Álgebra Lineal II: Propiedades de eigenvectores y eigenvalores

Por Julio Sampietro

Introducción

En la entrada anterior platicamos acerca de eigenvectores, eigenvalores y eigenespacios de matrices y transformaciones lineales. Vimos algunos ejemplos básicos. En esta entrada profundizaremos en el estudio de estos objetos y exploraremos diversas de sus propiedades. Comenzaremos con algunas observaciones inmediatas. Después, veremos cómo encontrar de manera sencilla los eigenvalores de las matrices triangulares superiores. También veremos que «eigenvectores correspondientes a eigenvalores diferentes son linealmente independientes«. Finalmente, conectaremos estas nuevas ideas con un objeto que estudiamos previamente: el polinomio mínimo.

Primeras observaciones

A partir de la proposición de la entrada anterior que nos dice cómo calcular eigenvalores se desprenden algunas consecuencias sencillas pero útiles.

Por ejemplo, recuerda que el determinante de una matriz y su transpuesta es igual. En particular, si $A\in M_n(F)$ entonces

\begin{align*}
\det(\lambda I_n -\ ^{t}A)= \det(\ ^{t}(\lambda I_n- A))= \det(\lambda I_n-A).
\end{align*}

Luego $\det (\lambda I_n-A)=0$ si y sólo si $\det(\lambda I_n-\ ^{t}A)=0$. Recordando que las raíces de estos polinomios son precisamente los eigenvalores, se sigue que los eigenvalores de $A$ y $^{t}A$ son iguales.

Por otro lado, como los eigenvalores son las raíces de un polinomio de grado $n$, sabemos que hay a lo más $n$ soluciones. Entonces toda matriz tiene a lo más $n$ eigenvalores.

Esto también ocurre para transformaciones lineales en espacios de dimensión finita y lo podemos enunciar como sigue:

Corolario. Sea $V$ un espacio de dimensión finita sobre $F$ y $T:V\to V$ lineal. Entonces $T$ tiene a lo más $\dim V$ eigenvalores distintos.

Sin embargo, si el espacio no es de dimensión finita no podemos hacer tal afirmación. Si $V$ es el espacio de todas las funciones suaves (es decir con derivadas de todos los órdenes) de $\mathbb{R}$ en $\mathbb{R}$ y $T:V\to V$ es la función lineal que a cada función la manda en su derivada, entonces tenemos «muchos» eigenvalores. Haciendo esto más preciso, para cada real $r$ la función $e^{rx}$ es un eigenvector con eigenvalor $r$ puesto que

\begin{align*}
T(e^{rx})= \left(e^{rx}\right)’= re^{rx}.
\end{align*}

Así, tenemos al menos tantos eigenvalores como números reales. De hecho, estos son exactamente los eigenvalores de $T$, lo cual puede demostrarse mediante el teorema de existencia y unicidad de soluciones de ecuaciones diferenciales, que estudiarás en otro momento de tu formación matemática.

Matrices triangulares superiores

Parte del interés de «triangular» matrices (es decir, encontrar una matriz similar que sea triangular superior) está dada por la facilidad de calcular sus eigenvalores. Exploramos esto mediante los siguientes dos problemas.

Problema 1. Sea $A=[a_{ij}]$ una matriz triangular superior en $M_n(F)$. Demuestra que los eigenvalores de $A$ son precisamente los elementos en la diagonal.

Solución. Ya establecimos que encontrar los valores propios se reduce a encontrar las raíces del polinomio $\det(\lambda I_n-A)$. Notamos que si $A$ es triangular superior, entonces $\lambda I_n-A$ también es triangular superior. Más aún, las entradas de la diagonal son simplemente $\lambda-a_{ii}$. Pero sabemos que el determinante de una matriz triangular superior es el producto de sus entradas diagonales. Así

\begin{align*}
\det(\lambda I_n -A)= (\lambda-a_{11})(\lambda-a_{22})\cdots (\lambda -a_{nn})
\end{align*}

cuyas raíces son exactamente los elementos $a_{ii}$.

$\square$

Podemos combinar el resultado anterior con otras propiedades de matrices triangulares superiores para resolver a mano algunos problemas que de entrada parecen complicados.

Problema 2. Encuentra los eigenvalores de $A^{3}$ donde

\begin{align*}
A=\begin{pmatrix} 1 & 2 &3 &4 \\ 0 & 5 & 6 & 7\\ 0 & 0 & 8 & 9\\ 0 &0 &0 & 10\end{pmatrix}\in M_4(\mathbb{R}).
\end{align*}

Solución. En realidad no hace falta hacer el producto de matrices para encontrar la matriz $A^3$. Sabemos que el producto de dos matrices triangulares superiores es triangular superior y que de hecho las entradas de la diagonal son solo el producto de las entradas correspondientes. Es decir, si $[a_{ij}]$ y $[b_{ij}]$ son dos matrices triangulares superiores, las entradas de la diagonal son $a_{ii}b_{ii}$. En nuestro caso, las entradas de la diagonal son $1^3, 5^3, 8^3$ y $10^3$, y por el problema anterior, estos son precisamente los eigenvalores de $A^3$.

