cdot_K(\mu\cdot_K f(x))\tag{def. $\cdot_V$}\\
&= (\lambda\cdot_K\mu)\cdot_K f(x)\tag{asociat. $\cdot_K$}\\
&= ((\lambda\cdot_K\mu)\cdot_V f)(x)\tag{def. $\cdot_V$}\\
\therefore \lambda\cdot_V(\mu\cdot_V f)=(\lambda\cdot_K\mu)\cdot_V f
\end{align*}

  1. P.D. Se cumple la distributividad (7.1)
    $i.e.$ $(\lambda +_K \mu)\cdot_V f=(\lambda\cdot_V f) +_V (\mu\cdot_V f)$

Obs. 7 Tenemos que $\lambda,\mu,\lambda +_K \mu \in K$. Así, $(\lambda +_K \mu)\cdot_V f, (\lambda\cdot_V f) +_V (\mu\cdot_V f) \in V$. Así que solo falta ver que $(\lambda +_K \mu)\cdot_V f$ y $(\lambda\cdot_V f) +_V (\mu\cdot_V f)$ tienen la misma regla de correspondencia.

\begin{align*}
((\lambda +_K \mu)\cdot_V f)(x) &= (\lambda +_K \mu)\cdot_K f(x)\tag{def. $+_V$}\\
&= (\lambda\cdot_K f(x)) +_K (\mu\cdot_K f(x))\tag{distrib.}\\
&= ((\lambda\cdot_V f)(x)) +_K ((\mu\cdot_V f)(x))\tag{def. $\cdot_V$}\\
&= ((\lambda\cdot_V f) +_V (\mu\cdot_V f))(x))\tag{def. $\cdot_V$}\\
\therefore (\lambda +_K \mu)\cdot_V f=(\lambda\cdot_V f) +_V (\mu\cdot_V f)
\end{align*}

  1. P.D. Se cumple la distributividad (7.2)
    $i.e.$ $\lambda \cdot_V (f +_V g)= (\lambda \cdot_V f) +_V(\lambda \cdot_V g)$

Obs. 8 Tenemos que $\lambda \cdot_V (f +_V g), \lambda \cdot_V f, \lambda \cdot_V g \in V$. Así, $(\lambda \cdot_V f) +_V(\lambda \cdot_V g) \in V$. Entonces sólo falta ver que $\lambda \cdot_V (f +_V g)$ y $(\lambda \cdot_V f) +_V(\lambda \cdot_V g)$ tienen la misma regla de correspondencia.

\begin{align*}
(\lambda \cdot_V (f +_V g))(x) &= \lambda \cdot_K (f +_V g)(x)\tag{def. $\cdot_V$}\\
&= \lambda \cdot_K (f(x) +_K g(x))\tag{def. $+_V$}\\
&= (\lambda \cdot_K f(x)) +_K (\lambda \cdot_K g(x))\tag{distrib.}\\
&= ((\lambda \cdot_V f)(x)) +_K ((\lambda \cdot_V g)(x))\tag{def. $\cdot_V$}\\
&= ((\lambda \cdot_V f) +_V (\lambda \cdot_V g))(x)\tag{def. $+_V$}\\
\therefore \lambda \cdot_V (f +_V g)= (\lambda \cdot_V f) +_V(\lambda \cdot_V g)
\end{align*}

Por lo tanto $V=\{f|f:K \longrightarrow K\}$ es un $K$ – espacio vectorial con las operaciones $+_V$ y $\cdot_V$ trabajadas.

TAREA MORAL

  1. Encuentra un $K$ campo dentro de los ejemplos de la entrada anterior con el cual $\mathcal{M}_{m\times n}(K)$ sea un $K$ – espacio vectorial con una cantidad finita de elementos. Si $K$ no es concreto, exhibe un caso particular de ese campo y una vez que lo hagas, muestra todos los elementos del espacio vectorial obtenido.
  1. Demuestra que el neutro aditivo de $V$, un $K$ – espacio vectorial, es único.
    Para lograrlo, se te sugiere realizar lo siguiente:
    • Sabemos por la definición de espacio vectorial, que existe $\theta_V$ neutro.
    • Primero sup. que existe ${\theta_V}’ \in V$ que también lo es. Con el objetivo de demostrar que $\theta_V = {\theta_V}’$.
    • Ahora justifica cada una de las siguientes igualdades:
      $\theta_V = \theta_V +_V {\theta_V}’ = {\theta_V}’$
  1. Demuestra que los inversos aditivos en $V$ son únicos.
    Para lograrlo, se te sugiere realizar lo siguiente:
    • Sea $u \in V$. Sabemos por la definición de campo, que existe $\tilde{u} \in V$ inverso aditivo de $u$.
    • Primero sup. que existe $\tilde{u}’ \in V$ que también lo es. Con el objetivo de demostrar que $\tilde{u} = \tilde{u}’$.
    • Ahora justifica cada una de las siguientes igualdades:
      $\tilde{u} = \tilde{u} +_V \theta_V = \tilde{u} + (u + \tilde{u}’) = (\tilde{u} + u) + \tilde{u}’$
    • Completa la demostración con las igualdades necesarias y justifícalas.

MÁS ADELANTE…

Ahora analizaremos algunas propiedades de los espacios vectoriales, una de ellas nos dice quién es el elemento neutro dado el espacio vectorial. Además de dos identidades del elemento neutro.

Entradas relacionadas

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.