$\triangle$

Relaciones con independencia lineal y combinaciones polinomiales

El resultado principal de esta entrada es el siguiente teorema, que en particular afirma que si dos eigenvalores son distintos, sus eigenvectores son linealmente independientes. En realidad, el resultado es un poco más general y lo enunciamos a continuación

Teorema. Sean $\lambda_1,\dots, \lambda_k$ eigenvalores distintos dos a dos de una transformación lineal $T:V\to V$. Entonces los $\lambda_i$-eigenespacios están en posición de suma directa.

Demostración. Por definición, tenemos que demostrar que si tenemos una colección $\{v_i\}$ de vectores con $T(v_i)=\lambda_i v_i$ y $v_1+\dots+v_k=0$ entonces $v_1=\dots=v_k=0$. Procedemos por inducción sobre $k$.

Nuestro caso base es una tautología, pues si $k=1$ entonces tenemos que mostrar que si $v_1=0$ entonces $v_1=0$.

Asumamos que el resultado se cumple para $k-1$ y verifiquemos que se cumple para $k$. Supongamos que $v_1+\dots+v_k=0$. Aplicando $T$ de ambos lados de esta igualdad llegamos a

\begin{align*}
T(v_1+\dots+v_k)&= T(v_1)+\dots+T(v_k)\\
&=\lambda_1 v_1+\dots +\lambda _k v_k=0.
\end{align*}

Por otro lado, si multiplicamos a la igualdad $v_1+\dots+v_k=0$ por $\lambda_k$ de ambos lados llegamos a

\begin{align*}
\lambda_k v_1+\dots +\lambda _k v_k=0.
\end{align*}

Sustrayendo y factorizando estas dos igualdades se sigue que

\begin{align*}
(\lambda_k -\lambda_1)v_1+\dots +(\lambda_k-\lambda_{k-1})v_{k-1}=0.
\end{align*}

Esto es una combinación lineal de los primeros $k-1$ vectores $v_i$ igualada a cero. Luego, la hipótesis inductiva nos dice que $(\lambda_k-\lambda_i)v_i=0$ para todo $i=1,\dots, k-1$. Como $\lambda_k\neq \lambda_i$ entonces $\lambda_k-\lambda_i\neq 0$ y entonces $v_i=0$. Sustituyendo en la igualdad original, esto implica que $v_k=0$ inmediatamente.

$\square$

Enseguida veremos que si formamos un polinomio $P(T)$, entonces $P(\lambda)$ es un eigenvalor de $P(T)$ para cualquier eigenvalor $\lambda$ de $T$. Esto lo veremos en el siguiente problema.

Problema. Sea $\lambda$ un eigenvalor de $T:V\to V$ y sea $P$ un polinomio en una variable con coeficientes en $F$. Demuestra que $P(\lambda)$ es un eigenvalor de $P(T)$.

Solución. Como $\lambda$ es un eigenvalor de $T$, existe $v$ un vector no cero tal que $T(v)=\lambda v$. Inductivamente, se cumple que $T^{k}(v)=\lambda^{k} v$. En efecto

\begin{align*}
T^{k+1}(v)&=T(T^{k}(v))\\
&= T(\lambda^{k} v)\\
&= \lambda^{k}T(v)\\
&=\lambda^{k+1}v.
\end{align*}

Usando esto, si $P(X)=a_n X^{n}+\dots+a_1 X+a_0$ se tiene que

\begin{align*}
P(T)(v)&= a_nT^{n}(v)+\dots +a_1 T(v)+ a_0 v\\
&= a_n\lambda^{n}v+\dots +a_1\lambda v+a_0v\\
&= (a_n\lambda^{n}+\dots +a_1\lambda +a_0)v\\
&= P(\lambda) v.
\end{align*}

Esto muestra que $P(\lambda)$ es un eigenvalor de $P(T)$.

$\square$

Relación con el polinomio mínimo

Una consecuencia del problema previo es la siguiente proposición.

Proposición. Sea $A\in M_n(\mathbb{C})$ una matriz y $P\in \mathbb{C}[X]$ un polinomio tal que $P(A)=O_n$. Entonces cualquier eigenvalor $\lambda$ de $A$ satisface $P(\lambda)=0$.

Solución. Por el problema anterior, $P(\lambda)$ es un eigenvalor de $P(A)$, pero $P(A)=O_n$ y el único eigenvalor de la matriz cero es $0$. Luego $P(\lambda)=0$.

$\square$

De esto, podemos por fin establecer una conexión con el polinomio mínimo, que enunciamos en forma de teorema.

Teorema. Sea $T:V\to V$ una transformación lineal sobre un espacio de dimensión finita sobre un campo $F$. Los eigenvalores de $T$ son precisamente las raíces en $F$ del polinomio mínimo $\mu_T$.

Demostración. Dado que $\mu_T(T)=0$, el problema que acabamos de resolver nos dice que todos los eigenvalores de $T$ son raíces de $\mu_T$.

Conversamente, supongamos que existe $\lambda$ una raíz de $\mu_T$ que no es eigenvalor. Entonces la transformación $T-\lambda \operatorname{Id}$ es invertible. Como $\mu_T(\lambda)=0$, podemos factorizar la raíz y escribir $\mu_T(X)=(X-\lambda)Q(X)$ para algún $Q\in F[X]$. Dado que $\mu_T(T)=0$ deducimos que

\begin{align*}
(T-\lambda \operatorname{Id})\circ Q(T)=0.
\end{align*}

Recordando una vez más que $T-\lambda \operatorname{Id}$ es invertible, esta ecuación implica que $Q(T)=0$. Ya que $\mu_T$ es el polinomio mínimo, por una propiedad que mostramos anteriormente obtendríamos que $\mu_T$ divide a $Q$. Pero esto se contradice con la igualdad $\mu_T(X)=(X-\lambda)Q(X)$, que nos dice que $\mu_T$ tiene grado mayor. Esto concluye la demostración.

$\square$

Ejercicios

Terminamos con un par de ejercicios para repasar el material de estas secciones. El primero de entre ellos toma prestados nombres de la probabilidad (lo lo cuál puede sugerirte en qué tipo de texto te podrías encontrar con estas matrices).

Problema 1. Una matriz $A\in M_n(\mathbb{R})$ se dice estocástica si $a_{ij}\geq 0$ para todo $i,j\in \{1,\dots, n\}$ y $\sum_{j=1}^{n} a_{ij}=1$ para todo $i\in \{1,\dots, n\}$.

Demuestra que $1$ es un eigenvalor de cualquier matriz estocástica.

Solución. Consideremos el vector $v=(1,\dots, 1)$. Nota que

\begin{align*}
A\cdot v&= \begin{pmatrix}
a_{11} & a_{12} &\dots & a_{1n}\\
a_{21} & a_{22} & \dots & a_{2n}\\
\dots & \dots & \dots & \dots\\
a_{n1} & a_{n2} & \dots & a_{nn}
\end{pmatrix} \cdot \begin{pmatrix}
1\\
1\\
\vdots\\
1
\end{pmatrix}\\
&= \begin{pmatrix}
a_{11}+a_{12}+\dots+a_{1n}\\
a_{21}+a_{22}+\dots+a_{2n}\\
\vdots\\
a_{n1}+a_{n2}+\dots+a_{nn}
\end{pmatrix}\\
&=\begin{pmatrix}
1\\
1\\
\vdots\\
1\end{pmatrix}.
\end{align*}

Es decir $A\cdot v=v$, por lo que $v$ es un eigenvector de $A$ con eigenvalor asociado $1$.

$\square$

Problema 2. Sea $V$ el espacio de todos los polinomios con coeficientes reales. Sea $T:V\to V$ la transformación lineal dada por $P(X)\mapsto P(1-X)$. ¿Cuáles son los eigenvalores de $T$?

Solución. Observa que
\begin{align*}T^2(P)&=T\circ T(P)\\&= T(P(1-X))\\&= P(1-(1-X))\\&= P(X).\end{align*} Así $T^2=\operatorname{Id}$, o bien $T^2-\text{Id}=0$. Luego, el polinomio mínimo $\mu_T$ tiene que dividir al polinomio $X^2-1$. Sin embargo, los únicos factores de este polinomio son $X-1$ y $X+1$. Dado que $T\neq \pm \operatorname{Id}$ se tiene que $\mu_T(X)=X^2-1$. Por el último teorema que vimos, los eigenvalores de $T$ son precisamente las raíces de $\mu_T$ en $\mathbb{R}$, es decir $\pm 1$.

$\triangle$

Más adelante…

En las entradas subsecuentes iremos más a fondo en el concepto de polinomio característico, para eventualmente llegar al teorema de Cayley-Hamilton. Para eso tendremos que equiparnos de bastante teoría y repasar varias propiedades de dicho polinomio.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Sea $V$ el espacio de polinomios con coeficientes reales de grado a lo más $n$. Encuentra los eigenvalores de la transformación $T:P(X)\mapsto P(X)-(1+X)P'(X)$.
  • Si $V$ es el espacio de polinomios con coeficientes reales, encuentra los eigenvalores de $T:P(X)\mapsto P(3X)$.
  • Sean $A,B$ matrices en $M_n(\mathbb{C})$ tales que $AB-BA=B$. Demuestra que para todo $k\geq 1$ se cumple que $AB^{k}-B^{k}A=kB^{k}$ y de esto deduce que $B$ es nilpotente: existe $m$ tal que $B^{m}=0$. Sugerencia: ¿Cuántos eigenvalores puede tener $T:X\mapsto AX-XA$?
  • ¿Puedes generalizar el último problema de la sección de matrices triangulares superiores?
  • Sea $A$ una matriz cuadrada con entradas reales. Supón que $\lambda$ es un real positivo que es eigenvalor de $A^2$. Demuestra que $\sqrt{\lambda}$ o $-\sqrt{\lambda}$ es un eigenvalor de $A$. ¿Sucederá a veces que sólo una de estas es eigenvalor?

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

7 comentarios en “Álgebra Lineal II: Propiedades de eigenvectores y eigenvalores

  1. Antonio Mayorquin

    Hola,
    Para la demostración del Teorema donde los eigenvectores de eigenvalores distintos son linealmente independiente, ¿Por qué debemos que tener que v1+v2+…+vn=0? Tengo entendido que esto quiere resumir que cualquier eigenvector ui de λi es multiplicado por un escalar αi≠0, entonces este nuevo vector vi=αiui es eigenvector de λi. Lo que no veo es cómo evitar que no exista ningún αj=0 que ya evite a vj ser un eigenvector.

    Responder
    1. Antonio Mayorquin

      Ya entiendo. Es porque estamos haciendo inducción fuerte, y por lo tanto tenemos que ya todo subconjunto de {vi} de menor cardinalidad debe ser linealmente independiente. Con esto, no puede ser el caso que exista un αj=0, ya que esto contradice la hipótesis de inducción fuerte al estar trabajando en k.

      Me disculpo por gastar su tiempo con pregunta anterior.
      Que tenga un buen día.

      Responder
    2. Leonardo Ignacio Martínez SandovalLeo

      Hola Antonio. La demostración aquí está escrita un poquito diferente a como la vimos en el curso. Lo que sucede es que aquí está enunciada en términos de «sumas directas» de subespacios y por eso basta considerar que tengan coeficiente 1. Por ejemplo, si quisieras pensar en alpha_1v_1, entonces mejor lo nombras w_1=alpha_1v_1 y con eso w_1 vuelve a estar en el subespacio (recuerda que son cerrados bajo multiplicación escalar) y de ahí trabajas como en la demostración.

      Responder
  2. Eduardo

    Tengo una duda en el teorema que dice lo siguiente Teorema. Sean \lambda_1,\dots, \lambda_k eigenvalores distintos dos a dos de una transformación lineal T:V\to V. Entonces los \lambda_i-eigenespacios están en posición de suma directa. La demostración empieza diciendo que {v_i} colección de eigenvectores pero después llegamos que v_k = 0 pero que no se supone que el vector 0 no puede ser un eigenvector?

    Responder
    1. Leonardo Ignacio Martínez SandovalLeo

      Hola Eduardo. En efecto, ahí no debe decir «eigenvectores», sino simplemente «vectores», pero que sí cumplan la condición $T(v_i)=\lambda v_i$ que ahí se pone. Esto casi casi es que sean eigenvectores, pero también da chance a que sean el vector cero. Esto es pues precisamente los eigenespacios tienen a los eigenvectores, y al vector cero.

      Responder
  3. Nico Quijada

    Hola. Tengo otra duda del desarrollo de la teoría hasta este punto.
    Cuando pasamos de hablar de polinomio mínimo a eigen-cosas vimos que no teníamos muchas prácticas para encontrar el polinomio mínimo, así que nos salimos de ese tema. También, en la entrada anterior, se mencionaba que si encontrábamos los eigenvalores de una t.l. podíamos asociarle su forma matricial y teníamos inmediatamente los eigenvalores (pues eran los mismos) pero al revés no (pues podíamos tomar diferentes bases), que estos dependían de la base elegida.

    Entonces en el último teorema de esta entrada, ¿estamos encontrando una forma de hallar los eigenvalores de T sin necesidad de pasarnos al mundo de las matrices? Porque hasta ahora, entiendo, solo tenemos forma de calcular los eigenvalores a partir de la matriz asociada.

    Responder
  4. Nico Quijada

    Reescribo esta duda porque me parece que no se posteó:

    Cuando probábamos que si A tiene asociado un eigenvalor lambda y dado P en F[x] tal que P(A)=On, entonces P(T) tiene asociado el eigenvalor P(lambda) se está diciendo que el único eigenvalor de la matriz On es el lambda=0, ¿pero no se supone que los eigenvalores tienen que ser distintos de cero?

    Responder

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.